
Supplementary Material to “Blinded and unblinded

sample size re-estimation in crossover trials balanced

for period”

S.M.1. Deriving N(σ2
e , σ

2
b )

In this section, we elaborate on how a formulae for the sample size required by a trial, N(σ2
e , σ

2
b ), can be

specified when σ2
e and σ2

b are known, a set of K sequences have been chosen, and n1 = · · · = nK . First,

we focus on the set up from Section 2.1, before briefly describing adjustments for other testing scenarios.

We begin by denoting the linear mixed model for our vector of observations y by y = Xβ +Zb+ ε.

Here, it is important to note that the particular form of the matrices X and Z is dependent on the

sample size and the chosen sequences. Then, the generalised least squares estimate for β, β̂, is given by

β̂ = (X>Σ−1X)−1X>Σ−1y,

where Σ = ZGZ> + R is known. Precisely, by our choice of covariance structure implied by linear

mixed model (1), Σ will be an NP × NP block diagonal matrix, consisting of P × P blocks given by

σ2
eIP + σ2

bJP . In addition, Var(β̂) = (X>Σ−1X)−1, will also be known. Finally, β̂ is an unbiased

estimate of β. Thus the vector of test statistics Q = (Q1, . . . , QD−1)>, where

Qd =
τ̂d

{Var(τ̂d)}1/2
, d = 1, . . . , D − 1,

has the following multivariate normal distribution

Q ∼ N
{
τ ◦ I1/2,Diag(I1/2)Var(τ̂ )Diag(I1/2)

}
.

Here, τ = (τ1, . . . , τD−1)>, and I = (I1, . . . , ID−1)> with Id = {Var(τ̂d)}−1. Furthermore, Diag(v) is

the matrix formed by placing the elements of the vector v along the leading diagonal, and we take the

convention that {(v1, . . . , vm)>}1/2 = (v
1/2
1 , . . . , v

1/2
m )>.

Using the distribution of Q, we can control the FWER to a desired level α for our hypotheses of

interest by rejecting H0d if Qd > e, for the e which is the solution of

1− α = ΦD−1{(e, . . . , e)>,Var(Q)},

where ΦM{x,Λ} is the M -dimensional cumulative distribution function of a central multivariate normal

distribution with covariance matrix Λ. The power to reject H01 when τ1 = δ is then

Φ1{δI1/21 − Φ−11 (1− α∗, 1), 1},
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for α∗ = 1− Φ1(e, 1). Consequently, to have power of 1− β we must have

Φ1{δI1/21 − Φ−11 (1− α∗, 1), 1} = 1− β.

By deriving the explicit form of I1 we can determine its dependence upon the sample size N , which allows

the above to be arranged and our final formula N(σ2
e , σ

2
b ) specified.

For example, as discussed in Section 3.2, in the case where complete block sequences that are balanced

for period are utilised, it is well known that I1 = N/(2σ2
e) (Jones and Kenward, 2014). Thus, we can

rearrange the above to acquire our previously specified formula

N(σ2
e , σ

2
b ) ≡ N(σ2

e) =
2σ2

e{Φ−11 (1− α∗, 1) + Φ−11 (1− β, 1)}2

δ2
≡ 2σ2

e(z1−α∗ + z1−β)2

δ2
.

In the case where alternative hypotheses are to be assessed (e.g., a global test that foregoes many-to-

one comparisons), provided testing is performed using effects from β̂, the above can easily be adapted to

designate an appropriate sample size formula. In each instance, one specifies a vector of test statistics, the

distribution of which can be derived using that of β̂. This allows an appropriate formulae for controlling

the FWER to be provided. For example, in the case where

H0d : τd = 0, H1d : τd 6= 0, d = 1, . . . , D − 1,

we still utilise Q as defined above, but now reject H0d if |Qd| > e, where e is the solution of

1− α/2 = ΦD−1{(e, . . . , e)>,Var(Q)}.

Then, a formulae for the power of interest can similarly be designated, which allows N to either be

specified explicitly, or permits an iterative search to be performed to determine its required value.

For example, for the design scenario of Section 2.1, if we instead desire a familywise power of at least

1− β when τ = (δ, . . . , δ)> (that is, power to reject at least one of H01, . . . ,H0D−1), our formula for the

power becomes

1− ΦD−1{(e− δI1/21 , . . . , e− δI1/2D−1)>,Var(Q)}.

Having derived I and Var(Q) for any N , a one-dimensional search can then be performed to acquire the

minimal N such that the above is at least 1− β.

S.M.2. Adjusted blinded estimator

In this section, we find the expected value of the adjusted blinded estimators of the within and between

person variances discussed in the main paper.

First, note that for any K sequences which are balanced for period

K∑
k=1

(τd(j,k) − τd(j−1,k)) = 0, (3)

for j = 2, . . . , P , and
K∑
k=1

τd(1,k) = · · · =
K∑
k=1

τd(P,k). (4)

Now note that for the linear mixed model (1) that

E(pijk) = πj − πj−1 + τd(j,k) − τd(j−1,k).
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In addition, observe that Cov(pi1j1k1 , pi2j2k2) = 0 unless i1 = i2 and k1 = k2. Furthermore

Var(pijk) = Cov(yijk − yij−1k, yijk − yij−1k),

= Cov(yijk, yijk)− Cov(yijk, yij−1k)

− Cov(yij−1k, yijk) + Cov(yij−1k, yij−1k),

= (σ2
e + σ2

b )− σ2
b − σ2

b + (σ2
e + σ2

b ),

= 2σ2
e .

Consequently

E (p̄j) = E

 1

nint

K∑
k=1

nint/K∑
i=1

pijk

 ,

=
1

nint

K∑
k=1

nint/K∑
i=1

E(pijk),

=
1

nint

K∑
k=1

nint/K∑
i=1

(πj − πj−1 + τd(j,k) − τd(j−1,k)),

=
1

nint
nint(πj − πj−1),

= πj − πj−1,

where we have used Equation (3). Additionally

Var (p̄j) = Var

 1

nint

K∑
k=1

nint/K∑
i=1

pijk

 ,

=
1

n2int
Var

 K∑
k=1

nint/K∑
i=1

pijk

 ,

=
1

n2int


K∑
k=1

nint/K∑
i=1

Var (pijk) +
∑
k1 6=k2

∑
i1 6=i2

Cov (pi1jk1 , pi2jk2)

 ,

=
1

n2int


K∑
k=1

nint/K∑
i=1

Var (pijk)

 ,

=
1

n2int
(2σ2

enint),

=
2σ2

e

nint
.

Next, consider the following, which we call σ2
within

σ2
within =

1

2(P − 1)(nint − 1)

P∑
j=2

K∑
k=1

nint/K∑
i=1

(pijk − p̄j)2,

=
1

2(P − 1)(nint − 1)

P∑
j=2

 K∑
k=1

nint/K∑
i=1

p2ijk − nintp̄2j

 .
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Taking expectations we have

2(P − 1)(nint − 1)E(σ2
within) =

P∑
j=2


K∑
k=1

nint/K∑
i=1

E
(
p2ijk

)
− nintE

(
p̄2j
) ,

=

P∑
j=2

 K∑
k=1

nint/K∑
i=1

{
Var(pijk) + E(pijk)2

}

− nint
{

Var(p̄j) + E(p̄j)
2
} ,

=

P∑
j=2

 K∑
k=1

nint/K∑
i=1

{
2σ2

e + (πj − πj−1 + τd(j,k) − τd(j−1,k))2
}

−nint
{

2σ2
e

nint
+ (πj − πj−1)2

}]
,

=

P∑
j=2

2(nint − 1)σ2
e +

K∑
k=1

nint/K∑
i=1

(πj − πj−1 + τd(j,k) − τd(j−1,k))2

− nint(πj − πj−1)2

 ,

= 2(P − 1)(nint − 1)σ2
e

+

P∑
j=2


K∑
k=1

nint/K∑
i=1

(πj − πj−1)2 +

K∑
k=1

nint/K∑
i=1

(τd(j,k) − τd(j−1,k))2

+ 2(πj − πj−1)

K∑
k=1

nint/K∑
i=1

(τd(j,k) − τd(j−1,k))

− nint(πj − πj−1)2

 ,

= 2(P − 1)(nint − 1)σ2
e

+

P∑
j=2

nint(πj − πj−1)2 +

K∑
k=1

nint/K∑
i=1

(τd(j,k) − τd(j−1,k))2

− nint(πj − πj−1)2

 ,

= 2(P − 1)(nint − 1)σ2
e +

P∑
j=2

K∑
k=1

nint/K∑
i=1

(τd(j,k) − τd(j−1,k))2,

= 2(P − 1)(nint − 1)σ2
e +

nint
K

P∑
j=2

K∑
k=1

(τd(j,k) − τd(j−1,k))2.

Thus we have that

E(σ2
within) = σ2

e +
nint

2K(P − 1)(nint − 1)

P∑
j=2

K∑
k=1

(τd(j,k) − τd(j−1,k))2,
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and for our adjusted blinded estimator

σ̂2
e = σ2

within −
nint

2K(P − 1)(nint − 1)

P∑
j=2

K∑
k=1

(τ∗d(j,k) − τ
∗
d(j−1,k))

2,

it is clear that if τ∗d = τd for d = 1, . . . , D − 1 then E(σ̂2
e) = σ2

e , and σ̂2
e is an unbiased estimator for σ2

e

as claimed.

For the case where the sequences utilised for treatment allocation are additionally complete-block,

the above estimator for σ2
e is all that is required by the adjusted blinded re-estimation procedures. When

this is not the case however, we further require a blinded estimate of the between person variance σ2
b .

For this, define

qijk = yij−1k + yijk,

q̄j =
1

nint

K∑
k=1

nint/K∑
i=1

qijk.

Then, by a direct adaptation of the arguments above, and by using Equation (4), we can show that

E(qijk) = πj−1 + πj + τd(j−1,k) + τd(j,k),

Var(qijk) = 2(σ2
e + 2σ2

b ),

E(q̄j) = πj−1 + πj +
2

D

K∑
k=1

τd(1,k),

Var(q̄j) =
2(σ2

e + 2σ2
b )

nint
.

Now define

σ2
between =

1

2(P − 1)(nint − 1)

P∑
j=2

K∑
k=1

nint/K∑
i=1

(qijk − q̄j)2.

Modifying the derivations for σ2
within, we have that

E(σ2
between) = σ2

e + 2σ2
b +

nint
2K(P − 1)(nint − 1)

P∑
j=2

K∑
k=1

(τd(j−1,k) + τd(j,k))
2

+
2nint

D2(nint − 1)

(
K∑
k=1

τd(1,k)

)2

.

We can thus then take our blinded estimate for σ2
b , σ̂2

b , as

σ̂2
b =

1

2

σ2
between − σ̂2

e −
nint

2K(P − 1)(nint − 1)

P∑
j=2

K∑
k=1

(τ∗d(j−1,k) + τ∗d(j,k))
2

− 2nint
D2(nint − 1)

(
K∑
k=1

τ∗d(1,k)

)2
 .

Again, in the case that τ∗d = τd for d = 1, . . . , D − 1, this is an unbiased estimator for σ2
b .

5



S.M.3. Blinded estimator following block randomisation

Here, we first demonstrate the forwarded blinded estimator for σ2
e following block randomisation is also

unbiased. Throughout, the index k above is essentially replaced by the index b. To begin, observe that

E(pijb) = πj − πj−1 + τdB(j,b) − τdB(j−1,b),

where dB(j, b) is the index of the treatment given to a patient in block b in period j. As above,

Cov(pi1j1b1 , pi2j2b2) = 0 unless i1 = i2 and b1 = b2, and Cov(pijb, pijb) = 2σ2
e . Consequently

E (p̄jb) = E

(
1

nB

nB∑
i=1

pijb

)
,

=
1

nB

nB∑
i=1

E(pijb),

=
1

nB

nB∑
i=1

(πj − πj−1 + τdB(j,b) − τdB(j−1,b)),

=
1

nB
nB(πj − πj−1 + τdB(j,b) − τdB(j−1,b)),

= πj − πj−1 + τdB(j,b) − τdB(j−1,b),

Var (p̄jb) = Var

(
1

nB

nB∑
i=1

pijb

)
,

=
1

n2B
Var

(
nB∑
i=1

pijb

)
,

=
1

n2B


nB∑
i=1

Var (pijb) +
∑
i1 6=i2

Cov (pi1jb, pi2jb)

 ,

=
1

n2B

{
nB∑
i=1

Var (pijb)

}
,

=
1

n2B
(2σ2

enB),

=
2σ2

e

nB
.

Next consider the proposed blinded estimator

σ̂2
e =

1

2(P − 1)(nint −B)

P∑
j=2

B∑
b=1

nB∑
i=1

(pijb − p̄jb)2,

=
1

2(P − 1)(nint −B)

P∑
j=2

[
B∑
b=1

(
nB∑
i=1

p2ijb − nB p̄2jb

)]
.

We have

2(P − 1)(nint −B)E(σ̂2
e) =

P∑
j=2

{
B∑
b=1

nB∑
i=1

E
(
p2ijb
)
− nB

B∑
b=1

E
(
p̄2jb
)}

,
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=

P∑
j=2

[
B∑
b=1

nB∑
i=1

{
Var(pijb) + E(pijb)

2
}

− nB
B∑
b=1

{
Var(p̄jb) + E(p̄jb)

2
} ,

=

P∑
j=2

[
B∑
b=1

nB∑
i=1

{
2σ2

e + (πj − πj−1 + τdB(j,b) − τdB(j−1,b))
2
}

−nB
B∑
b=1

{
2σ2

e

nB
+ (πj − πj−1 + τdB(j,b) − τdB(j−1,b))

2

}]
,

=

P∑
j=2

[
2(nint −B)σ2

e +

B∑
b=1

nB∑
i=1

(πj − πj−1 + τdB(j,b) − τdB(j−1,b))
2

− nB
B∑
b=1

(πj − πj−1 + τdB(j,b) − τdB(j−1,b))
2

 ,
=

P∑
j=2

[
2(nint −B)σ2

e

]
,

= 2(P − 1)(nint −B)σ2
e .

Thus E(σ̂2
e) = σ2

e , and the estimator is unbiased.

For non-complete-block treatment allocation, we can in this case take

σ̂2
b =

1

2

 1

2(P − 1)(nint −B)

P∑
j=2

B∑
b=1

nB∑
i=1

(qijb − q̄jb)2 − σ̂2
e

 .

To show this is unbiased, again without loss of generality consider the case where µ0 = 0. Then

E(qijb) = πj + πj−1 + τdB(j,b) + τdB(j−1,b),

Var(qijb) = 2(σ2
e + 2σ2

b ),

E(q̄jb) = πj + πj−1 + τdB(j,b) + τdB(j−1,b),

Var(q̄jb) =
2(σ2

e + 2σ2
b )

nB
.

Using these results, a direct modification of the derivation for σ̂2
e gives E(σ̂2

b ) = σ2
b .

S.M.4. Example 1: TOMADO

S.M.4.1. Introduction

In this section, we expand on our results from Section 3 on Example 1; the TOMADO trial. Throughout,

we set

µ0 = 10.65, σ2
e = 6.51, α = 0.05, β = 0.2.

However, we now consider, in turn, the effect of altering the values of σ2
b , δ, and the πj , from those used

in Section 3.
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S.M.4.2. Influence of σ2
e

First, we provide additional results corresponding to Section 3.5. Specifically, in Supplementary Figures 1

and 2 present the distributions of the N̂ for the various re-estimation procedures when nint ∈ {16, 32} for

several values of σ2
e ∈ [0.25(6.51), 4(6.51)], under the global null and alternative hypotheses respectively.

Our results are as we would anticipate; that when σ2
e is small the trials tend to be over-powered, and

thus N̂ ≈ nint in most instances. However, for large σ2
e there is more substantial variation in the value

of N̂ .

S.M.4.3. Influence of σ2
b

We now examine, in the case where π2 = −0.77, π3 = −0.96, π4 = −0.55, and δ = −1.24, the influence

of the value of σ2
b on the performance of the re-estimation procedures. As in Section 3.5, we would like

to ascertain the effect changing σ2
b has upon the FWER and power.

Supplementary Figures 3 and 4 respectively present our results on the FWER and power of the various

re-estimation procedures when nint ∈ {16, 32} for several values of σ2
b ∈ [0.25(10.12), 4(10.12)], under the

global null and alternative hypotheses respectively.

As would be anticipated, the value of σ2
b appears to have extremely little effect upon the performance

of each of the re-estimation procedures. Recall that this is a consequence of the fact that the complete

block sequences utilised in Example 1 render the requisite sample size independent of the between person

variance.

S.M.4.4. Influence of δ

Next, we provide additional results corresponding to Section 3.6. Explicitly, in Supplementary Figures 5

and 6 present the distributions of the N̂ for the various re-estimation procedures when nint ∈ {16, 32} for

several values of δ ∈ [2(−1.24), 0.5(−1.24)], under the global null and alternative hypotheses respectively.

As in Section S.M.4.2, our results are as we would expect. When δ is large the trials are typically

determined to be over-powered, and thus generally N̂ ≈ nint. However, for small δ there is larger

variation in the values of N̂ .

S.M.4.5. Influence of period effects

In Section 4, we discussed how the influence of the period effects should be examined using simulation.

Again, though the final analysis on the trials data is asymptotically invariant to the true value of the

period effects, their value may influence the ability of the various re-estimation procedures to accurately

estimate the variance parameters at the interim reassessment. In this section, we assess the influence of

the value of the period effects on each of the re-estimation procedures. Explicitly, we consider the case

with nint = 16 and σ2
e = 6.51, under the global null hypothesis. All others parameters are left as specified

in Section 3.2, except for the πj for j = 2, 3, 4. For these, in each replicate simulation we take

πj ∼ N(π̂j , σ
2
π), j = 2, 3, 4.

That is, a value for each πj is drawn from a normal distribution with mean π̂j , and specified variance

σ2
π. We then assess the effect of the size of σ2

π upon the trials FWER and values for σ̂2
e . Supplementary

Figures 7 and 8 display our findings. From them, it does appear that at least for this design scenario

and associated parameter set, the value of the period effects tends to have little influence on the interim

estimation of the within person variance, or on the trials FWER.
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S.M.5. Example 2: Formoterol

S.M.5.1. Introduction

Senn (2002) reported the results of a double-blind placebo controlled cross-over trial to assess the perfor-

mance of two doses of formoterol solution aerosol (D = 3). Denoting the treatments by d = 0, 1, 2, with

d = 0 the placebo and d = 1, 2 corresponding to the two doses of formoterol, patients were allocated to

one of the following six incomplete block sequences

01, 10, 02, 20, 12, 21.

We assume that the primary FEV1 (forced expiratory volume in 1 second) outcome data was to be

analysed with the linear mixed model (1), in order to test the following hypotheses

H0d : τd ≤ 0, H1d : τd > 0, d = 1, 2.

A complete case analysis of the data presented by Senn (2002) gives the following estimates for the

parameters in the model

µ̂0 = 1.51, π̂2 = 0.03, τ̂1 = 0.50, τ̂2 = 0.52, σ̂2
e = 0.053, σ̂2

b = 0.49.

Consequently, for α = 0.1 and β = 0.2, a sample size of 30 patients would be powered to detect a clinically

relevant difference of δ = 0.2.

Accordingly, in this section we investigate the performance of the re-estimation procedures with the

various design parameters motivated by those obtained from the results of this formoterol trial. In

particular, this allows us to consider performance in a more challenging small sample setting. In all of

what follows we set µ0 = 1.51, π2 = 0.03, α = 0.1 and β = 0.2, and we suppose that patients are allocated

treatments via one of the six sequences listed above (P = 2). We then consider in turn the effect of varying

one of the parameters σ2
e , σ2

b , and δ. As for Example 1, we will consider performance under the global

null hypothesis (τ1 = τ2 = 0), when only treatment one is effective (τ1 = δ, τ2 = 0), under the global

alternative hypothesis (τ1 = τ2 = δ), and under the observed treatment effects (τ1 = 0.50, τ2 = 0.52).

Moreover, we again take nmax = 1000, and estimate the average performance of each design and analysis

procedure using 100,000 trial simulations.

S.M.5.2. Distributions of σ̂2
e , σ̂

2
b and N̂

We first examine the performance of the re-estimation procedures when σ2
e = 0.053, σ2

b = 0.49, and

δ = 0.2, for nint = 18. The resulting distributions of σ̂2
e , σ̂2

b , and N̂ , are shown in Supplementary

Figures 9-11, via their median, lower and upper quartiles across the simulations. The results are grouped

according to the true value of the treatment effects.

Following our findings for Example 1, the median values of σ̂2
e , σ̂2

b , and N̂ for the unblinded and block

randomised procedures are always close to their respective true values. However, this is not always the

case for the adjusted estimators. In particular, the null adjusted estimator over-estimates the value of

σ2
e when τ1 = δ, and the alternative adjusted procedure under estimates σ2

e when τ1 = τ2 = 0. Both

adjusted estimators perform extremely badly at re-estimating σ2
e under the observed treatment effects.

In terms of σ̂2
b , the performance of the re-estimation procedures is more comparable, though the

adjusted procedures fair worse under the observed treatment effects.

As expected, the results for N̂ once again mirror those for σ̂2
e . This means, in particular, that the
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median value of N̂ is substantially larger for the adjusted estimators under the observed treatment effects,

and is slightly larger for the null adjusted procedure when τ1 = δ.

Increasing the value of nint reduces the interquartile range for σ̂2
e and N̂ for each procedure, and results

in median values closer to the truth, as would be expected. Finally, we observe that the interquartile

range for the unblinded procedure is often smaller than that of its adjusted or block randomisation

counterparts.

S.M.5.3. Familywise error-rate, power, and sample size inflation factor

For the scenarios from Section S.M.5.2 that were not conducted under the observed treatment effects, the

estimated FWER and power were also recorded. Additional simulations were also performed to ascertain

the power of the procedures under the global alternative hypothesis when the sample size inflation factor

introduced in Section 3.7 was utilised. The results are displayed in Supplementary Table 1.

We can see that the unblinded and block randomised procedures experience similar and substantial

inflation to the FWER. In contrast the adjusted procedures have an equal FWER with much smaller

inflation above the nominal level. Thus for this example, the small requisite sample size appears to have

inhibited the ability of the re-estimation procedures to retain a FWER close to α.

Each of the procedures attain the desired power apart from that utilising the alternative adjusted

estimator. The null adjusted estimator provides the largest power. These findings are not surprising

in light of the distributions of σ̂2
e observed in Supplementary Figure 9. Therefore in this instance the

inflation factor appears to only be of use to the alternative adjusted procedure.

Supplementary Table 1: The estimated familywise error-rate (FWER) is shown for each of the considered
re-estimation procedures under the global null hypothesis, for Example 2. Corresponding values of the
power when only treatment one is effective, under the global alternative hypothesis when both experi-
mental treatments are effective, and under the global alternative hypothesis with use of the sample size
inflation factor, are also shown. The Monte Carlo error of the FWER and power values is approximately
0.001 and 0.0013 respectively in each instance. All figures are given to four decimal places.

Power
Re-estimation procedure FWER τ = (δ, 0) τ = (δ, δ) τ = (δ, δ) with Inf. Fac.
Unblinded 0.1174 0.8027 0.8047 0.8276
Null Adjusted 0.1069 0.8204 0.8186 0.8450
Alt. Adjusted 0.1069 0.7490 0.7485 0.7710
Block rand. with nB = 3 0.1157 0.8013 0.8029 0.8273

S.M.5.4. Influence of σ2
e

We now consider cases where σ2
b = 0.49 and δ = 0.2, but σ2

e 6= 0.053. Specifically, in Supplementary

Figures 12 and 13 we respectively examine the FWER and power of the re-estimation procedures under

the global null and alternative hypotheses when σ2
e ∈ [0.25(0.053), 4(0.053)].

Supplementary Figure 13 implies that the results for Example 2 are similar to those observed for

Example 1. Explicitly, when σ2
e is very small the procedures are each over-powered, and as σ2

e increases

there appears to be less of an effect upon the power.

In contrast, the results on the FWER displayed in Supplementary Figure 12 depict a distinctive

pattern for each of the re-estimation procedures. Most likely, the observed peaks reflect a point at which

the designs begin to switch from terminating the trial at the interim reassessment, to continuing to the

end of the second stage. Overall, it is clear that the adjusted procedures typically have similar values

of the FWER, with the same true of the unblinded and block randomised procedures. Moreover, whilst
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all of the estimators experience notable inflation to the FWER, it is smaller for the adjusted estimators,

particularly as σ2
e increases.

S.M.5.5. Influence of σ2
b

Next, we examine scenarios where σ2
e = 0.053 and δ = 0.2, but σ2

b 6= 0.49: in Supplementary Figures 14

and 15 we respectively examine the FWER and power of the re-estimation procedures under the global

null and alternative hypotheses when σ2
b ∈ [0.25(0.49), 4(0.49)].

Allowing for Monte Carlo error, it appears that the value of σ2
b , as in Example 1, has negligible effect

upon the FWER and power of each of the the re-estimation procedures. This may seem surprising as

we specifically noted that a value for σ2
b would be required to estimate the required sample size of a

trial using the incomplete block sequences specified in Section S.M.5.1. However, this result reflects two

factors. The first is that, as evidenced by Supplementary Figure 10, the re-estimation procedures are

very effective at estimating the value of σ2
b . More importantly, though, is that whilst the sample size

required by the formoterol trial will be dependent upon σ2
b , it will still be principally driven by the value

of σ2
e . Therefore, the main driver of the utility of the re-estimation procedures in this setting remains

their ability to re-estimate the within person variance.

S.M.5.6. Influence of δ

In our final investigations for Example 2 we consider scenarios in which σ2
e = 0.053 and σ2

b = 0.49, but

δ 6= 0.2. Precisely, in Supplementary Figures 16 and 17 we respectively examine the FWER and power of

the re-estimation procedures under the global null and alternative hypotheses when δ ∈ [0.5(0.2), 2(0.2)].

Examining Supplementary Figure 16, the FWER for the unblinded and block randomised procedures

display the same rising and falling shape as observed in Supplementary Figure 12. In contrast, the FWER

for the adjusted procedures appears only to rise with in δ. This should not be surprising as larger values

of δ imply smaller requisite sample sizes, leaving the procedures prone to small sample size issues.

From Supplementary Figure 17, as we would anticipate, for the larger considered values of δ the

re-estimation procedures are substantially over-powered. All but the alternative adjusted procedure still

perform well though when δ = 0.1.

S.M.6. Example 3: Hypertension

S.M.6.1. Introduction

Ebbutt (1984) presented an analysis of data from a two-treatment (D = 2) three-period (P = 3) crossover

hypertension trial. Denoting the treatments by d = 0, 1, patients were assigned to one of the following

four sequence groups

011, 100, 010, 101.

Whilst Ebbutt (1984) assessed the data from only ten subjects on each sequence, Jones and Kenward

(2014) discussed the data from all patients who completed the trial. Here, we suppose that the data

Jones and Kenward (2014) presented on the outcome systolic blood pressure were to be analysed using

the linear mixed model (1) in order to test the following hypotheses

H01 : τ1 ≥ 0, H11 : τ1 < 0.

Thus, as in Example 1, a negative treatment effect implies efficacy.
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In analysing the data from this trial using linear mixed model (1) we find

µ̂0 = 156.77, π̂2 = −2.13, π̂3 = −4.90, τ̂1 = −7.55, σ̂2
e = 169.8, σ̂2

b = 255.0.

Therefore, for α = 0.025, the trial’s sample size of 90 patients would provide power for a clinically relevant

difference of δ = −5.39 when β = 0.1.

In this section, we explore the performance of the re-estimation procedures with the parameters

motivated by the results of this hypertension trial. Thus, having considered complete block sequences in

Example 1, and incomplete block sequences in Example 2, we now consider a design utilising extra-period

sequences.

Following the same path as in Example 2, throughout what follows we set µ0 = 156.77, π2 = −2.13,

π3 = −4.90, α = 0.025 and β = 0.1, supposing that patients are allocated treatments based upon one

of the four sequences given above. We then again consider the effect of varying the parameters σ2
e , σ2

b ,

and δ. We examine performance under the null hypothesis (τ1 = 0), the alternative hypothesis (τ1 = δ),

and under the observed treatment effect (τ1 = −7.55). Finally, once more, we take nmax = 1000, and

estimate the average performance of each design and analysis procedure using 100,000 trial simulations.

S.M.6.2. Distributions of σ̂2
e , σ̂

2
b and N̂

We first examine the performance of the re-estimation procedures when σ2
e = 169.8, σ2

b = 255.0, and δ =

−5.39, for nint ∈ {16, 32, 48}. The resulting distributions of σ̂2
e , σ̂2

b , and N̂ , are shown in Supplementary

Figures 18-20, via their median, lower and upper quartiles across the simulations. The results are grouped

according to the timing of the re-estimation and by the true value of the treatment effects.

Overall, the results are very similar to those of Examples 1 and 2. In particular, the unblinded and

block randomised procedures typically perform well in terms of re-estimating σ2
e , whilst the adjusted

estimators performance is highly dependent on the value of τ1.

As in Example 1, increasing the value of nB for the block randomised procedure appears advantageous.

Moreover, as expected, increasing the value of nint reduces the distance between the median values of σ̂2
e ,

σ̂2
b , and N̂ and their respective true values, whilst also reducing the interquartile range.

In this case, the distributions of the σ̂2
b are comparable across the procedures, regardless of the value

of nint or τ1.

Once more, the results for N̂ largely reflect those for σ̂2
e . However, the median values for N̂ are larger

when using the block randomised procedure with nB = 8. This is a consequence of the fact that by

our assumptions an entire additional block of patients will be recruited even when a smaller number of

patients are required to attain the requisite sample size.

S.M.6.3. Familywise error-rate and power

For the scenarios from Section S.M.6.2 that were not conducted under the observed treatment effect, the

estimated FWER and power were also recorded. The results are displayed in Supplementary Table 2.

In this instance, we observe that the FWER is in many instances slightly below the nominal level, with

a maximal value of only 0.0252 for the block randomised procedure with nB = 4 when nint ∈ {16, 48}.
This is likely a result of the fact that the number of observations accrued in each of the designs is, for a

crossover trial at least, large relative to the number of hypotheses that are to be tested.

Most of the re-estimation procedures attain a power close to the nominal level. However, the alterna-

tive adjusted estimator again leads to lower levels of power. Finally, as would be anticipated, increasing

the value of nint improves the power of the re-estimation procedures. However, it has no clear effect upon

the FWER.
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Supplementary Table 2: The estimated familywise error-rate (FWER) and power is shown for each of the
considered re-estimation procedures and several values of nint under the null and alternative hypotheses
respectively, for Example 3. The Monte Carlo error of the FWER and power values is approximately
0.0005 and 0.001 respectively in each instance. All figures are given to four decimal places.

Re-estimation procedure nint FWER Power
Unblinded 16 0.0243 0.8761
Null Adjusted 16 0.0243 0.8758
Alt. Adjusted 16 0.0237 0.8517
Block rand. with nB = 4 16 0.0252 0.8696
Unblinded 32 0.0247 0.8913
Null Adjusted 32 0.0239 0.8895
Alt. Adjusted 32 0.0240 0.8712
Block rand. with nB = 4 32 0.0247 0.8876
Block rand. with nB = 8 32 0.0241 0.8942
Unblinded 48 0.0246 0.8961
Null Adjusted 48 0.0242 0.8946
Alt. Adjusted 48 0.0242 0.8744
Block rand. with nB = 4 48 0.0252 0.8946
Block rand. with nB = 8 48 0.0249 0.9007

S.M.6.4. Influence of σ2
e

We now consider cases where σ2
b = 255.0, and δ = −5.39, but σ2

e 6= 169.8. Specifically, in Supplementary

Figures 21 and 22 we respectively examine the FWER and power of the re-estimation procedures under

the null and alternative hypotheses when σ2
e ∈ [0.25(169.8), 4(169.8)].

Here, there appears to be some evidence that the smallest considered values of σ2
e result in lower

values of the FWER. This may once more reflect a change between terminating the trial at the interim

reassessment and continuing to the end of the second stage. Nonetheless, is it clear that in this case the

procedures control the FWER well regardless of the value of the within person variance.

Similarly, whilst the smallest values of σ2
e lead to the designs being substantially over-powered, it is

evident that when σ2
e is increased they are still able to provide approximately the desired power.

S.M.6.5. Influence of σ2
b

Next, we examine scenarios in which σ2
e = 169.8, and δ = −5.39, but σ2

b 6= 255.0: in Supplementary

Figures 23 and 24 we respectively examine the FWER and power of the re-estimation procedures under

the null and alternative hypotheses when σ2
b ∈ [0.25(255.0), 4(255.0)].

Similar to both Examples 1 and 2, allowing for Monte Carlo error, the value of σ2
b seems to have little

effect upon the ability of the re-estimation procedures to control the FWER to 0.025, and to provide

power at level 0.9. We therefore have further evidence that we do not need to be concerned about the

underlying between patient variance when considering the appropriate use of the proposed methods.

S.M.6.6. Influence of δ

We now investigate settings in which σ2
e = 169.8 and σ2

b = 255.0, but δ 6= −5.39. Precisely, in Supplemen-

tary Figures 25 and 26 we respectively examine the FWER and power of the re-estimation procedures

under the null and alternative hypotheses when δ ∈ [2(−5.39), 0.5(−5.39)].

Our results indicate that in this case, the smallest considered values of δ appear to result in reduced

values of the FWER. However, regardless of the value of δ, each of the procedures is generally able to

control the FWER to approximately the nominal level.
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From Supplementary Figure 26, we once more observe that when the magnitude of δ is large, the

designs are over-powered, but outside of this region the specified clinically relevant difference appears to

have little effect upon the power.

S.M.6.7. Sample size inflation factor

Our final consideration is to once more examine the utility of the sample size inflation factor introduced

in Section 3.7. In Supplementary Figure 27 we present the power of the re-estimation procedures under

the alternative hypothesis, when nint ∈ {16, 32, 48}, with and without the use of the inflation factor.

As was observed for Example 1, the inflation factor leads to a notable boost in power, helping several

of the estimators achieve the desired performance. Therefore, when there are concerns around attaining

the desired power, we may again recommend that investigators consider utilising this simple adjustment.
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sample size, N̂ , is shown under the global null hypothesis for each of the re-estimation procedures when
nint ∈ {16, 32}, as a function of the within person variance σ2
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sample size, N̂ , is shown under the global null hypothesis for each of the re-estimation procedures when
nint ∈ {16, 32}, as a function of the clinically relevant difference δ, for Example 1.
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sample size, N̂ , is shown under the global alternative hypothesis for each of the re-estimation procedures
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Supplementary Figure 10: The distribution of σ̂2
b is shown for each of the re-estimation procedures for

several values of τ , for Example 2. Precisely, for each scenario, the median, lower and upper quartile
values of σ̂2

b across the simulations are given. The dashed line indicates the true value of σ2
b .
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Supplementary Figure 11: The distribution of N̂ is shown for each of the re-estimation procedures for
several values of τ , for Example 2. Precisely, for each scenario, the median, lower and upper quartile
values of N̂ across the simulations are given. The dashed line indicates the true required value of N .
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Supplementary Figure 12: The simulated familywise error-rate (FWER) is shown under the global null
hypothesis for each of the re-estimation procedures, as a function of the within person variance σ2

e , for
Example 2. The Monte Carlo error is approximately 0.001 in each instance. The dashed line indicates
the desired value of the FWER.
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Supplementary Figure 13: The simulated power is shown under the global alternative hypothesis for each
of the re-estimation procedures, as a function of the within person variance σ2

e , for Example 2. The
Monte Carlo error is approximately 0.0013 in each instance. The dashed line indicates the desired value
of the power.
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Supplementary Figure 14: The simulated familywise error-rate (FWER) is shown under the global null
hypothesis for each of the re-estimation procedures, as a function of the within person variance σ2

b , for
Example 2. The Monte Carlo error is approximately 0.001 in each instance. The dashed line indicates
the desired value of the FWER.

●●● ● ● ● ● ●●

●●● ● ●
● ● ●●

●●● ● ● ● ● ●●

●●● ● ● ● ● ●●

Unblinded Null Adjusted Alt. Adjusted Block with n_B = 3

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

0.70

0.75

0.80

0.85

0.90

σb
2

P
ow

er

Supplementary Figure 15: The simulated power is shown under the global alternative hypothesis for each
of the re-estimation procedures, as a function of the within person variance σ2

b , for Example 2. The
Monte Carlo error is approximately 0.0013 in each instance. The dashed line indicates the desired value
of the power.
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Supplementary Figure 16: The simulated familywise error-rate (FWER) is shown under the global null
hypothesis for each of the re-estimation procedures, as a function of the clinically relevant difference δ,
for Example 2. The Monte Carlo error is approximately 0.001 in each instance. The dashed line indicates
the desired value of the FWER.
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Supplementary Figure 17: The simulated power is shown under the global alternative hypothesis for each
of the re-estimation procedures, as a function of the clinically relevant difference δ, for Example 2. The
Monte Carlo error is approximately 0.0013 in each instance. The dashed line indicates the desired value
of the power.

25



● ●

●

●

● ●

●

● ●

● ●

●

● ●

●

●

● ●

●

●

● ● ●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

tau = 0 tau = −5.39 tau = −7.55

n_int =
 16

n_int =
 32

n_int =
 48

Unb
lin

de
d

Null
 A

dju
ste

d

Alt. 
Adju

ste
d

Bloc
k w

ith
 n

_B
 =

 4

Bloc
k w

ith
 n

_B
 =

 8

Unb
lin

de
d

Null
 A

dju
ste

d

Alt. 
Adju

ste
d

Bloc
k w

ith
 n

_B
 =

 4

Bloc
k w

ith
 n

_B
 =

 8

Unb
lin

de
d

Null
 A

dju
ste

d

Alt. 
Adju

ste
d

Bloc
k w

ith
 n

_B
 =

 4

Bloc
k w

ith
 n

_B
 =

 8

100

150

200

250

100

150

200

250

100

150

200

250

SSRE Procedure

σ̂ e2

Supplementary Figure 18: The distribution of σ̂2
e is shown for each of the re-estimation procedures for

several values of τ , and for several values of nint, for Example 3. Precisely, for each scenario, the median,
lower and upper quartile values of σ̂2

e across the simulations are given. The dashed line indicates the true
value of σ2

e .

26



● ●

●

●

● ●

●

● ●

● ●

●

● ●

●
●

●

●

●
●

●

● ●

●
●

●

● ●

●
●

●

●

●

●

●
● ●

●

●

●
● ●

tau = 0 tau = −5.39 tau = −7.55

n_int =
 16

n_int =
 32

n_int =
 48

Unb
lin

de
d

Null
 A

dju
ste

d

Alt. 
Adju

ste
d

Bloc
k w

ith
 n

_B
 =

 4

Bloc
k w

ith
 n

_B
 =

 8

Unb
lin

de
d

Null
 A

dju
ste

d

Alt. 
Adju

ste
d

Bloc
k w

ith
 n

_B
 =

 4

Bloc
k w

ith
 n

_B
 =

 8

Unb
lin

de
d

Null
 A

dju
ste

d

Alt. 
Adju

ste
d

Bloc
k w

ith
 n

_B
 =

 4

Bloc
k w

ith
 n

_B
 =

 8

150

200

250

300

350

150

200

250

300

350

150

200

250

300

350

SSRE Procedure

σ̂ b2

Supplementary Figure 19: The distribution of σ̂2
b is shown for each of the re-estimation procedures for

several values of τ , and several values of nint, for Example 3. Precisely, for each scenario, the median,
lower and upper quartile values of σ̂2

b across the simulations are given. The dashed line indicates the true
value of σ2

b .
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Supplementary Figure 20: The distribution of N̂ is shown for each of the re-estimation procedures for
several values of τ , and several values of nint, for Example 3. Precisely, for each scenario, the median,
lower and upper quartile values of N̂ across the simulations are given. The dashed line indicates the true
required value of N .
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Supplementary Figure 21: The simulated familywise error-rate (FWER) is shown under the global null
hypothesis for each of the re-estimation procedures when nint ∈ {32, 48}, as a function of the within
person variance σ2

e , for Example 3. The Monte Carlo error is approximately 0.0005 in each instance. The
dashed line indicates the desired value of the FWER.
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Supplementary Figure 22: The simulated power is shown under the global alternative hypothesis for each
of the re-estimation procedures when nint ∈ {32, 48}, as a function of the within person variance σ2

e , for
Example 3. The Monte Carlo error is approximately 0.001 in each instance. The dashed line indicates
the desired value of the power.
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Supplementary Figure 23: The simulated familywise error-rate (FWER) is shown under the global null
hypothesis for each of the re-estimation procedures when nint ∈ {32, 48}, as a function of the within
person variance σ2

b , for Example 3. The Monte Carlo error is approximately 0.0005 in each instance. The
dashed line indicates the desired value of the FWER.
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Supplementary Figure 24: The simulated power is shown under the global alternative hypothesis for each
of the re-estimation procedures when nint ∈ {32, 48}, as a function of the within person variance σ2

b , for
Example 3. The Monte Carlo error is approximately 0.001 in each instance. The dashed line indicates
the desired value of the power.
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Supplementary Figure 25: The simulated familywise error-rate (FWER) is shown under the global null
hypothesis for each of the re-estimation procedures when nint ∈ {32, 48}, as a function of the clinically
relevant difference δ, for Example 3. The Monte Carlo error is approximately 0.0005 in each instance.
The dashed line indicates the desired value of the FWER.

33



●●●●●●

●

●

●

●●●●
●

●

●

●

●

●
●●●●

●

●

●

●

●●●
●

●
●

●

●

●

●●●●●

●

●

●

●

●●●●
●

●

●

●

●

●●●●

●

●

●

●

●

●●●●

●

●

●

●

●

n_int = 32 n_int = 48

U
nblinded

N
ull A

djusted
A

lt. A
djusted

B
lock w

ith n_B
 =

 4

−10 −8 −6 −4 −10 −8 −6 −4

0.90

0.95

1.00

0.90

0.95

1.00

0.90

0.95

1.00

0.90

0.95

1.00

δ

P
ow

er

Supplementary Figure 26: The simulated power is shown under the global alternative hypothesis for each
of the re-estimation procedures when nint ∈ {32, 48}, as a function of the clinically relevant difference δ,
for Example 3. The Monte Carlo error is approximately 0.001 in each instance. The dashed line indicates
the desired value of the power.
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Supplementary Figure 27: The influence of the considered inflation factor upon the power of the re-
estimation procedures under the global alternative hypothesis is shown for several values of nint, for
Example 3. The dashed line indicates the desired value of the power.
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