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Burden Testing of Rare Variants Identified
through Exome Sequencing
via Publicly Available Control Data

Michael H. Guo,1,2,3,5 Lacey Plummer,4 Yee-Ming Chan,1 Joel N. Hirschhorn,1,2,3,6

and Margaret F. Lippincott4,6,*

The genetic causes of many Mendelian disorders remain undefined. Factors such as lack of large multiplex families, locus heterogeneity,

and incomplete penetrance hamper these efforts for many disorders. Previous work suggests that gene-based burden testing—where the

aggregate burden of rare, protein-altering variants in each gene is compared between case and control subjects—might overcome some of

these limitations. The increasing availability of large-scale public sequencing databases such as Genome Aggregation Database

(gnomAD) can enable burden testing using these databases as controls, obviating the need for additional control sequencing for each

study. However, there exist various challenges with using public databases as controls, including lack of individual-level data, differences

in ancestry, and differences in sequencing platforms and data processing. To illustrate the approach of using public data as controls, we

analyzed whole-exome sequencing data from 393 individuals with idiopathic hypogonadotropic hypogonadism (IHH), a rare disorder

with significant locus heterogeneity and incomplete penetrance against control subjects from gnomAD (n¼ 123,136).We leveraged pre-

sumably benign synonymous variants to calibrate our approach. Through iterative analyses, we systematically addressed and overcame

various sources of artifact that can arise when using public control data. In particular, we introduce an approach for highly adaptable

variant quality filtering that leads to well-calibrated results. Our approach ‘‘re-discovered’’ genes previously implicated in IHH

(FGFR1, TACR3, GNRHR). Furthermore, we identified a significant burden in TYRO3, a gene implicated in hypogonadotropic hypogo-

nadism in mice. Finally, we developed a user-friendly software package TRAPD (Test Rare vAriants with Public Data) for performing

gene-based burden testing against public databases.
Introduction

In the past, most gene discovery for rare disorders was per-

formed using linkage analysis in large families. However,

the advent of next-generation sequencing (NGS) has

enabled alternative statistical approaches to gene discov-

ery including a gene-based burden testing approach. In

this approach, the number of individuals carrying rare,

protein-altering variants in each gene is compared be-

tween case and control subjects. The motivation behind

this approach is that while a single variant is usually un-

derpowered to detect statistical signals between case and

control subjects, aggregating variants across a candidate

gene might improve power. This approach has a further

advantage that it can be applied to unrelated case sub-

jects, thus overcoming some limitations of linkage anal-

ysis, including for disorders where there are a lack of large

multiplex families or where there is considerable incom-

plete penetrance.1 This approach has already led to the

discovery of a number of genes associated with various

disorders and has been also referred to as gene-based

collapsing analysis.2 It is highly similar to burden testing

approaches applied in rare variant association studies

(RVASs), where sums of allele counts of rare protein-
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altering variants in each gene are compared between

case and control subjects.3–5

Recently, large exome-sequencing databases have

been generated, including the Exome Aggregation Con-

sortium (ExAC) and the Genome Aggregation Database

(gnomAD).6 To date, these databases have been used

largely as variant frequency databases to filter out more

common variants that are unlikely to be pathogenic for a

Mendelian disorder. These databases also have the poten-

tial to serve as controls in burden-testing strategies, but

there are important limitations to the use of these data-

bases for this purpose. First, only variant-level data are

typically released, thus making it challenging to perform

more sophisticated tests such as SKAT that require individ-

ual-level genotype data.3 Second, these databases aggregate

data obtained from multiple sequencing platforms, which

may differ from the platform(s) used to sequence case

subjects. Third, public database samples are not jointly

processed and variant-called with the case samples, poten-

tially introducing additional technical artifacts. Finally,

although public databases provide some ancestry informa-

tion, the exact ancestry of the individuals is not available

and hence cannot be readily and directly compared to

the ancestry of the case subjects.
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This study leverages gnomAD, the largest publicly

available sequencing cohort (n ¼ 123,136) as control sub-

jects, to perform burden testing against 393 individuals

with idiopathic hypogonadotropic hypogonadism (IHH)

for whom whole-exome sequencing was performed.

IHH is a rare Mendelian disorder characterized by the fail-

ure of normal pubertal development due to deficiency of

gonadotropin-releasing hormone (GnRH) and has a

prevalence of approximately 1:30,000–1:125,000.7,8 To

date, approximately 35 genes have been associated with

IHH.9,10 However, these genes account for only approxi-

mately one-third of cases of disease, leaving the genetic

basis of the disease unknown in the majority of affected

individuals.

Given the reproductive consequences of this disorder, a

fully penetrant IHH-causing mutation cannot be passed

down from an affected individual to their offspring.

Thus, most individuals with IHH are simplex cases, or

the IHH-causing mutations are incompletely penetrant.

Both factors hamper linkage-based approaches for IHH.

Previous work suggests that a gene-based burden approach,

which is capable of leveraging unrelated probands, would

have increased power to uncover new genes as compared

to traditional family-based approaches.1

To overcome the dual obstacles of using public control

data and of gene discovery in a rare Mendelian disease

cohort, this study utilizes a variety of approaches to

harmonize case and control data. Synonymous variants,

which are presumably largely benign, are used to calibrate

this approach to guard against type I error. The 35 genes

previously implicated in IHH are used as positive controls

to evaluate the efficacy of the approach. Approaches to

overcome the various pitfalls of conducting rare variant

gene-based burden testing using public control data are

demonstrated through sequential evaluations of perfor-

mance metrics.

These methods demonstrate that even in a rare disorder

with substantial locus heterogeneity such as IHH, it is

possible to rediscover known genes as well as validate

candidate genes. This approach, available in a new user-

friendly software package TRAPD (Test Rare vAriants with

Public Data), can be used by other rare disease researchers

for gene discovery and validation efforts.
Subjects and Methods

Recruitment
The study was approved by the Institutional Review Board at the

Massachusetts General Hospital (MGH). All study individuals or

their legal guardians provided written informed consent. Individ-

uals with IHH have been referred to and/or recruited by the Repro-

ductive Endocrine Unit (REU) at MGH over 20 years. IHH

was defined as hypogonadal sex-steroid levels (testosterone <

100 ng/dL in men; estradiol < 20 pg/mL in women) in the setting

of low or normal gonadotropin levels at age R18 years and the

absence of any identifiable medical condition that could cause

hypogonadotropic hypogonadism. Anosmia was demonstrated
The America
either by formal smell testing using the University of Pennsylvania

Smell Identification Test or a self-reported inability to smell (which

has been demonstrated to correlate well with formal smell

testing).11
Sample Ascertainment and Sequencing
Whole-exome sequencing was performed from peripheral blood-

derived DNA in three separate batches. The first batch (n ¼ 100;

60 case subjects) was sequenced at the Yale Center for Mendelian

Genomics (New Haven, CT), with exome capture performed us-

ing the Nimblegen SeqCap target enrichment kit (Roche). The

second batch (n ¼ 161; 143 case subjects) was sequenced at the

Broad Institute (Cambridge, MA), with exome capture performed

using the Agilent SureSelect v2 capture kit (Agilent Technologies).

The third batch (n ¼ 1,076; 190 case subjects) was sequenced at

the Broad Institute with exome capture performed using a

custom Illumina capture kit (ICE) (Illumina). These sequencing

batches contained additional samples that were not a part of

this study.

For the first batch (sequenced at Yale) and third batch

(sequenced at Broad using ICE capture), consecutive individuals

in the MGH REU collection were selected. For the second batch

of individuals (sequenced at the Broad Institute using SureSelect

v2 capture), samples were selected in two ways. First, individuals

with IHH bearing known genetic causes of IHH were screened

out based on Sanger sequencing-based screening for 14 genes

implicated in IHH: CHD7 (MIM: 608892), FGF8 (MIM: 600483),

FGFR1 (MIM: 136350), GNRH1 (MIM: 152760), GNRHR (MIM:

138850), HS6ST1 (MIM: 604846), ANOS1, previously called KAL1

(MIM: 300836), KISS1 (MIM: 603286), KISS1R (MIM: 604161),

NSMF, previously called NELF (MIM: 60813), PROK2 (MIM:

607002), PROKR2 (MIM: 607123), TAC3 (MIM: 162330), and

TACR3 (MIM: 162332). Second, the batch was enriched for indi-

viduals with IHH bearing heterozygous mutations in PROKR2,

which is classically implicated in IHH in the bi-allelic state.12 All

case subjects were ascertained from different families, and this

was confirmed by ensuring that identity by descent was <0.05 be-

tween all individuals.
Variant Calling and Annotation
Following sequencing, the resulting reads were aligned to the

hg19 reference genome with BWA,13 applied GATK v.3.2,14 base

quality score recalibration, indel realignment, and duplicate

removal, and we performed SNP and indel discovery and geno-

typing across all samples simultaneously using standard hard

filtering or variant quality score recalibration according to

GATK Best Practices recommendations.15,16 For purposes of

burden testing, statistical genotypes were converted to discrete

alternate allele counts (0, 1, or 2 representing homozygous refer-

ence, heterozygous, or homozygous variant, respectively). Variant

call files (VCF) files were processed using Tabix v.1.317 and

Bcftools v.1.2.18

Following variant calling, variants were annotated for func-

tional effect using Variant Effect Predictor v.77.19 Three separate

protein-prediction algorithms, PolyPhen2,20 SIFT,21 and

CADD,22 were employed. Variants were also annotated for allele

frequencies from TOPMed Freeze 5 and gnomAD v.2.0.2 (see

Web Resources). For gnomAD, minor allele frequency (MAF)

from each of the ancestries within gnomAD (African, Admixed

American, Ashkenazi Jewish, East Asian, Finnish, non-Finnish Eu-

ropean, and South Asian) were added and MAF filtering was based
n Journal of Human Genetics 103, 522–534, October 4, 2018 523



Figure 1. Burden Testing Scheme
Case cohort sequencing (IHH) and control database sequencing
(gnomAD) data are processed separately, and burden testing is per-
formed in the final step. For each set of data, sequencing quality
filters, predicted variant pathogenicity filters, and sample filters
(e.g., ancestry) can be applied. Then, counts of qualifying variant
carriers for each gene in the case and control subjects are gener-
ated. Finally, burden testing is performed.
on the highest MAF from each of the gnomAD populations

(i.e., population maximum allele frequency).

Adjusting for Read Depth

Each coding exon was annotated per GENCODE v.19. A 10 bp pad

was included on either end of each exon. For each coding base, the

proportion of individuals covered at >103 was calculated sepa-

rately for IHH and gnomAD. Depth of coverage for each position

for gnomAD samples was provided by the gnomAD con-

sortium.6 Bases with at least 90% of samples covered in

both IHH and gnomAD were retained for analyses. Finally,

low-complexity repeats23 and segmental duplications (see Web

Resources) were filtered out.

To apply the approach for adjusting for read depth used in Ra-

ghavan et al.24 (‘‘Binomial Method’’), at each coding base, the pro-

portion of individuals covered at >103 in case cohort sequencing

and gnomAD was calculated. The difference in these proportions

for each site was then compared using a binomial test, and only

sites that were not significantly different (p> 0.001) were retained

for analyses. To apply the approach for adjusting for read depth

used in Cirulli et al.2 (‘‘Concordance Method’’), at each coding

base, the concordance of bases covered at >103 in greater

than 90% of samples in case cohort sequencing as compared to

gnomAD was calculated. Only exons with >90% concordance in

bases meeting these criteria in case cohort sequencing versus

gnomAD were retained.
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Assessment of Quality by Depth (QD) and Variant

Quality Score Log-Odds (VQSLOD) Filters
QD and VQSLOD filters were determined separately for case and

control sequencing using a set of rare variants (MAF < 1.0%)

that were shared between the case cohort and gnomAD. QD and

VQSLOD filters were calculated at the 70, 75, 80, 85, 90, and

95th percentiles separately for the case cohort and gnomAD. Every

pairwise combination of QD and VQSLOD filter between the case

cohort and gnomADwas tested to establish the best match of syn-

onymous variant burden testing between case and control data-

sets. This was done in similar fashion when comparing the case

cohort to ExAC. Calibration of quality filters for indels was done

similarly, except all rare nonsynonymous variants were used

rather than synonymous variants.
PCA Analysis
Approximately 15,000 autosomal exonic SNPs from HapMap

Phase 325 were used to conduct PCA analysis. SNPs were pruned

using PLINK26 based on LD (variance inflation factor threshold

of 2), and only common variants (MAF > 5%) were used in the

PCA analysis. PCA outlier analyses were performed by projecting

the case samples onto HapMap3 samples using EIGENSOFT.25,27
Gene-Based Burden Testing
To perform gene-based burden testing, high-confidence variants

and variants that are likely pathogenic based on MAF and/or pro-

tein-prediction algorithmswere selected using various filters (spec-

ified in each individual section below). Variants that met these

quality and pathogenicity filters are referred to as ‘‘qualifying var-

iants’’ (Figure 1).2 A file listing the qualifying variants for each

gene was generated using the ‘‘make_snp_file.py’’ function in

TRAPD.

For the dominant test, for each gene, the number of individuals

in the case cohort who carry at least one qualifying variant in that

gene was tabulated using the ‘‘count_cases.py’’ function in

TRAPD. For the gnomAD control dataset, only summary statistics

were available. Therefore, to approximate the number of control

subjects carrying at least one qualifying variant in a given gene,

the allele counts for all qualifying variants in that gene were

summed. This approximation may be an overestimate if some in-

dividuals carry multiple variants in the same gene, an issue that is

particularly salient in larger genes and/or those with a high rate of

background variation. In this situation, the sum control allele

counts would be inflated, resulting in a more conservative test.

The tabulation of these counts for each gene was generated using

the ‘‘count_controls.py’’ function in TRAPD.

For the recessive test, the case cohort counts were generated by

tabulating the number of case subjects carrying two or more

qualifying variants in each gene. Phase for variants in the case

subjects cannot readily be determined; thus, some individuals

carrying two variants in the same gene actually represent two var-

iants on the same haplotype (and thus not bi-allelic). The control

counts were generated by adding the number of individuals who

harbor homozygous variants for each qualifying variant in a

given gene to an estimated number of individuals who are com-

pound heterozygotes. To estimate the number of individuals who

are compound heterozygotes, the cumulative frequency of

heterozygous variant carriers in a gene was squared and multi-

plied by the total number of individuals in gnomAD. This

again may be an overestimate, which would result in a more

conservative test.
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Following tabulation of case and control counts, a 23 2 contin-

gency table is generated for each gene. This contingency table rep-

resents the number of case and control subjects who carry and do

not carry a qualifying variant in each gene. p values were calcu-

lated using two-sided Fisher’s exact test and p values < 2.5 3

10�6 were considered significant (a corrected for testing approxi-

mately 20,000 genes). Burden testing was performed using the

‘‘burden_test.R’’ function in TRAPD. Results were then visually

represented by a quantile-quantile (QQ) plot.

Calibration with Genes Previously Implicated in IHH:

‘‘Positive Controls’’
To serve as positive controls, a set of 35 autosomal genes previ-

ously implicated in IHH was analyzed: AXL (MIM: 109135),

CHD7, DMXL2 (MIM: 612186), DUSP6 (MIM: 602748), FEZF1

(MIM: 613301), FGF8, FGFR1, FGF17 (MIM: 603725), FLRT3

(MIM: 604808), GLCE (MIM: 612134), GNRH1, GNRHR, HS6ST1,

IL17RD (MIM: 606807), KISS1, KISS1R, KL (MIM: 604824), KLB

(MIM: 611135), LEPR (MIM: 601007), NSMF, OTUD4 (MIM:

611744), PCSK1 (MIM: 162150), POLR3A (MIM: 614258), POLR3B

(MIM: 614366), PROK2, PROKR2, RNF216 (MIM: 609948),

SEMA3A (MIM: 603961), SOX10 (MIM: 602229), SPRY4 (MIM:

607984), STUB1 (MIM: 607207), TAC3, TACR3, TUBB3 (MIM:

602661), and WDR11 (MIM: 606417). Of note, the case cohort

in this study was not an unbiased cohort of individuals with

IHH. Some individuals in the full database of individuals with

IHH were excluded from this study because targeted Sanger

sequencing revealed that they carry variants previously implicated

in IHH (see above); thus, the cohort is partially depleted for vari-

ants in these genes. Also, some of the individuals in the cohort

in this study were specifically included because they were known

to be heterozygous for a variant in PROKR2; thus, the cohort is

slightly enriched for PROKR2 mutations (see above).

To refine potential qualifying missense variants, missense vari-

ants in 20 genes chosen based on their strong evidence for causal-

ity in IHH were examined:9,28 AXL, CHD7, FEZF1, FGF8, FGFR1,

FGF17, GNRH1, GNRHR, HS6ST1, IL17RD, KISS1, KISS1R, NSMF,

PROK2, PROKR2, SEMA3A, SOX10, TAC3, TACR3, and WDR11.

These variants were annotated as described above, and variants

with a MAF of less than 0.1% were used to assess how protein pre-

diction algorithms could refine the performance of the burden

testing algorithm.

Quantile-Quantile (QQ) Plot Metric
Tomeasure inflation, wemade an adaption to the genomic control

(GC) metric commonly applied in GWAS.29 We name this metric

lD95. This adaptation allows for an assessment of inflation in

summary statistics, while adjusting for the large number of genes

with p value ¼ 1.0 that results from the many genes with no

variants observed in case cohort sequencing owing to

relatively small case sample size. We calculated the observed and

expected –log10(p values) at the 95th percentile of all genes. We

then calculated the highest expected –log10(p value) among genes

with p value ¼ 1.0. lD95 is then calculated as below, where Pobs95
and Pexp95 are the observed and expected p values at the 95th

percentile, and Pobs0 and Pexp0 are the observed and expected p

values for the gene with the highest expected –log10(p value)

among genes with p value ¼ 1.0.

lD95 ¼ ð � log10ðPobs95ÞÞ � ð � log10ðPobs0ÞÞ�� log10
�
Pexp95

��� �� log10
�
Pexp0

��
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Software for Burden Testing
A software package for burden testing against public controls

(TRAPD) is freely available (see Web Resources). The package is

written in Python and R.
Results

Description of Approach

In the gene-based burden testing approach, the number of

individuals carrying variants in a given gene is compared

between disease case and control cohorts. Typically,

sequencing data are filtered for rare, protein-altering vari-

ants, as these are believed to be more likely to cause a

rare monogenic disorder.30,31 These variants are referred

to as ‘‘qualifying variants.’’2 These filters reduce the noise

that is introduced by benign variants. This exercise is

repeated for each gene in the genome.

In this study, a gene-based burden test was performed for

a cohort of 393 unrelated individuals with IHH against

publicly available data as controls. The ascertainment

and characteristics of these sequencing cohorts are

described in Subjects and Methods. The case samples

were all whole-exome sequenced across three separate

sequencing platforms; variant-calling and quality control

(QC) was performed jointly across the samples (see Sub-

jects and Methods). The control samples were taken from

the gnomAD database, which is comprised of 123,126

whole-exome sequencing samples.6 These samples were

aggregated from many research projects assembled by

many different centers and sequenced across several plat-

forms; however, variant-calling and QC was performed

jointly across the samples. Importantly, only summary-

level data are available for gnomAD, rather than the full in-

dividual-level genotype data. As IHH is an extremely rare

disorder (1 in 30–125,000),7,8 gnomAD is likely to contain

few if any individuals with IHH; therefore, gnomAD serves

as a reasonable control dataset, particularly since prior

work has demonstrated that for rare disorders, ‘‘contami-

nation’’ of the control samples with individuals with the

disorder has very limited impact on power to detect associ-

ated genes for rare disorders.1

In the following analyses, burden testing was performed

to compare the case subjects (individuals with IHH) against

a public control database (gnomAD) (Figure 1). To calibrate

this approach, synonymous variants were used for compar-

ison as they are presumably largely benign.30,31 By utiliz-

ing synonymous variants from case sequencing as

compared to gnomAD control subjects, we generated a

‘‘null’’ study to evaluate whether there might be artifactual

inflation or deflation of test statistics as evaluated using a

quantile-quantile (QQ) plot metric. Then, we systemati-

cally altered different thresholds and parameters to

improve the quality and reliability of burden testing.

Finally, we conducted burden testing on rare protein-

altering qualifying variants to determine whether any

of the 35 genes previously implicated in IHH could be
n Journal of Human Genetics 103, 522–534, October 4, 2018 525



Figure 2. Effect of Coverage on Distribution of Synonymous
Variants
(A) Quantile-quantile plot of initial burden testing results using
synonymous SNVs. Synonymous variants were used as they
are likely mostly benign and can be used to test the null distribu-
tion. The x axis represents the expected –log10(p value) under
the uniform distribution of p values. The y axis shows the
observed –log10(p value) from the burden testing data. Each point

526 The American Journal of Human Genetics 103, 522–534, Octobe
‘‘re-discovered’’ and if we could discover any genes that

had not been previously associated with IHH.

Initial Burden Testing

For the initial burden testing, the burden of rare (MAF <

0.1%), synonymous, single-nucleotide variants (SNVs)

were compared between the case sequencing cohort and

gnomAD control database without any filtering for variant

quality or sequencing depth of coverage. As shown in

Figure 2A, there was inflation of association statistics,

with lD95 ¼ 1.23, above the expected 1.00, suggesting the

presence of artifact. Moreover, there were a large number

of genes with association statistics that were more signifi-

cant than expected (Figure 2A).

Effect of Read-Depth Filters

On closer examination, many genes appeared to exhibit

differential read depth coverage between the case cohort

and gnomAD controls. This difference likely reflects differ-

ences in exon-capture methods, resulting in differential

coverage at targeted exons. For example, at HRNR (synon-

ymous p value ¼ 1.54 3 10�7), many bases were found to

have much better sequencing coverage in case subjects as

compared to control subjects (Figure 2B): 58.9% of coding

bases in HRNR were covered at read depth of >103 in at

least 90% of IHH case subjects, while 42.3% of the coding

bases were covered at read depth of>103 in at least 90% of

gnomAD control subjects (Figure 2B).

To overcome these striking differences in coverage, only

sites that were covered at>103 in at least 90% of both case

and control subjects were retained for analysis. After

filtering these sites for depth of coverage, the association

statistics demonstrated marked improvement (prior to

read depth filtering: lD95 ¼ 1.23, after read depth filtering:

lD95 ¼ 1.11, Figures 2A and 2C), suggesting that much of

the inflation observed prior to read depth filtering was

due to differences in sequencing coverage. For HRNR,

following read depth filtering, the p value for synonymous

variants was 0.48. However, there was still an excess of

genes with inflated test statistics (Figure 2C), indicating
is a single gene. Red dots represent the 35 genes previously impli-
cated in IHH, while black dots represent the remaining genes in
the genome. The black solid line shows the relationship between
expected and observed p values under the uniform p value distri-
bution. The dotted blue line shows the observed fit line between
the 50th and 95th percentile of genes; the slope of this line is lD95.
(B) Coverage at HRNR in case sequencing data and gnomAD con-
trol database. Exons are shown in yellow boxes below the plot,
with wider boxes representing coding regions and narrower boxes
representing UTRs. Introns (not drawn to scale) are shown as con-
necting lines between exons. Red dots represent coverage (as pro-
portion of individuals with read depth >103) in case cohort
sequencing, while blue dots represent coverage in gnomAD con-
trol database. Each dot represents a single base. The dashed line
represents the threshold for 90% of samples having sequencing
read depth >103.
(C) Repeat QQ plot from (A), except considering only bases for
which more than 90% of samples had sequencing read
depth >103 in both gnomAD and case sequencing data.
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Figure 3. Effect of Variant Quality Filters on Distribution of Syn-
onymous Variants
(A) Effect of adding pass/fail filters for variant quality. QQ plot
of burden testing results following filtering for sites that
passed GATK quality filters in the case and control sequencing
data.
(B) Burden testing using QD scores to filter for sites. Only
top 95% of sites in gnomAD based on QD scores and top 85%
of sites in the case cohort sequencing based on QD scores are
used.
Only sites where more than 90% of samples had sequencing read
depth >103 in both gnomAD and the case cohort sequencing
were considered (same as Figure 2B). QQ plots show burden testing
results for synonymous variants.
that additional steps were needed to generate a well-cali-

brated analysis.

Effect of Quality Filters

Even within sites well covered by the different sequencing

platforms, some variants are called with higher confidence

than others. Therefore, the results were further filtered to

only those sites passing the quality thresholds of the

GATK variant-calling software.14–16 Application of this

additional filter removed many genes with p values that

were more significant than expected but still resulted in in-

flated association statistics overall (lD95 ¼ 1.13, Figure 3A).

On closer examination, many individual variants present

in both the case sequencing cohort and gnomAD control

database had discordant quality parameters, such that

the same variant passed filters in one cohort but not the

other. This probably occurred because of the vastly

different sample sizes and possibly because of the incorpo-

ration of different samples when joint-calling each cohort.

Among the 293,791 SNVs with MAF < 1.0% shared be-

tween the IHH cohort and gnomAD, 54,373 (18.5%) vari-

ants were discordant in their pass/fail status between the

two cohorts. Thus, pass/fail status did not represent a

consistent quality threshold across case and control

sequencing data. To address this issue, other quantitative

markers of quality were assessed.

Quantitative Measures of Variant Quality

To determine whether quantitative measures of quality

might allow for improved quality filtering, two quality

metrics output by the GATK variant-calling software were

analyzed: variant quality score log-odds (VQSLOD) and

quality-by-depth (QD).14–16 These scores have the advan-
The America
tage of being less dependent on the joint-calling procedure

than the pass/fail filters set by GATK.16 Furthermore, as

quantitative measures of quality, they allow greater flexi-

bility in setting thresholds, as compared to binary pass/

fail filters.

To evaluate the consistency of VQSLOD and QD as mea-

sures of quality, we examined the correlation in scores for

rare (MAF < 1.0%) synonymous variants shared between

the case and control sequencing data. Surprisingly, there

was very little correlation for VQSLOD (r2 ¼ 0.035)

(Figure S1A), while QD displayed much better correlation

(r2 ¼ 0.61) (Figure S2A). Of note, at lower MAF bins, there

was lower correlation in quality metrics between variants

shared between the case sequencing cohort and gnomAD

control database. This variable correlation at different

MAFs reflects the importance of examining the perfor-

mance of quality thresholds at the MAF of the intended

comparison (Figures S1B, S1C, S2B, and S2C).

Given that QD was more strongly correlated at shared

sites between the two cohorts at all MAFs, a QD filter

was next applied to the data. We used a set of shared

rare (MAF < 1%) SNVs to identify optimal QD score

thresholds. These thresholds were identified separately

for the case cohort sequencing and gnomAD control data-

base. Subsequently, these QD score thresholds were

applied to each cohort. Following experimentation with

multiple combinations of filters, using the top 95% of

sites in terms of QD scores for gnomAD and the top

85% of sites in terms of QD for the case sequencing

cohort resulted in a well-controlled burden test

(Figure 3B, lD95 ¼ 0.99). This application of a percentile-

based filter also allows for more adaptable thresholds; in

contrast to a simple pass/fail filter, these thresholds are

quantitative and can be set separately for the case and

control sequencing data.

Analysis of Protein-Altering Variants

Having established a set of quality and read depth filters

that appeared to generate a well-controlled test based on

synonymous variants, these filters were used to analyze

rare protein-altering qualifying variants, which are of in-

terest. As an initial test, all SNVs that are predicted to alter

protein sequence, including missense variants and pro-

tein-truncating variants (PTVs) (essential splice site, frame-

shift, and nonsense) were considered. When analyzing

these protein-altering variants, the resulting QQ plot re-

mained well controlled for artifact (Figure 4A, lD95 ¼
0.96). Additionally, many of the known IHH-associated

genes emerged among the top genes, such as TACR3

(p value ¼ 1.90 3 10�8, OR ¼ 5.88), FGFR1 (p value ¼
4.56 3 10�8; OR ¼ 4.92), and GNRHR (p value ¼ 1.29 3

10�6, OR ¼ 4.32). It is important to note that many of

the genes previously implicated in IHH did not emerge as

significant in the burden testing. This likely reflects the

fact that many of these were identified in isolated families

and contribute to only a small proportion of disease-

affected case subjects.9 Also, as noted in Subjects and
n Journal of Human Genetics 103, 522–534, October 4, 2018 527
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Figure 4. Selection of Damaging Vari-
ants to Improve the Power of Rare Variant
Burden Testing
(A) Burden testing using all protein-
altering variants.
(B) Distribution of PolyPhen2 (PP2), SIFT,
and CADD scores amongmissense variants
observed in IHH-affected case subjects as
compared to gnomAD.
(C) Burden testing using only PTVs (essen-
tial splice site, frameshift, and nonsense)
and missense variants computationally
predicted to be damaging are considered.
(D) Burden testing using only PTVs.
For (A), (C), and (D), the same filters for
coverage as in Figure 2B and variant quality
as in Figure 3B were applied.
Methods, the cohort was partially depleted for individuals

carrying variants in some genes associated with IHH.

Calibrating with Protein Prediction Filters

Another reason for lack of significant associations for genes

previously implicated in IHH is that many missense vari-

ants are benign and may limit the ability to detect enrich-

ment of deleterious missense variants in case subjects as

compared to control subjects. If so, computational predic-

tions of the severity of biological effect ofmissense variants

might improve the specificity of the gene-based burden

test by removing noise introduced by benignmissense mu-

tations. Since there is no gold standard for prediction of

pathogenic variants, the performance of three protein-pre-

diction algorithms (PolyPhen2,20 SIFT,21 and CADD22)

across missense variants in 20 genes implicated in IHH

were examined, under the assumption that the IHH cohort

would be enriched for damagingmissense variants in these

genes. These 20 genes, listed in Subjects andMethods, are a

subset of the 35 genes previously implicated in IHH and

were chosen based on their strong evidence of causality.

To increase the number of observations, the analysis was

expanded to include all missense changes in these 20

genes in 1,309 individuals with IHH for which Sanger

sequencing of these genes had been performed.With these

additional samples, there was significant enrichment in

‘‘probably damaging’’ score for PolyPhen2 (p < 0.0001).

In contrast, SIFT demonstrated no significant enrichment,
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and CADD called more than 60% of all

missense variants in individuals with

IHH and gnomAD control subjecs as

damaging (Figure 4B).

Since PolyPhen2 appeared to be the

most consistent at distinguishing

benign from pathogenic variants, sub-

sequent burden testing was restricted

to PTVs and missense SNVs scored as

‘‘probably damaging’’ by PolyPhen2

(Figure 4C, lD95 ¼ 0.99). This addi-

tional filter resulted in improved test
statistics for several genes previously implicated in IHH.

For example, application of the PolyPhen2 filter improved

the p value for FGFR1, a gene previously associated with

IHH, from 4.563 10�8 (OR¼ 4.92) to 5.25�10 (OR¼ 7.01).

Finally, the performance of the burden test when using

only protein-truncating SNVs (nonsense and essential

splice site) was examined, as these are the most likely to

be pathogenic and should in theory be the most enriched

in the case cohort sequencing as compared to gnomAD

control database. Previously associated genes such as

FGFR1 (p value ¼ 1.78 3 10�7; OR ¼ 105.5) remained

among the most highly associated genes. We note that

although the association test statistics were not inflated

on visual inspection, lD95 was 1.56 owing to the small

number of genes carrying a PTV in the case cohort.

Addition of Indels to Burden Testing

Insertions and deletions (indels) typically result in greater

rates of sequencing and variant-calling artifacts as

compared to SNVs. However, adding indels in the top

75% in terms of QD scores in case cohort sequencing

and the top 95% of indels for gnomAD samples continued

to allow for a well-controlled burden test when testing all

nonsynonymous sites (Figure 5A, lD95 ¼ 0.95). When re-

stricting to PTVs and missense variants nominated as

‘‘probably damaging’’ in PolyPhen2, additional incorpora-

tion of indels improved the association of FGFR1 from a

p value of 5.25�10 to 7.31 3 10�11 (OR ¼ 7.41; Figure 5B;
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Figure 5. Addition of Indels to Rare Variant Burden Testing
For case cohort sequencing, SNVs in the top 85% of QD scores and
indels in the top 75% were considered. For gnomAD, SNVs in the
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QQ plot shows burden testing using all nonsynonymous variants
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The America
lD95 ¼ 0.979). Importantly, TYRO3, a candidate gene from

mouse knockout studies,32,33 achieved an exome-wide sig-

nificance p value of 1.773 10�6 (OR¼ 7.98). Finally, when

examining only protein-truncating variants, the addition

of indels had minimal effects on the overall results as

compared to burden testing without indels (Figure 5C):

TYRO3 remained significant at p value ¼ 1.11 3 10�6.

These results demonstrate that indels, despite being com-

mon sources of artifact, can be incorporated into the

burden testing and can improve power to detect disease

genes.

Recessive Mode of Inheritance

As several genes implicated in IHH act in a recessive

manner and the background rate of bi-allelic variants is

low, testing variants under a recessive model might be a

powerful way to detect disease genes. Therefore, a recessive

test was constructed by tabulating the number of individ-

uals with two qualifying variants in the case cohort and

comparing it with the expected number of bi-allelic variant

carriers in gnomAD. Since phase is unavailable in the case

cohort sequencing, some individuals might actually have

two variants on the same haplotype. Similarly, in the gno-

mAD control database, as individual-level data are not

available, only an estimate of the number of individuals

who would be bi-allelic could be calculated based on the

frequency of rare heterozygous variants added to the num-

ber of homozygous variant carriers in each gene. Despite

these limitations, performing the association under a

recessive model produced strong association signals for

many genes previously associated with IHH (Figure S3).

Moreover, many genes that were not strongly associated

under the dominant model reached much stronger associ-

ation signals under the recessive model. For example,

RNF216, a gene previously associated with IHH, reached

a p value of 1.50 3 10�4 (OR ¼ 204.5) under the recessive

model, while it only reached a p value of 0.015 under the

dominant model. In fact, mutations in RNF216 have

been shown to cause disease only in a recessive state.34

Incorporation of Ancestry Data

Both the case and control cohorts are comprised of samples

drawn from a variety of ancestries. Although the frequency

of variants can differ vastly among individuals of different

ancestries, the data still generated well-calibrated results

using samples across all ancestries in both the case and

control cohorts. Nonetheless, to assess the effect of

ancestry on the results, we restricted the case and control

subjects to individuals of European ancestry. While there

is no way to directly compare the ancestries of the individ-

uals in the case sequencing cohort with those in gnomAD,

case cohort sequencing data were projected onto HapMap

Phase 325 to identify those individuals who are of likely Eu-

ropean ancestry (n ¼ 263). For the gnomAD control data-

base, the analysis was restricted to individuals listed as be-

ing of non-Finnish European ancestry (n ¼ 55,860). The

results were slightly deflated (Figure S4, lD95 ¼ 0.95), and
n Journal of Human Genetics 103, 522–534, October 4, 2018 529



p values were less significant than when considering all an-

cestries, likely due to a loss of power from smaller sample

sizes.

Results by Sequencing Batch

Given the fact that case cohort sequencing in this study

was performed in three separate batches (see Subjects and

Methods), we performed batch-specific burden testing.

Similar to Figure 5B, qualifying variants were defined as

variants withMAF< 0.1% and either PTVs or missense var-

iants nominated as ‘‘probably damaging.’’ Overall, the

burden testing results for each sequencing batch were

well calibrated andmany of the top genes remained consis-

tent (Figures S5A–S5C). For one of the sequencing batches,

there was some negative screening for samples carrying

variants in genes previously associated with IHH, as well

as some positive screening for individuals who are hetero-

zygous carriers of PROKR2 variants. Consistent with the

pre-screening, PROKR2 was among the strongest associa-

tions (p value ¼ 2.5 3 10�3, OR ¼ 9.60) (Figure S5B).

Using ExAC as a Control Cohort

Our approach can be applied to other public control data-

bases. As a demonstration, we ran burden testing using an

earlier exome aggregation database, ExAC, which con-

tains 60,706 individuals (as compared to 123,136 in

gnomAD).6 The overall results were similar from when us-

ing ExAC as a control cohort (Figure S6A, compare with

Figure 5B), and that the top three genes remained as

TACR3 (p value ¼ 1.05 3 10�10), FGFR1 (p value ¼
1.44 3 10�9), and GNRHR (p value ¼ 1.02 3 10�8). The

overall correlation in p values was very strong when

comparing results when gnomAD or ExAC was used as

the control cohort (r2 ¼ 0.90) (Figure S6B). However,

genes previously associated with IHH tended to be more

significant when using gnomAD as the control cohort

(slope ¼ 1.14 when comparing the –log10(p value) from

when gnomAD was used as the controls as compared to

when ExAC was used).

Additional Approaches for Correcting for Read Depth

In this paper, we chose to filter for only sites that are well

covered in both case cohort sequencing and in gnomAD

by filtering for sites where at least 90% of samples are

covered at >103. Previous papers have used similar ap-

proaches for adjusting for read depth. One approach that

has been previously used is filtering for sites where there

is no significant difference in the proportion of individuals

covered.24 Application of this approach resulted in a

similar number of coding bases analyzed as in our work

(Figure S7A). Another approach that has been previously

used is filtering for exons that are largely concordant in

the number of bases covered in case as compared to control

sequencing data.2 Application of this approach resulted in

a much higher number of coding bases analyzed

as compared to either of the first two approaches

(Figure S7A). All three approaches for adjusting for read
530 The American Journal of Human Genetics 103, 522–534, Octobe
depth, when applied to our data, generated very similar re-

sults in burden testing (Figures 5B, S7B, and S7C).
Software Package for Burden Testing

To facilitate gene-based burden testing against public con-

trol databases, we created a freely available software pack-

age called TRAPD (Test Rare vAriants with Public Data).

Users supply variant call data from whole-exome or

whole-genome sequencing of disease cases. The software

is readily able to compare case sequencing data to public

exome-sequencing or genome-sequencing data from

ExAC, gnomAD, or other control cohort where only sum-

mary-level data are available. This software allows for

adaptable filtering on various quality and frequency fields

to ensure a well-controlled burden test. The package is user

friendly and requires minimal command line program-

ming experience. It is also fast: burden testing can be

completed in under 1 hr using just 4 GB of memory on a

single node for 500 case samples against gnomAD.
Discussion

This study demonstrates that it is possible to generate a

well-controlled and rigorous rare-variant gene-based

burden test utilizing public control databases. The current

study used whole-exome sequencing from 393 individuals

with IHH. For controls, publicly available large-scale

exome sequencing data from gnomAD (n ¼ 123,126) was

used. A gene-based burden testing strategy and software

to perform burden testing against publicly available data

was developed and tested sequentially to identify genes

with enrichment of rare protein-altering variants in the

case cohort. Rigorous sequential analyses progressively

mitigated differences in sequencing platforms and variant

calling between the case cohort sequencing and gnomAD

control database. Ultimately, this methodology reliably

‘‘re-discovered’’ genes previously implicated in IHH and

bolstered evidence for an existing candidate gene.

By applying iterative analyses, it was possible to discover

and address various pitfalls encountered when using pub-

lic control data. First, as different exome-capture and

sequencing platforms were used between and within the

case sequencing data and gnomAD control database,

some regions of the genome were found to differ substan-

tially in sequencing coverage. Since sequencing coverage

has a strong impact on the ability to call variants, this re-

sulted in artifactual associations (Figures 2A and 2B).

Filtering for regions with high coverage eliminated artifact

but also discarded many coding bases and occasionally

entire genes. Other published approaches had similar over-

all results (Figure S7). Second, there were systematic differ-

ences in the quality metrics of variants between gnomAD

and the case sequencing data, often resulting in highly

discordant quality scores for the same variant between

the datasets (Figures S1 and S2). This observation was likely

related to the ‘‘data-dependent’’ nature of variant calling
r 4, 2018



and the fact that the case data were called separately from

the gnomAD database.6,16 A critical insight is that tradi-

tional filtering for variants of high confidence, such as

the use of pass/fail filtering, may not work well when there

are systematic differences between case and control data-

sets that result from separate variant calling in the cohorts.

This led to a key discovery that using quantitative mea-

sures of quality such as QD allow for highly adaptable

fine-tuning of variant quality filters. QD is less dependent

on the other samples present in the joint-calling set and

can help mitigate the discordance that arises from

comparing to a public control database.

This study also demonstrates that computational predic-

tions of variant effect can impact results by filtering out

statistical noise introduced by benign variants. As these fil-

ters are imperfect at distinguishing pathogenic from

benign variants, they have an associated sensitivity and

specificity which might affect power to detect certain

genes. In this study, application of PolyPhen2 scores to

the variant filtering improved the association statistics

for some genes (Figures 4C and 5B). Furthermore, limiting

analyses to PTVs (splice site, nonsense, and frameshift) also

improves the association statistics for some genes (Figures

4D and 5C).

Interestingly, it appears that ancestry had a relatively

small effect on results in this dataset, as using all samples

across ancestries did not result in a skew of association sta-

tistics. Other groups have also observed well-calibrated re-

sults when performing burden testing in mixed ancestry

cohorts,24,35 likely because differences in burdens of rare

protein-altering variants does not substantially differ

across many ancestries, particularly in non-African popula-

tions that have not experienced severe population bottle-

necks.6,36,37 Testing across all ancestries increases sample

size and thus power and is a reasonable approach if the an-

cestries of case and control subjects are not highly discor-

dant. The minimal effect of ancestry in our dataset may

also be due to the relatively large and roughly comparable

proportion of samples of European ancestry in the case

sequencing cohort (66.9%) and gnomAD control database

(45.3%), so may be less generalizable to case cohorts of

other ancestries. Thus, it would be prudent for investiga-

tors to repeat their analyses before and after restricting

the analyses to samples of the same ancestries within

case and control subjects to ensure that their results are

not affected by ancestry, especially when there is a mixture

of samples with and without African ancestry or histories

of population bottlenecks (e.g., Finnish). Additional

caution may also be needed for admixed populations

where case/control status is correlated with ancestry.

A consideration for future methods development might

be to test each ancestry individually and then perform

a meta-analysis, or to adjust for ancestry through ap-

proaches such as principal components analysis.

This study demonstrates two of the characteristics that

make certain genes more or less amenable to a burden

testing strategy. First, locus heterogeneity can be a substan-
The America
tial barrier to burden testing.1 As expected, genes that

contribute to a significant proportion of cases of IHH,

such as FGFR1,38 are easily uncovered. However, many

genes implicated in IHH contribute to only a small percent

of cases of disease and were not uncovered by burden

testing; often, no case subjects in our cohort carried vari-

ants in these genes. Second, autosomal-recessive gene

RNF216 (n ¼ 2 cases; p value ¼ 1.50 3 10�4; OR ¼ 204.5)

can show statistical enrichment with a small number of

case subjects.34 This is because the rate of protein-altering

variants in these genes is so low in control subjects that

just a few protein-altering variants observed in case sub-

jects can be sufficient.

This approach can also expand the type of mutations

associated with disease. Mutations in TACR3 acting in a

bi-allelic manner have been shown to cause IHH in hu-

mans and further validated in the mouse model.39,40 In

fact, mice heterozygous for Tacr3 had no significant repro-

ductive phenotype. Since this initial discovery, evaluation

of humans with IHH has shown that heterozygous

changes in TACR3, not just classic bi-allelic changes, may

be capable of causing IHH.41 The findings in this paper pro-

vide statistical genetic evidence that heterozygous changes

in TACR3 cause IHH. Similarly, GNRHR, which is classically

autosomal recessive,42 demonstrated a statistical signal un-

der a dominant model.

This type of large-scale analysis can bolster evidence for

candidate genes, such as TYRO3, in this study. TYRO3 en-

codes the tyrosine-protein kinase receptor TYRO3, which

is a part of the TYRO3-AXL-MER (TAM) receptor tyrosine

kinase subfamily. Initially, this protein was implicated in

hypogonadotropism in the setting of the loss of both Axl

and Tyro3 in mice.32,33 Notably, AXL has been previously

implicated in IHH.43 In this study, protein-truncating mu-

tations in TYRO3 were found to be enriched in individuals

with IHH (p value¼ 1.773 10�6; OR¼ 7.98), providing ev-

idence for the role of TYRO3 in IHH in humans. Additional

validation of this finding in a separate cohort and func-

tional studies of TYRO3 mutations will be needed to

confirm TYRO3 as a bona fide gene associated with IHH.

In this work, we focused on gene discovery using public

datasets as controls in a burden testing strategy. We are

confident that our approach is effective given that we

were able to ‘‘rediscover’’ genes previously associated

with IHH. However, given our own lack of access to large

control databases with individual-level genotyping data,

we were unable to directly compare howwell our approach

compares with burden testing using individual-level con-

trol data. In the future, it would be interesting to evaluate

how well burden testing performs when using individual-

level control data versus summary-level public control

data.

In summary, this study demonstrates how large, publicly

available sequencing datasets can serve as controls in a

gene-based burden testing strategy. Key sources of artifact

were identified, and the effects of artifacts were successfully

mitigated by calibrating burden testing using synonymous
n Journal of Human Genetics 103, 522–534, October 4, 2018 531



variants. This study demonstrates the need to systematically

address potential sources of artifact, potentially by calibrat-

ing burden testing using synonymous variants, as is done

herein, before reporting novel gene associations. Future re-

ports of burden testing should provide evidence such as a

genome-wide QQ plot and a metric such as lD95 to demon-

strate that artifacts have been adequately addressed. This

resource-efficient approach will allow researchers with rare

disease cohorts but without access to large-scale control

data to perform burden testing for discovery of genes associ-

ated with disease.
Supplemental Data

Supplemental Data include seven figures and can be found with

this article online at https://doi.org/10.1016/j.ajhg.2018.08.016.
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Variant Effect Predictor, https://useast.ensembl.org/info/docs/

tools/vep/index.html
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Figure S1: Correlation of VQSLOD scores. Shown is the correlation of VQSLOD scores 
between shared SNV sites in gnomAD (x-axis) and case cohort sequencing (y-axis) at different 
minor allele frequency cutoffs: MAF < 0.01 (A), 0.01≤MAF<0.05 (B), and 0.05≤MAF<0.50 (C).
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Figure S2: Correlation of QD scores. Shown is the correlation of QD scores between shared 

SNV sites in gnomAD (x-axis) and case cohort sequencing (y-axis) at different minor allele 

frequency cutoffs: MAF < 0.01 (A), 0.01≤MAF<0.05 (B), and 0.05≤MAF<0.50 (C).
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Figure S3: Burden testing under recessive model. The same QD filters were used as in 

Figure 5. Variants with MAF < 0.1% were used, and the QQ plot shows results using PTVs plus 

missense variants computationally predicted to be damaging.
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Figure S4: Burden testing results with individuals of European ancestry only. For the case 

sequencing cohort, only individuals of European ancestry as determined by PCA were used (n=

263). For controls, only non-Finnish European individuals in gnomAD were used (n=55,860). 

The same QD filters were used as in Figure 5. Variants with MAF < 0.1% were used, and the 

QQ plot shows results using PTVs plus missense variants computationally predicted to be 

damaging.
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Figure S5: Burden testing by sequencing batch. Burden testing results for each case 

sequencing batch as compared to gnomAD controls: A) Batch 1 sequenced at Yale, B) Batch 2 

sequenced at the Broad Institute with Agilent capture and with some selection for PROKR2  

heterozygotes and negative screening as described in Subjects and Methods, and C) Batch 3 

sequenced at the Broad Institute using ICE capture. The same QD filters were used as in 

Figure 5. Variants with MAF < 0.1% were used, and the QQ plot shows results using PTVs plus 

missense variants. 
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Figure S6: Burden testing with ExAC as control database.  A) Burden testing when compar-
ing the IHH case cohort (n=393) to ExAC (n=60,706) as a control cohort. For IHH case cohort 
sequencing, SNVs in the top 95% of QD scores and indels in the top 95% were considered. For 
ExAC control cohort, SNVs in the top 80% of QD scores and indels in the top 80% were 
considered. Variants with MAF < 0.1% were used, and the QQ plot shows results using PTVs 
plus missense variants computationally predicted to be damaging. B) Comparison of p-values 
for burden testing when using ExAC (x-axis) or gnomAD (y-axis) as the control cohort. Shown 
are the –log10(p-value) when testing variants with MAF < 0.1% and which are either PTVs or 
missense variants computationally predicted to be damaging. 
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Figure S7: Comparison of approaches for adjusting for read depth.  A) Venn diagram comparing 

the number of coding base pairs analyzed when using three approaches to adjust for read depth. The 

“Intersect Method” is the approach used in this paper, where only bases with >10X coverage in >90% 

of samples in both the case and control cohorts are analyzed. The “Binomial Method” is the approach 

used in Raghavan et al., where only bases that are not significantly different (p>0.001) in number of 

individuals covered at >10X in cases versus controls are analyzed. The “Concordance Method” is the 

approach used in Cirulli et al., where only exons that are >90% concordant in the number of bases 

covered at >10X in >90% of samples in case as compared to control sequencing are analyzed. B) 

Burden testing QQ plot when the approach used in Raghavan et al. of only considering bases that are 

not significantly different in number of individuals covered is applied to adjust for read depth (“Binomi-

al Method”). C) Burden testing QQ plot when the approach used in Cirulli et al. of only considering 

exons with high concordance in coverage between case and control sequencing is applied to adjust 

for read depth (“Concordance Method”). Compare panels B and C with Figure 5B, which uses the 

approach utilized in this paper of only analyzing sites with sufficient coverage in both case and control 

sequencing (“Intersect Method”). As in Figure 5B, only qualifying variants with MAF < 0.1% and which 

are either PTVs or missense variants computationally predicted to be damaging are considered.
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