

Supporting Information

Terminal Alkyne Coupling Reactions through a Ring: Mechanistic Insights and Regiochemical Switching

Caroline M. Storey, Matthew R. Gyton, Rhiann E. Andrew, and Adrian B. Chaplin*

anie_201807028_sm_miscellaneous_information.pdf

Table of contents

1	e	General experimental methods2				
2	Ρ	Preparation of [Rh(CNC-Me)(C_2H_4)][BAr ^F ₄] 1				
	2.1	L	[Cu(CNC-Me)] ₂ [Cu ₂ Br ₄]	.3		
	2.2	2	[Cu(CNC-Me)][BAr ^F ₄]	.5		
	2.3	3	[Rh(CNC-Me)(C ₂ H ₄)][BAr ^F ₄] 1	.7		
3	Ρ	rep	paration of [Rh(CNC-12)(C ₂ H ₄)][BAr ^F ₄] 2	.9		
	3.1	L	[Cu(CNC-12)][BAr ^F ₄]	.9		
	3.2	2	[Rh(CNC-12)(C ₂ H ₄)][BAr ^F ₄] 2	.9		
4	Ρ	rep	paration of [Rh(CNC-Me)(CO)][BAr ^F 4] 3	11		
5	Ρ	rep	paration of [Rh(CNC-12)(CO)][BAr ^F ₄] 4	14		
6	Ρ	rep	paration of [Rh(CNC-Me)(SOMe ₂)][BAr ^F ₄] 5	15		
7	Ν	IMI	R scale reactions of [Rh(CNC-Me)L][BAr ^F ₄] (L = C ₂ H ₄ , 1 ; SOMe ₂ , 5) with HC \equiv CAr'	17		
	7.1	L	Kinetic studies using [Rh(CNC-Me)(C ₂ H ₄)][BAr ^F ₄] 1	17		
	7.2	2	Isolation of Ar'CCC(CH ₂)Ar'	20		
	7.3	3	Kinetic studies using [Rh(CNC-Me)(SOMe ₂)][BAr ^F ₄] 5	22		
	7.4	1	in situ characterisation of [Rh(CNC-Me)(CCAr'){C(CH ₂)Ar'}(DMSO)][BAr ^F ₄] 6	23		
8	Ν	IMI	R scale reaction of [Rh(CNC-12)(C_2H_4)][BAr ^F ₄] 2 with HC \equiv CAr'	26		
9	Ρ	rep	paration of [Rh(CNC-12)(CCAr'){C(CH ₂)Ar'}][BAr ^F ₄] 7	26		
1()	NN	<pre>//R scale reactions of [Rh(CNC-12)(CCAr'){C(CH2)Ar'}][BAr^F4] 7</pre>	30		
	10	.1	Kinetic studies	30		
	10	.2	Synthesis of DC \equiv CAr'	32		
	10	.3	Labelling experiment	33		
11	L	Pre	eparation of [Rh(CNC-12)(E-Ar'CCCHCHAr')][BAr ^F ₄] 8	35		
12	2	NN	<pre>IR scale reaction of [Rh(CNC-12)(E-Ar'CCCHCHAr')][BAr^F4] 8 with CO in MeCN</pre>	37		
13 Preparation of PhCCC(CH ₂)Ph						
14	4 Preparation of <i>E</i> -PhCCCHCHPh					
15	15 References					

1 General experimental methods

All manipulations were performed under an atmosphere of argon using Schlenk and glove box techniques. Glassware was oven-dried at 150 °C overnight and flamed under vacuum prior to use. THF was dried over Na/benzophenone, vacuum distilled and stored under argon. Fluorobenzene and 1,2-difluorobenzene were stirred over alumina, dried over CaH₂, vacuum distilled and then stored under argon over thoroughly vacuum-dried 3 Å molecular sieves. Hexane was stored over a potassium mirror under an argon atmosphere. Hexamethyldisiloxane was dried over Na/K alloy, vacuum distilled and stored over thoroughly vacuum-dried 3 Å molecular sieves under argon. DMSO was freeze-pump-thaw degassed, placed under argon, and dried five times over thoroughly vacuum-dried 3 Å molecular sieves. Anhydrous CH₂Cl₂, CH₃CN, diethyl ether, pentane and toluene (<0.005% H₂O) were purchased from ACROS or Sigma-Aldrich and freeze-pump-thaw degassed three times before being placed under argon over thoroughly vacuum-dried 3 Å molecular sieves. CD₂Cl₂ and 1,2-C₂D₄Cl₂ were freeze–pump–thaw degassed three times before being placed under argon over thoroughly vacuum-dried 3 Å molecular sieves. CuBr was purified by successive washes with acetic acid and H₂O under nitrogen before being dried in vacuo. CNC-Me·2HBr,¹ [Cu(CNC-12)][BAr^F₄], ² [Rh(C₂H₄)₂Cl]₂, ³ 3,5-di-*tert*-butylphenyl acetylene, ⁴ and Na[BAr^F₄]⁵ were synthesised using literature protocols. All other solvents and reagents are commercial products and were used as received. NMR spectra were recorded on Bruker spectrometers at 298 K unless otherwise stated. Variable temperature data was collected on Bruker Avance 500 MHz and Avance III 600 MHz spectrometers. Chemical shirts are quoted in ppm and coupling constants in Hz. Low-resolution electrospray ionisation mass spectra (LR ESI-MS) were recorded on an Agilent 6130B single Quad spectrometer. High-resolution electrospray ionisation mass spectra (HR ESI-MS) were recorded on a Bruker MaXis II spectrometer. IR spectra were recorded on a PerkinElmer Spectrum 100 FT-IR spectrometer at 298 K. Microanalyses were performed by Stephen Boyer at London Metropolitan University.

2 Preparation of [Rh(CNC-Me)(C₂H₄)][BAr^F₄] 1

2.1 [Cu(CNC-Me)]₂[Cu₂Br₄]⁺

A solution of KOtBu (650 mg, 5.79 mmol) in THF (20 mL) was slowly added to a vigorously stirred suspension of CNC-Me·2HBr (950 mg, 2.21 mmol) and CuBr (950 mg, 6.62 mmol) in THF (80 mL) maintained at –78 °C. The orange suspension was stirred for 1 h, warmed to RT, and then stirred for a further 16 h. The resulting yellow suspension was reduced to dryness and the residue extracted with excess CH_3CN (*ca*. 450 mL) to afford the product as a pale yellow powder on removal of the volatiles *in vacuo*. Yield: 670 mg (55%).

⁺ Through comparison to $[Cu(CNC-12)]_2[Cu_2Br_4]$ this complex is formulated as a dimer in the solid-state, but monomer in solution.² The latter assignment is consistent with the high symmetry observed by NMR spectroscopy and similarity of this data to that of $[Cu(CNC-Me)][BAr_4]$.

¹**H NMR** (500 MHz, CD₂Cl₂): δ 7.75 (t, ³J_{HH} = 7.7, 1H, py), 7.30 (d, ³J_{HH} = 7.7, 2H, py), 7.18 (d, ³J_{HH} = 1.8, 2H, NCH), 6.95 (d, ³J_{HH} = 1.8, 2H, NCH), 5.39 (s, 4H, pγC<u>H₂</u>), 3.84 (s, 6H, CH₃).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ 178.9 (s, NCN), 156.1 (s, py), 139.2 (s, py), 122.8 (s, py), 122.4 (s, NCH), 122.2 (s, NCH), 56.5 (s, py<u>C</u>H₂), 38.9 (s, CH₃).

HR ESI-MS (positive ion, 4 kV): 330.0769 ([*M*]⁺, calcd 330.0774) *m/z*.

Figure S1: ¹H NMR spectrum of [Cu(CNC-Me)]₂[Cu₂Br₄] (CD₂Cl₂, 500 MHz)

Figure S2: ${}^{13}C{}^{1}H$ APT NMR spectrum of [Cu(CNC-Me)]₂[Cu₂Br₄] (CD₂Cl₂, 126 MHz)

2.2 [Cu(CNC-Me)][BAr^F₄]

A suspension of $[Cu(CNC-Me)]_2[Cu_2Br_4]$ (50.0 mg, 45.1 µmol) and Na[BAr^F_4] (99.9 mg, 113 µmol) in toluene (10 mL) was vigorously stirred for 48 h at RT. The suspension was filtered and the residue extracted with CH₂Cl₂ (*ca*. 50 mL). The combined filtrates were reduced to dryness to afford the product as a yellow powder. Yield: 69.3 mg (64%).

¹**H NMR** (500 MHz, CD₂Cl₂): δ 7.86 (t, ³J_{HH} = 7.6, 1H, py), 7.66 – 7.78 (m, 8H, Ar^F), 7.55 (br, 4H, Ar^F), 7.46 (d, ³J_{HH} = 7.8, 2H, py), 7.11 (s, 2H, NCH), 7.02 (s, 2H, NCH), 5.21 (s, 4H, pyC<u>H</u>₂), 3.88 (s, 6H, CH₃). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ 180.0 (s, NCN),* 162.2 (q, ¹J_{CB} = 50 Hz, Ar^F) 154.5 (s, py), 140.4 (s, py), 135.3 (s, Ar^F), 129.4 (qq, ²J_{FC} = 32, ³J_{CB} = 3, Ar^F), 125.2 (q, ¹J_{FC} = 271, Ar^F), 124.6 (s, py), 123.0 (s, NCH), 121.5 (s, NCH), 118.0 (sept., ³J_{FC} = 4, Ar^F), 55.3 (s, py<u>C</u>H₂), 39.4 (s, CH₃). * As a consequence of limited solubility in this solvent, location of this signal required an HMBC experiment.

HR ESI-MS (positive ion, 4 kV): 330.0781 ([*M*]⁺, calcd 330.0774) *m/z*.

Figure S5: ¹³C{¹H} APT NMR spectrum of [Cu(CNC-Me)][BAr^F₄] (CD₂Cl₂, 126 MHz)

2.3 [Rh(CNC-Me)(C₂H₄)][BAr^F₄] 1

A solution of $[Rh(C_2H_4)_2Cl]_2$ (14.0 mg, 36.0 µmol) in fluorobenzene (2 mL) was added to a solution of $[Cu(CNC-Me)][BAr^F_4]$ (73.3 mg, 61.4 µmol) in fluorobenzene (1 mL). The resulting red suspension was stirred for 1 h at RT, filtered, and the resulting solution layered with excess hexane (*ca*. 20 mL). The product was obtained as red crystals on diffusion at -30 °C. Yield: 74.8 mg (97%). Crystals suitable for X-ray diffraction were grown from Et₂O/pentane at RT.

¹**H NMR** (500 MHz, CD_2CI_2): δ 7.79 (t, ³*J*_{HH} = 7.7, 1H, py), 7.70 – 7.74 (m, 8H, Ar^F), 7.55 (br, 4H, Ar^F), 7.44 (d, ³*J*_{HH} = 7.7, 2H, py), 7.04 (d, ³*J*_{HH} = 1.8, 2H, NCH), 6.73 (d, ³*J*_{HH} = 1.8, 2H, NCH), 5.74 (br, 2H, pyC<u>H</u>₂), 5.04 (br, 2H, pyC<u>H</u>₂), 3.49 (br, 4H, C₂H₄), 3.46 (s, 6H, NCH₃).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ 184.8 (d, ¹J_{RhC} = 40, NCN), 162.3 (q, ¹J_{CB} = 50, Ar^F), 155.9 (s, py), 139.4 (s, py), 135.3 (s, Ar^F), 129.4 (qq, ²J_{FC} = 32, ³J_{CB} = 3, Ar^F), 125.2 (q, ¹J_{FC} = 271, Ar^F), 124.0 (s, py), 122.9 (s, NCH), 120.8 (s, NCH), 118.0 (sept., ³J_{FC} = 4, Ar^F), 56.2 (d, ³J_{RhC} = 2, py<u>C</u>H₂), 36.5 (s, NCH₃). The C₂H₄ resonance could not be unambiguously located, presumably as it is too broad to be observed at this temperature. HR ESI-MS (positive ion, 4 kV): 402.0424 ([*M*-C₂H₄+O₂]⁺, calcd 402.0796) *m/z*.

Anal. Calcd for C₄₉H₃₃BF₂₄N₅Rh (1261.52 g⋅mol⁻¹): C, 46.65; H, 2.64; N, 5.55. Found: C, 46.72; H, 2.69; N, 5.61).

Figure S8: ¹³C{¹H} NMR APT spectrum of [Rh(CNC-Me)(C₂H₄)][BAr^F₄] **1** (CD₂Cl₂, 126 MHz)

Figure S9: HR ESI-MS spectrum of [Rh(CNC-Me)(C₂H₄)][BAr^F₄] 1

3 Preparation of [Rh(CNC-12)(C₂H₄)][BAr^F₄] 2

Scheme S2: Preparation of 2 from CNC-12·2HBr

3.1 [Cu(CNC-12)][BAr^F₄]

Crystals suitable for X-ray diffraction were grown from CH_2Cl_2 /hexane at -25 °C. This is a polymorph of the previously reported structure,² notable for the presence of only one unique cation/anion pair in the asymmetric unit.

Figure S10: Solid-state structure of [Cu(CNC-12)][BAr^F₄]. Thermal ellipsoids drawn at 30% probability level; anion, CH₂Cl₂ solvent, and hydrogen atoms omitted for clarity. Selected data: Cu1–N101, 2.245(3) Å; Cu1– C109, 1.907(4) Å; Cu1–C115, 1.898(3) Å; C109–Cu1–C115, 176.3(2)°.

3.2 [Rh(CNC-12)(C₂H₄)][BAr^F₄] 2

A solution of $[Rh(C_2H_4)_2Cl]_2$ (46.1 mg, 119 µmol) in fluorobenzene (7 mL) was added to a solution of $[Cu(CNC-12)][BAr_4^{F}]$ (263 mg, 197 µmol) in fluorobenzene (5 mL). The resulting red suspension was stirred for 1 h at RT, filtered, and the solution layered with excess hexane (*ca*. 50 mL). The product was obtained as red crystals on diffusion at -30 °C. Yield: 239 mg (87%). Crystals grown in this way were suitable for analysis by X-ray diffraction.

¹H NMR (500 MHz, CD₂Cl₂): δ 7.83 (t, ³J_{HH} = 7.7, 1H, py), 7.67 – 7.77 (m, 8H, Ar^F), 7.56 (br, 4H, Ar^F), 7.48 (d, ³J_{HH} = 7.7, 2H, py), 7.05 (d, ³J_{HH} = 2.0, 2H, NCH), 6.78 (d, ³J_{HH} = 2.0, 2H, NCH), 5.32 (vbr, fwhm = 125 Hz, 4H, pyC<u>H₂</u>), 3.76 (dd, ³J_{HH} = 8.8, 7.6, 4H, NCH₂), 3.41 (s, 4H, C₂H₄), 1.79 (br, 4H, CH₂), 1.19 – 1.56 (m, 16H, CH₂). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ 181.9 (d, ¹J_{RhC} = 41, NCN), 162.3 (q, ¹J_{CB} = 50, Ar^F), 155.8 (s, py), 139.8 (s, py), 135.4 (s, Ar^F), 129.4 (qq, ²J_{FC} = 32, ³J_{CB} = 3, Ar^F), 125.2 (q, ¹J_{FC} = 271, Ar^F), 124.1 (s, py), 121.7 (s, NCH), 121.4 (s, NCH), 118.0 (sept., ³*J*_{FC} = 4, Ar^F), 56.3 (s, py<u>C</u>H₂), 49.9 (s, CH₂), 47.0 (s, C₂H₄), 31.5 (s, CH₂), 28.9 (s, CH₂), 27.6 (s, CH₂), 27.6 (s, CH₂), 24.4 (s, CH₂).

HR ESI-MS (positive ion, 4 kV): 508.1935 (100%, $[M-C_2H_4]^+$, calcd 508.1942), 540.1835 (30%, $[M-C_2H_4+O_2]^+$, calcd 540.1840) m/z.

Despite multiple attempts, satisfactory microanalysis data could not be obtained for this compound. Data is consistent with partial loss/substitution of ethylene during the analysis.

Anal. Calcd for C₅₉H₅₁BF₂₄N₅Rh (1399.77 g·mol⁻¹): C, 50.63; H, 3.67; N, 5.00. Calcd for C₅₉H₅₁BF₂₄N₅Rh − C₂H₄
(1371.72 g·mol⁻¹): C, 49.91; H, 3.45; N, 5.11. Calcd for C₅₉H₅₁BF₂₄N₅Rh − C₂H₄ + O₂ (1403.71 g·mol⁻¹): C, 48.77; H, 3.38; N, 4.99. Found: C, 50.15; H, 3.62; N, 4.88.

Figure S11: ¹H NMR spectrum of $[Rh(CNC-12)(C_2H_4)][BAr_4^F]$ **2** $(CD_2Cl_2, 500 \text{ MHz})$

Figure S12: ¹³C{¹H} APT NMR spectrum of [Rh(CNC-12)(C₂H₄)][BAr^F₄] **2** (CD₂Cl₂, 126 MHz)

Figure S13: HR ESI-MS spectrum of [Rh(CNC-12)(C₂H₄)][BAr^F₄] 2

4 Preparation of [Rh(CNC-Me)(CO)][BAr^F₄] 3

A solution of $[Rh(CNC-Me)(C_2H_4)][BAr_4]$ **1** (13.1 mg, 10.4 µmol) in CD_2Cl_2 (0.5 mL) was freeze-pump-thaw degassed and placed under an atmosphere of CO (1 atm). The resulting yellow solution was concentrated to dryness *in vacuo* to afford the product as a bright yellow powder. Yield: 13.0 mg (99%). Crystals suitable for X-ray diffraction were grown from CH_2Cl_2 /pentane at RT.

¹**H NMR** (400 MHz, CD_2CI_2): δ 7.87 (t, ³ J_{HH} = 7.7, 1H, py), 7.67 – 7.77 (m, 8H, Ar^F), 7.55 (s, 4H, Ar^F), 7.50 (d, ³ J_{HH} = 7.7, 2H, py), 7.13 (d, ³ J_{HH} = 1.9, 2H, NCH), 6.97 (d, ³ J_{HH} = 1.8, 2H, NCH), 5.46 (br, 2H, pyC<u>H</u>₂), 5.06 (br, 2H, pyCH₂), 3.83 (s, 6H, NCH₃).

¹³C{¹H} NMR (101 MHz, CD₂Cl₂): δ 193.6 (d, ¹J_{RhC} = 80, CO), 182.9 (d, ¹J_{RhC} = 42, NCN), 162.3 (q, ¹J_{CB} = 50, Ar^F), 156.0 (s, py), 141.5 (s, py), 135.4 (s, Ar^F), 129.6 (qq, ²J_{FC} = 32, ³J_{CB} = 3, Ar^F), 125.2 (q, ¹J_{FC} = 271, Ar^F), 124.9 (s, py), 122.7 (s, NCH), 121.7 (s, NCH), 118.0 (sept., ³J_{FC} = 4, Ar^F), 55.8 (d, ³J_{RhC} = 2, py<u>C</u>H₂), 38.4 (s, NCH₃). HR ESI-MS (positive ion, 4 kV): 398.0495 ([*M*]⁺, calcd 398.0483) *m/z*.

Anal. Calcd for C₄₈H₂₉BF₂₄N₅ORh (1261.47 g·mol⁻¹): C, 45.70; H, 2.32; N, 5.55. Found: C, 45.59; H, 2.37; N, 5.67).

IR (CH₂Cl₂): v(CO) 1980 cm⁻¹.

Figure S14: ¹H NMR spectrum of [Rh(CNC-Me)(CO)][BAr^F₄] 3 (CD₂Cl₂, 400 MHz)

Figure S17: FT-IR spectrum of $[Rh(CNC-Me)(CO)][BAr_4^F]$ 3 (CH₂Cl₂, 293 K).

Figure S18: Solid-state structure of [Rh(CNC-Me)(CO)][BAr^F₄] **3**. Thermal ellipsoids drawn at 50% probability level; anion and hydrogen atoms omitted for clarity. Selected data: Rh1–C2, 1.809(3) Å; C2–O3, 1.145(4) Å; Rh1–N101, 2.140(2) Å; Rh1–C109, 2.039(3) Å; Rh1–C115, 2.031(3) Å; N101–Rh1–C2, 179.0(1)°; C109–Rh1–C115, 172.9(1)°.

5 Preparation of [Rh(CNC-12)(CO)][BAr^F₄] 4

A solution of $[Rh(CNC-12)(C_2H_4)][BAr_4]$ **2** (14.1 mg, 10.1 µmol) in CD_2Cl_2 (0.5 mL) was freeze-pump-thaw degassed and placed under an atmosphere of CO (1 atm). The resulting yellow solution was concentrated to dryness *in vacuo* to afford the product as a bright yellow powder. Yield: 13.2 mg (94%).

Characterisation data are in excellent agreement with that previously reported for this compound, prepared alternatively using a Ag_2O -based transmetallation strategy employing CNC-12·2HBr, $Na[BAr_4^F]$ and $[Rh(CO)_2CI]_2$.⁶

¹**H NMR** (400 MHz, CD₂Cl₂): δ 7.89 (t, ³J_{HH} = 7.7, 1H, py), 7.67 – 7.78 (m, 8H, Ar^F), 7.55 (s, 4H, Ar^F), 7.51 (d, ³J_{HH} = 7.7, 2H, py), 7.14 (d, ³J_{HH} = 1.9, 2H, NCH), 7.01 (d, ³J_{HH} = 1.9, 2H, NCH), 5.45 (d, ²J_{HH} = 14.9, 2H, pyC<u>H₂</u>), 5.03 (d, ²J_{HH} = 14.9, 2H, pyC<u>H₂</u>), 4.30 (br, 2H, NCH₂), 3.99 (br, 2H, NCH₂), 1.93 (br, 2H, CH₂), 1.84 (br, 2H, CH₂), 1.10 – 1.54 (m, 16H, CH₂). **LR ESI-MS** (positive ion, 4 kV): 536.3 ([*M*]⁺, calcd 536.2) *m/z*. **IR** (CH₂Cl₂): v(CO) 1978 cm⁻¹.

Figure S19: FT-IR spectrum of [Rh(CNC-12)(CO)][BAr^F₄] 4 (CH₂Cl₂, 293 K).

6 Preparation of [Rh(CNC-Me)(SOMe₂)][BAr^F₄] 5

DMSO (1.24 μ L, 17.5 μ mol) was added to a stirred solution of [Rh(CNC-Me)(C₂H₄)][BAr^F₄] **1** (19.8 mg, 15.7 μ mol) in CH₂Cl₂ (*ca.* 2 mL) at RT. After 30 min, the orange solution was concentrated to dryness and the residue washed with hexane (*ca.* 5 mL). Subsequent recrystallisation of this crude material from CH₂Cl₂/hexane afforded the product as a red crystalline solid. Yield: 15.9 mg (77%). Crystals suitable for X-ray diffraction were grown from CH₂Cl₂/pentane at RT.

¹**H NMR** (500 MHz, CD_2Cl_2): δ 7.67 – 7.77 (m, 8H, Ar^F), 7.69 (t, ³J_{HH} = 7.7, 1H, py), 7.55 (s, 4H, Ar^F), 7.33 (d, ³J_{HH} = 7.7, 2H, py), 7.08 (d, ³J_{HH} = 1.9, 2H, NCH), 6.81 (d, ³J_{HH} = 1.8, 2H, NCH), 5.87 (br, 2H, pyC<u>H</u>₂), 4.95 (br, 2H, pyC<u>H</u>₂), 3.83 (s, 6H, NCH₃), 3.15 (br d, ³J_{RH} = 25, 6H, SCH₃).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ 186.7 (d, ¹J_{RhC} = 45, NCN), 162.3 (q, ¹J_{CB} = 50, Ar^F), 157.7 (s, py), 139.4 (s, py), 135.3 (s, Ar^F), 129.4 (qq, ²J_{FC} = 32, ³J_{CB} = 3, Ar^F), 125.1 (q, ¹J_{FC} = 271, Ar^F), 123.3 (s, py), 123.1 (s, NCH), 121.9 (s, NCH), 118.0 (sept., ³J_{FC} = 4, Ar^F), 56.4 (d, ³J_{RhC} = 2, py<u>C</u>H₂), 52.8 (br d, ²J_{RhC} = 30, SCH₃) 39.0 (s, NCH₃). Anal. Calcd for C₄₉H₃₅BF₂₄N₅ORhS (1311.13 g·mol⁻¹): C, 44.87; H, 2.69; N, 5.34. Found: C, 44.81; H, 2.82; N, 5.22).

Figure S21: ¹³C{¹H} APT NMR spectrum of [Rh(CNC-Me)(SOMe₂)][BAr^F₄] **5** (CD₂Cl₂, 126 MHz)

Figure S22: Solid-state structure of [Rh(CNC-Me)(SOMe₂)][BAr^F₄] **5**. Thermal ellipsoids drawn at 50% probability level; anion and hydrogen atoms omitted for clarity. Selected data: Rh1–S2, 2.1773(5) Å; Rh1–N101, 2.088(2) Å; Rh1–C109, 2.035(2) Å; Rh1–C115, 2.037(2) Å; N101–Rh1–S2, 173.99(5)°; C109–Rh1–C115, 167.42(8)°.

7 NMR scale reactions of $[Rh(CNC-Me)L][BAr^{F_4}]$ (L = C₂H₄, 1; SOMe₂, 5) with HC \equiv CAr'

7.1 Kinetic studies using [Rh(CNC-Me)(C₂H₄)][BAr^F₄] 1

Variable concentration data:

Solutions of $[Rh(CNC-Me)(C_2H_4)][BAr_4^{F}]$ **1** (5 or 10 mmolL⁻¹) and $HC \equiv CAr'$ (50 or 100 mmolL⁻¹) in CD_2Cl_2 (*ca.* 0.5 mL) were prepared in J. Young's valve NMR tubes at RT and then held at -78 °C until being placed into a NMR spectrometer pre-equilibrated to 298 K and then monitored by ¹H NMR spectroscopy (400 MHz, Figure S23).

Analysis of the resulting time-course data through integration of the $\underline{H}C \equiv CAr'$ resonance indicated the reaction was zero order in alkyne and first order in catalyst (Table S1). Slight deviation from linear [$HC \equiv CAr'$] dependence was noted over extended reaction times, which we attribute to non-negligible catalyst decomposition. This effect was deconvoluted by modelling the data over a reduced time period, as indicated in Figure S23.

Rate law: $-\frac{1}{2} d[HC \equiv CAr']/dt = d[Ar'CCC(CH_2)Ar']/dt = k[catalyst]$

Figure S23: Kinetic data for the homocoupling of $HC \equiv CAr'$ (50/100 mmolL⁻¹) catalysed by [Rh(CNC-Me)(C₂H₄)][BAr^F₄] **1** (5/10 mmolL⁻¹) in CD₂Cl₂ at 298 K. Grey points are not included in the fit.

Catalyst	[catalyst] / mmolL ⁻¹	$[HC \equiv CAr'] / mmolL^{-1}$	<i>Т </i> К	R ² (fit)	<i>k /</i> 10 ⁻⁵ s ⁻¹	<i>t</i> _{1/2} / h
1	5 ^a	100	298	0.99954	38	4
1	5 ^a	50	298	0.99927	39	4
1	10 ^a	100	298	0.99747	40	2
1	5 ^b	100	288	0.99023	8.7 ± 0.2	16.1
1	5 ^b	100	293	0.99933	17.20 ± 0.09	8.1
1	5 ^b	100	298	0.99894	32.9 ± 0.2	4.2
1	5 ^b	100	303	0.99881	65.7 ± 0.5	2.1
1	5 ^b	100	308	0.99922	129.7 ± 0.8	1.1
5	5 ^a	100	298	0.98729	4	36

Table S1: Kinetic parameters for the homocoupling of $HC \equiv CAr'$.

^a Samples prepared with low precision. ^b Samples prepared with high precision

Variable temperature data:

To a chilled flask charged with $[Rh(CNC-Me)(C_2H_4)][BAr_4^F]$ **1** (18.9 mg, 15.0 µmol) and $HC \equiv CAr'$ (64.2 mg, 298 µmol) was added chilled CD_2Cl_2 (3.0 mL) in an inert atmosphere glove box. The resulting solution was partitioned into chilled J. Young's valve NMR tubes (0.5 mL / tube), which were sealed and immediately frozen in liquid nitrogen. The samples were then individually thawed and placed into a NMR spectrometer pre-equilibrated to the required temperature and monitored by ¹H NMR spectroscopy (600 MHz, 288 – 308 K, Figures S24 – 26).

 $[Rh(CNC-Me)(C_2H_4)][BAr_4^{F_4}]$ **1** (5 mmolL⁻¹) in CD₂Cl₂ at 298 K (*t* = 4.4 h, *ca*. 50% conversion, 600 MHz).

Figure S25: Kinetic data collected for the homocoupling of $HC \equiv CAr'$ (100 mmolL⁻¹) catalysed by [Rh(CNC-Me)(C₂H₄)][BAr^F₄] **1** (5 mmolL⁻¹) in CD₂Cl₂ at 288 – 308 K.

Figure S26: Fitted kinetic data for the homocoupling of $HC \equiv CAr'$ (100 mmolL⁻¹) catalysed by [Rh(CNC-Me)(C₂H₄)][BAr^F₄] **1** (5 mmolL⁻¹) in CD₂Cl₂ at 288 – 308 K.

The resulting time-course data was analysed through integration of the $\underline{H}C \equiv CAr'$ resonance to obtain the rate constants over the temperature range (Table S1). Slight deviation from linear $[HC \equiv CAr']$ dependence was noted over extended reaction times, which we attribute to non-negligible catalyst decomposition. This effect was deconvoluted by modelling the data over a reduced time period, as indicated in Figure S26. The corresponding activation parameters for the reaction were obtained using the Eyring equation (Figure S27).

Activation parameters: $\Delta G^{\dagger} (298 \text{ K}) = 93 \pm 3 \text{ kJmol}^{-1}$ $\Delta H^{\dagger} = 97 \pm 1 \text{ kJmol}^{-1}$ $\Delta S^{\dagger} = 15 \pm 5 \text{ JK}^{-1}\text{mol}^{-1}$ $R^{2} (\text{fit}) = 0.99914$

Figure S27: Eyring plot for the homocoupling of $HC \equiv CAr'$ catalysed by $[Rh(CNC-Me)(C_2H_4)][BAr^{F_4}]$ 1 in CD_2CI_2 .

7.2 Isolation of Ar'CCC(CH₂)Ar'

A solution of $[Rh(CNC-Me)(C_2H_4)][BAr_4^F]$ **1** (30.0 mg, 23.8 µmol) and $HC \equiv CAr'$ (102 mg, 475 µmol) in CH_2CI_2 (4.8 mL) was stirred at 25 °C for 6 h. The solution was freeze-pump-thaw degassed and placed under an atmosphere of CO (1 atm) to afford a yellow solution, which was concentrated to dryness and the residue extracted with hexane through a short plug of alumina. The hexane solution was stirred over KHMDS (30.0 mg, 150 µmol) for 3 h at RT. The resulting suspension was filtered and the filtrate washed with HCl (2 molL⁻¹, 3 × 15 mL) and water (3 × 15 mL) before being dried over MgSO₄. Concentration under reduced pressure gave the desired product as a pale yellow solid. Yield: 74.6 mg (73%).

¹H NMR (500 MHz, CD_2Cl_2): δ 7.62 (d, ⁴J_{HH} = 1.6, 2H, $tBu_2C_6H_3$), 7.42 – 7.46 (m, 2H, 2 × $tBu_2C_6H_3$), 7.39 (d, ⁴J_{HH} = 1.6, 2H, $tBu_2C_6H_3$), 5.96 (s, 1H, CH₂), 5.71 (s, 1H, CH₂), 1.37 (s, 18H, tBu), 1.33 (s, 18H, tBu). ¹³C{¹H} NMR (126 MHz, CD_2Cl_2): δ 151.6 (s, $tBu_2C_6H_3$), 151.5 (s, $tBu_2C_6H_3$), 137.2 (s, $tBu_2C_6H_3$), 132.1 (s, <u>C</u>(CH₂)), 126.4 (s, $tBu_2C_6H_3$), 123.6 (s, $tBu_2C_6H_3$), 123.2 (s, $tBu_2C_6H_3$), 122.7 (s, $tBu_2C_6H_3$), 121.0 (s, $tBu_2C_6H_3$), 119.8 (s, CH₂), 92.5(s, CCAr'), 88.4 (s, CCAr'), 35.4 (s, $tBu\{C\}$), 35.3 (s, $tBu\{C\}$), 31.8 (s, $tBu\{CH_3\}$), 31.6 (s, $tBu\{CH_3\}$).

HR ESI-MS (positive ion, 4 kV): 451.3341 ([*M*+Na]⁺, calcd 451.3335) *m/z*.

Figure S30: HR ESI-MS spectrum of Ar'CCC(CH₂)Ar'

7.3 Kinetic studies using [Rh(CNC-Me)(SOMe₂)][BAr^F₄] 5

A solution of $[Rh(CNC-Me)(SOMe_2)][BAr_4^{F}]$ 5 (3.3 mg, 2.5 µmol) and $HC \equiv CAr'$ (10.8 mg, 50.3 µmol) in CD_2Cl_2 (0.5 mL) was prepared in J. Young's valve NMR tubes at RT and then held at -78 °C until being placed into a NMR spectrometer pre-equilibrated to 298 K and then monitored by ¹H NMR spectroscopy (400 MHz, Figures S30 and 31).

The resulting time-course data was analysed through integration of the $\underline{H}C \equiv CAr'$ resonance to obtain the rate constant at 298 K (Table S1). During the period of the reaction monitored (*ca*. 15.5 h) a persistent organometallic intermediate corresponding to *ca*. 50 – 60% relative to [**5**]₀ was observed.

Selected signals attributed to an organometallic intermediated are highlighted in red.

Figure S32: Kinetic data for the homocoupling of $HC \equiv CAr'$ (100 mmolL⁻¹) catalysed by [Rh(CNC-Me)L][BAr^F₄] (L = C₂H₄, **1**; SOMe₂, **5**) (5 mmolL⁻¹) in CD₂Cl₂ at 298 K.

7.4 in situ characterisation of [Rh(CNC-Me)(CCAr'){C(CH₂)Ar'}(DMSO)][BAr^F₄] 6

To a chilled J. Young's valve NMR tube charged with $[Rh(CNC-Me)(SOMe_2)][BAr_4^F]$ 5 (13.2 mg, 10.0 µmol) and HC \equiv CAr' (6.4 mg, 29.9 µmol) was added chilled CD₂Cl₂ (0.5 mL) in an inert atmosphere glove box. The tube was sealed and immediately frozen in liquid nitrogen. The sample was then thawed and placed into a

NMR spectrometer pre-equilibrated to 278 K and analyzed by ¹H NMR spectroscopy (600 MHz, Figures S32 and 33).

Under these conditions $[Rh(CNC-Me)(CCAr'){C(CH_2)Ar'}(DMSO)][BAr^{F_4}]$ **6** could be comprehensively characterised *in situ* and there was negligible catalytic turnover observed. Attempts to collect NMR spectroscopic data at 298 K were frustrated by the onset of catalysis.

¹**H NMR** (600 MHz, CD_2Cl_2 , 278 K): δ 7.94 (t, ³ J_{HH} = 7.8, 1H, py), 7.70 – 7.77 (m, 8H, Ar^F), 7.57 (d, ³ J_{HH} = 7.7, 1H, py), 7.55 (br, 4H, Ar^F), 7.52 (d, ³ J_{HH} = 7.7, 1H, py), 7.24 (s, 1H, NCH), 7.22 (s, 2H, $tBu_2C_6H_3$), 7.16 – 7.18 (m, 2H, $tBu_2C_6H_3$), 7.06 (s, 1H, NCH), 7.04 (s, 1H, NCH), 7.02 (s, 1H, NCH), 6.79 (s, 2H, $tBu_2C_6H_3$), 6.22 (d, ² J_{HH} = 14.9, 1H, pyC<u>H</u>₂), 5.95 (d, ² J_{HH} = 15.4, 1H, pyC<u>H</u>₂), 5.10 (d, ² J_{HH} = 15.0, 1H, pyC<u>H</u>₂), 4.88 (d, ² J_{HH} = 15.5, 1H, pyC<u>H</u>₂), 4.79 (d, ³ J_{RhH} = 2.9, 1H, C(C<u>H</u>₂)Ar'), 4.48 (s, 3H, NCH₃), 4.04 (s, 3H, NCH₃), 3.21 (d, ³ J_{RhH} = 2.2, 1H, C(CH₂)Ar'), 1.23 (s, 18H, tBu), 1.20 (s, 18H, tBu).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 278 K): δ 177.0 (d, ¹J_{RhC} = 39, NCN), 176.6 (d, ¹J_{RhC} = 40, NCN), 162.1 (q, ¹J_{CB} = 50, Ar^F), 157.2 (s, py), 155.6 (s, py), 153.8 (d, ¹J_{RhC} = 38, <u>C</u>(CH₂)Ar'), 151.9 (d, ³J_{RhC} = 12, tBu₂C₆H₃), 150.8 (s, tBu₂C₆H₃), 149.7 (s, tBu₂C₆H₃), 149.5 (s, tBu₂C₆H₃), 140.3 (s, py), 135.2 (br, Ar^F), 129.2 (qq, ²J_{FC} = 32, ³J_{CB} = 3, Ar^F), 126.4 (s, py), 125.6 (s, py), 125.0 (q, ¹J_{FC} = 272, Ar^F), 124.6 (s, tBu₂C₆H₃), 124.1 (obscured, NCH), 123.7 (s, NCH), 123.6 (s, tBu₂C₆H₃), 121.7 (s, NCH), 121.5 (s, NCH), 120.2 (s, 2 × tBu₂C₆H₃), 119.9 (s, C(CH₂)Ar'), 118.0 (sept., ³J_{FC} = 4, Ar^F), 111.8 (d, ²J_{RhC} = 11, CCAr'), 101.9 (d, ¹J_{RhC} = 55, CCAr'), 55.7 (s, pyCH₂), 55.3 (s, pyCH₂), 39.4 (s, NCH₃), 38.8 (s, NCH₃), 35.0 (s, tBu{C}), 34.9 (s, tBu{C}), 31.8 (s, tBu{CH₃}), 31.5 (s, tBu{CH₃}). HR ESI-MS (positive ion, 4 kV): 798.3985 ([*M*-DMSO]⁺, calcd 798.3977) *m/z*.

Figure S33: ¹H NMR spectrum collected during the homocoupling of $HC \equiv CAr'$ (60 mmolL⁻¹) catalysed by [Rh(CNC-Me)(SOMe₂)][BAr^F₄] **5** (20 mmolL⁻¹) in CD₂Cl₂ (278 K, 600 MHz). Only signals attributed to the organometallic intermediated are labeled.

Figure S34: ¹³C{¹H} APT NMR spectrum collected during the homocoupling of $HC \equiv CAr'$ (60 mmolL⁻¹) catalysed by [Rh(CNC-Me)(SOMe₂)][BAr^F₄] 5 (20 mmolL⁻¹) in CD₂Cl₂ (278 K, 151 MHz). Only signals attributed to the organometallic intermediated are labeled.

Figure S35: HR ESI-MS spectrum of an aliquot collected during the homocoupling of $HC \equiv CAr'$ (60 mmolL⁻¹) catalysed by [Rh(CNC-Me)(SOMe₂)][BAr^F₄] 5 (20 mmolL⁻¹) in CD₂Cl₂ (278 K).

8 NMR scale reaction of $[Rh(CNC-12)(C_2H_4)][BAr_4^F]$ 2 with $HC \equiv CAr'$

A solution of $[Rh(CNC-12)(C_2H_4)][BAr_4^F]$ **2** (14.7 mg, 10.0 µmol) and HC≡CAr' (4.5 mg, 21.0 µmol) in CD₂Cl₂ (0.5 mL) was prepared in a J. Young's valve NMR tube. Analysis after 5 min at RT by ¹H NMR spectroscopy indicated quantitative conversion of **2** into **7** (Figure S36).

Figure S36: ¹H NMR spectrum collected after 5 min for the reaction between **2** and HC≡CAr' (CD₂Cl₂, 600 MHz). Key signals and integrals associated with the product **7** provided.

9 Preparation of [Rh(CNC-12)(CCAr'){C(CH₂)Ar'}][BAr^F₄] 7

A solution of $[Rh(CNC-12)(C_2H_4)][BAr^F_4]$ **2** (45.1 mg, 30.6 µmol) and HCCAr' (13.1 mg, 61.1 µmol) in CH₂Cl₂ (1.5 mL) was stirred at RT for 30 min. The volatiles were removed *in vacuo* and the product was obtained as yellow-orange rods following recrystallisation of the residue from CH₂Cl₂-hexane (1:10, 20 mL) at -30 °C. Yield: 37.8 mg (47%). Crystals grown in this way were suitable for analysis by X-ray diffraction.

¹**H NMR** (500 MHz, CD_2CI_2): δ 7.86 (t, ³ J_{HH} = 7.6, 1H, py), 7.70 – 7.77 (m, 8H, Ar^F), 7.56 (s, 4H, Ar^F), 7.54 (t, ⁴ J_{HH} = 1, 1H, $tBu_2C_6H_3$), 7.43 (d, ³ J_{HH} = 7.6, 2H, py), 7.20 (t, ⁴ J_{HH} = 1.6, 1H, $tBu_2C_6H_3$), 7.14 (vbr, fwhm = 12 Hz, 2H, NCH), 7.12 (br, 2H, NCH), 6.92 (d, ⁴ J_{HH} = 1.6, 2H, $tBu_2C_6H_3$), 6.69 (br, 2H, $tBu_2C_6H_3$), 5.76 (d, ³ J_{RhH} = 2.1, 1H, C(C H_2)Ar'), 5.57 (s, 1H, C(C H_2)Ar'), 5.25 (vbr, fwhm \approx 300 Hz, 2H, pyC H_2), 4.70 (vbr, fwhm = 43 Hz, 2H, NCH₂), 4.62 (vbr, fwhm \approx 150 Hz, 2H, pyC H_2), 3.88 (vbr, fwhm \approx 400 Hz, 2H, NCH₂), 2.16 (br, 2H, CH₂), 1.92 (br, 2H, CH₂), 1.43 – 1.62 (m, 8 H, CH₂), 1.27 – 1.35 (m, 6H, CH₂), 1.25 (s, 18H, tBu), 1.10 – 1.21 (m, 2H, CH₂), 0.99 (vbr, fwhm = 7 Hz, 18H, tBu).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ 172.9 (d, ¹J_{RhC} = 38, NCN), 162.3 (q, ¹J_{CB} = 50, Ar^F), 157.7 (d, ¹J_{RhC} = 27, <u>C</u>(CH₂)Ar'), 156.1 (s, py), 155.5 (br, tBu₂C₆H₃), 151.0 (s, tBu₂C₆H₃), 141.1 (s, py), 135.4 (br, Ar^F), 129.4 (qq, ²J_{FC} = 32, ³J_{CB} = 3, Ar^F), 127.0 (s, tBu₂C₆H₃), 125.9 (s, tBu₂C₆H₃), 125.4 (s, tBu₂C₆H₃), 125.17 (q, ¹J_{FC} = 271, Ar^F), 125.15 (s, py), 122.9 (s, NCH), 122.6 (s, NCH), 122.2 (s, tBu₂C₆H₃), 120.8 (s, tBu₂C₆H₃), 118.0 (sept., ³J_{FC} = 4, Ar^F), 114.6 (s, C(CH₂)Ar'), 104.7 (d, ²J_{RhC} = 15, CCAr'), 85.0 (d, ¹J_{RhC} = 72, CCAr'), 54.9 (br, pyCH₂), 50.9 (br, NCH₂), 35.4 (s, *t*Bu{C)), 35.1 (s, *t*Bu{C)), 31.7 (s, *t*Bu{CH₃)), 31.4 (s, *t*Bu{CH₃)), 28.9 (s, CH₂), 28.5 (s, CH₂), 28.4 (s, CH₂), 25.3 (br, CH₂). One of the quaternary *t*Bu₂<u>C</u>₆H₃ resonances was not unambiguously located. **HR ESI-MS** (positive ion, 4 kV): 936.5399 ([*M*]⁺, calcd 936.5385) *m/z*.

Anal. Calcd for C₈₉H₉₁BF₂₄N₅Rh (1799.60 g⋅mol⁻¹): C, 59.37; H, 5.09; N, 3.89. Found: C, 59.37; H, 4.94; N, 3.93.

Figure S37: ¹H NMR spectrum of [Rh(CNC-12)(CCAr'){C(CH₂)Ar'}][BAr^F₄] **7** (298 K, CD₂Cl₂, 500 MHz)

Figure S38: ¹H NMR spectrum of [Rh(CNC-12)(CCAr'){C(CH₂)Ar'}][BAr^F₄] **7** (200 K, CD₂Cl₂, 500 MHz)

Figure S39: ¹³C{¹H} APT NMR spectrum of [Rh(CNC-12)(CCAr'){C(CH₂)Ar'}][BAr^F₄] **7** (CD₂Cl₂, 126 MHz)

Figure S40: HR ESI-MS Spectrum of [Rh(CNC-12)(CCAr'){C(CH₂)Ar'}][BAr^F₄] 7

10 NMR scale reactions of [Rh(CNC-12)(CCAr'){C(CH₂)Ar'}][BAr^F₄] 7

10.1 Kinetic studies

Solutions of $[Rh(CNC-12)(CCAr')\{C(CH_2)Ar'\}][BAr_4]$ **7** (0.02 molL⁻¹) in 1,2-dichloroethane- d_4 (0.4 mL) in sealed J. Young's valve NMR tubes were placed into a NMR spectrometer pre-equilibrated to the required temperature and monitored by ¹H NMR spectroscopy (500 MHz, 328 – 348 K, Figures S41 and 42).

K (ca. 50% conversion, 500 MHz). Alkenyl signals for 7 in blue, and for 8 in red.

Figure S43: Kinetic data collected for the formation of 8 from 7 in $1,2-C_2D_4Cl_2$ at 328 - 348 K, where $[7]/[7]_i$ is the concentration relative to the first spectrum recorded.

The resulting time-course data was analysed through integration of the lowest frequency alkenyl resonance of **7** (δ 5.58 at 328 K) to obtain the rate constants over the temperature range (Table S2). The corresponding activation parameters for the reaction were obtained using the Eyring equation (Figure S27).

Rate law: -d[7]/dt = d[8]/dt = k[7]

<i>Т </i> К	R ² (fit)	<i>k</i> / 10 ⁻⁴ s ⁻¹	<i>t</i> _{1/2} / h
328	0.99872	1.250 ± 0.004	1.5
333	0.99933	2.44 ± 0.01	0.8
338	0.99894	4.91 ± 0.02	0.4
343	0.99881	8.9 ± 0.1	0.2
348	0.99922	16.3 ± 0.4	0.1

Table S2: Kinetic parameters for the formation of 8 from 7.

Activation parameters:

 ΔG^{\dagger} (298 K) = 106 ± 3 kJmol⁻¹ ΔH^{\dagger} = 119 ± 1 kJmol⁻¹ ΔS^{\dagger} = 44 ± 4 JK⁻¹mol⁻¹ R^{2} (fit) = 0.99942

Figure S44: Eyring plot for the formation of **8** from **7** in $1,2-C_2D_4Cl_2$.

10.2 Synthesis of $DC \equiv CAr'$

To a solution of HCCAr' (250 mg, 1.17 mmol) in tetrahydrofuran (5.0 mL) at -78 °C was added a solution of ^{*n*}BuLi (1.78 molL⁻¹, 0.92 mL, 1.6 mmol) in hexanes. The resulting orange solution was stirred for 5 min at -78 °C before D_2O (0.1 mL, 5.0 mmol) was added dropwise and the suspension warmed to RT. Water (25 mL) was added and the product extracted into diethyl ether (3 × 25 mL) and dried over MgSO₄. The solvent was removed under reduced pressure to afford the product as a colourless powder. Yield: 0.24 g (95%).

¹**H NMR** (500 MHz, CDCl₃): δ 7.43 (t, ⁴*J*_{HH} = 1.9, 1H, *t*Bu₂C₆<u>H</u>₃), 7.36 (d, ⁴*J*_{HH} = 1.9, 2H, *t*Bu₂C₆<u>H</u>₃), 1.33 (s, 18H, *t*Bu).

²**H NMR** (77 MHz, CHCl₃): δ 3.04 (s, 1D).

¹³C{¹H} NMR (126 MHz, CDCl₃): δ = 151.0 (s, $tBu_2C_6H_3$), 126.5 (s, $tBu_2C_6H_3$), 123.4 (s, $tBu_2C_6H_3$), 121.2 (s, $tBu_2C_6H_3$), 84.6 (t, ²J_{CD} = 7, DC<u>C</u>), 75.7 (d, ¹J_{CD} = 38, D<u>C</u>C), 34.9 (s, $tBu\{C\}$), 31.5 (s, $tBu\{CH_3\}$).

10.3 Labelling experiment

A solution of $[Rh(CNC-12)(CCAr')\{C(CH_2)Ar'\}][BAr^{F_4}]$ 7 (32.4 mg, 18.0 µmol) and DC=CAr' (38.8 mg, 180 µmol) in 1,2-dichloroethane (1 mL) was heated at 55 °C for 18 h. The volatiles were removed *in vacuo* and the product extracted into the minimum amount of hot hexamethyldisiloxane (*ca.* 5 mL), filtered and concentrated *in vacuo* to the point of incipient crystallisation. The suspension was filtered, volatiles removed *in vacuo* and the red solid dried at 80 °C. Analysis by ¹H NMR indicated 58% and 60% D incorporation at the CHC<u>H</u>Ar' and C<u>H</u>CHAr' positions of **8**, respectively (Figure S48). This substantial degree of D incorporation was substantiated by HR ESI-MS, which suggested a total D incorporation of 1.18 (Figure S49).

Figure S48: ¹H NMR spectrum of [Rh(CNC-12)(*E*-Ar'CCCHCHAr')][BAr^F₄] **8** prepared in the presence of 10 equiv DC=CAr' (CD₂Cl₂, 600 MHz, d1 = 10 s). The CHC<u>H</u>Ar' and C<u>H</u>CHAr' signals are highlighted in red.

Figure S49: HR ESI-MS spectrum of [Rh(CNC-12)(*E*-Ar'CCCHCHAr')][BAr^F₄] **8** prepared in the presence of 10 equiv DC=CAr'. Fitting gives: 27.5% $[M-d_0]^+$, 27.1% $[M-d_1]^+$, 45.4% $[M-d_2]^+$.

11 Preparation of [Rh(CNC-12)(*E*-Ar'CCCHCHAr')][BAr^F₄] 8

A solution of $[Rh(CNC-12)(CCAr')\{C(CH_2)Ar'\}][BAr_4]$ **7** (36.2 mg, 20.1 µmol) in 1,2-C₆H₄F₂ (*ca*. 1 mL) was heated at 60 °C for 6 h. The volatiles were removed *in vacuo* and the product obtained by extraction with hexane (*ca*. 10 mL). Yield: 24.4 mg (68%). Crystals suitable for X-ray diffraction were grown from Et₂O/hexane at RT.

¹**H NMR** (400 MHz, CD₂Cl₂): δ 8.23 (d, ⁴J_{HH} = 1.7, 2H, tBu₂C₆H₃), 8.05 (d, ³J_{HH} = 15.3, 1H, CHC<u>H</u>Ar'), 7.90 (t, ³J_{HH} = 7.7, 1H, py), 7.68 – 7.77 (m, 8H, Ar^F), 7.59 (d, ³J_{HH} = 7.7, 2H, py), 7.55 (br, 4H, Ar^F), 7.44 (t, ⁴J_{HH} = 1.7, 1H, tBu₂C₆H₃), 7.43 (t, ⁴J_{HH} = 1.5, 1H, tBu₂C₆H₃), 7.39 (d, ⁴J_{HH} = 1.5, 2H, tBu₂C₆H₃), 7.02 (d, ³J_{HH} = 1.8, 1H, NCH), 7.01 (d, ³J_{HH} = 15.3, 1H, C<u>H</u>CHAr'), 6.98 (d, ³J_{HH} = 1.8, 1H, NCH), 6.67 (d, ³J_{HH} = 1.8, 1H, NCH), 6.65 (d, ³J_{HH} = 1.8, 1H, NCH), 5.95 (d, ²J_{HH} = 14.6, 1H, pyC<u>H</u>₂), 5.81 (d, ²J_{HH} = 14.7, 1H, pyC<u>H</u>₂), 5.20 (d, ²J_{HH} = 14.8, 1H, NCH), pyC<u>H</u>₂), 5.16 (d, ²J_{HH} = 14.7, 1H, pyC<u>H</u>₂), 4.21 (app. dt, J = 13, J = 2, 1H, NCH₂), 3.75 (app. dt, J = 13, J = 2, 1H, NCH₂), 3.33 – 3.45 (m, 2H, NCH₂), 2.18 – 2.31 (m, 1H, CH₂), 1.05 – 1.88 (m, 19H, CH₂), 1.36 (s, 18H, tBu), 1.35 (s, 18H, tBu).

¹³C{¹H} NMR (101 MHz, CD₂Cl₂): δ 182.0 (d, ¹J_{RhC} = 42, NCN), 181.3 (d, ¹J_{RhC} = 42, NCN), 162.3 (q, ¹J_{CB} = 50, Ar^F), 155.7 (py), 152.4 (s, tBu₂C₆H₃), 151.5 (s, tBu₂C₆H₃), 142.8 (d, ³J_{RhC} = 2, CHCHAr'), 139.8 (s, py), 136.6 (s, tBu₂C₆H₃), 135.4 (br, Ar^F), 129.5 (qq, ²J_{FC} = 32, ³J_{CB} = 3, Ar^F), 129 (obscured, tBu₂C₆H₃), 127.1 (s, tBu₂C₆H₃), 125.2 (q, ¹J_{FC} = 272, Ar^F), 124.9 (s, py), 124.8 (s, py), 123.9 (s, tBu₂C₆H₃), 123.2 (s, tBu₂C₆H₃), 121.5 – 121.7 (m, tBu₂C₆H₃ + 2× NCH), 121.6 (s, NCH), 121.7 (s, NCH), 120.9 (s, NCH), 120.7 (s, NCH), 118.0 (sept., ³J_{FC} = 4, Ar^F), 117.2 (d, ³J_{RhC} = 2, CHCHAr'), 88.9 (d, ¹J_{RhC} = 14, CCAr'), 83.6 (d, ¹J_{RhC} = 13, CCAr'), 56.3 (s, 2× pyCH₂), 49.8 (NCH₂), 49.5 (NCH₂), 35.6 (s, tBu{C}), 35.4 (s, tBu{C}), 33.2 (CH₂), 31.9 (s, tBu{CH₃}), 31.8 (s, tBu{CH₃}), 31.6 (s, CH₂), 29.8 (s, CH₂), 29.5 (s, CH₂), 28.9 (s, CH₂), 28.7 (s, CH₂), 28.5 (s, CH₂), 28.3 (s, CH₂), 25.4 (s, CH₂), 24.0 (s, CH₂).

HR ESI-MS (positive ion, 4 kV): 936.5399 ([*M*]⁺, calcd 936.5385) *m*/*z*.

Anal. Calcd for C₈₉H₉₁BF₂₄N₅Rh (1799.60 g⋅mol⁻¹): C, 59.37; H, 5.09; N, 3.89. Found: C, 59.36; H, 4.99; N, 4.01).

Figure S51: ¹³C{¹H} NMR spectrum of [Rh(CNC-12)(*E*-Ar'CCCHCHAr')][BAr^F₄] 8 (CD₂Cl₂, 101 MHz)

Figure S52: HR ESI-MS spectrum of [Rh(CNC-12)(E-Ar'CCCHCHAr')][BAr^F₄] 8

12 NMR scale reaction of [Rh(CNC-12)(*E*-Ar'CCCHCHAr')][BAr^F₄] 8 with CO in MeCN

A solution of $[Rh(CNC-12)(E-Ar'CCCHCHAr')][BAr_4]$ **8** (18.0 mg, 10.0 µmol) in MeCN (0.5 mL) was freezepump-thaw degassed, placed under an atmosphere of CO (1 atm), and then heated at 85 °C for 16 h. The solvent was removed *in vacuo* and the resulting red glass dried at 85 °C until complete removal of volatiles was established by ¹H NMR spectroscopy. Subsequent analysis by ¹H NMR spectroscopy in CD₂Cl₂ confirmed quantitative recovery of **8** (Figure S53).

13 Preparation of PhCCC(CH₂)Ph

To a solution of $[Rh(CNC-Me)(C_2H_4)][BAr_4^F]$ **1** (31.2 mg, 24.7 µmol) in CH_2CI_2 (5 mL) was added HCCPh (54.3 µL, 495 µmol). The resulting orange solution stirred at 25 °C for 24 h and then freeze-pump-thaw degassed and placed under an atmosphere of CO (1 atm). The solution was concentrated *in vacuo* and the residue extracted with hexane through a short alumina plug to afford the product as a yellow oil on removal of the solvent. Yield: 32.8 mg (65 %).

Characterisation data are in excellent agreement with that previously reported for this compound.⁷

¹**H NMR** (300 MHz, CDCl₃): δ 7.73 (d, ³*J*_{HH} = 7.6, 2H, Ph), 7.50 – 7.58 (m, 2H, Ph), 7.29 – 7.45 (m, 6H, Ph), 5.99 (s, 1H, CH), 5.77 (s, 1H, CH).

14 Preparation of E-PhCCCHCHPh

To a solution of $[Rh(CNC-12)(C_2H_4)][BAr_4^F]$ **2** (172 mg, 118 µmol) in CH_2CI_2 (12 mL) was added HCCPh (27.2 µL, 248 µmol). The resulting orange solution was stirred at 50 °C for 5 h and then cooled to RT. The resulting red solution was concentrated *in vacuo* and the residue washed with cold hexane (*ca.* 10 mL). The residue was then dissolved in MeCN (*ca.* 15 mL), freeze-pump-thaw degassed and placed under an atmosphere of CO (1 atm), and stirred at 85 °C for 16 h. The solution was concentrated *in vacuo* and the residue extracted with hexane through a short alumina plug to afforded the product as a white microcrystalline powder. Yield: 20.3 mg (80% / HCCPh, 84% / **2**).

Characterisation data are in excellent agreement with that previously reported for this compound.⁸

¹**H NMR** (300 MHz, CDCl₃): δ 7.28 – 7.57 (m, 10H, Ph), 7.05 (d, ³J_{HH} = 16.3, 1H, CH), 6.39 (d, ³J_{HH} = 16.2, 1H, CH).

15 References

- ¹ S. Gründemann, M. Albrecht, J. A. Loch, J. W. Faller, R. H. Crabtree, *Organometallics* **2001**, *20*, 5485–5488.
- ² R. E. Andrew, C. M. Storey, A. B. Chaplin, *Dalton Trans.* **2016**, *45*, 8937–8944.
- ³ R. Cramer, J. A. McCleverty, J. Bray, *Inorg. Synth.* **1990**, *28*, 86–88.
- ⁴ R. Zhang, X. Hao, X. Li, Z. Zhou, J. Sun, R. Cao, *Cryst. Growth Des.* **2015**, *15*, 2505–2513.
- ⁵ W. E. Buschmann, J. S. Miller, K. Bowman-James, C. N. Miller, *Inorg. Synth.* **2002**, *33*, 83–91.
- ⁶ R. E. Andrew, A. B. Chaplin, *Inorg. Chem.* **2015**, *54*, 312–322.
- ⁷ R. E. Islas, J. Cárdenas, R. Gaviño, E. García-Ríos, L. Lomas-Romero, J. A. Morales-Serna, *RSC Adv.* **2017**, *7*, 9780-9789.
- ⁸ M. J. Dabdoub, V. B. Dabdoub, J. V. Comasseto, *Tetrahedron Lett.* **1992**, *33*, 2261-2264.