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A Supplemental Methods

A.1 Description of Topological Overlap Matrix

Starting with a similarity measure s;; = |cor (4, j)| between node ¢ and node j, one could apply
a hard threshold to determine if this pair is considered connected or not resulting in an un-
weighted network (a matrix of 0’s and 1’s). Instead, Zhang and Horvath (Zhang and Horvath,
2005) propose a soft thresholding framework that assigns a connection weight to each gene pair
using a power adjacency function a;; = ]sij|'8. The parameter § determines the sensitivity and
specificity of the pairwise connection strengths e.g. a larger 5 will result in fewer connected
nodes which can reduce noise in the network but can also eliminate signal if too large. A
measure of similarity is then derived using the symmetric and non-negative topological overlap
matrix (Ravasz et al., 2002) (TOM) Q = [w;;]:

o — lij+aij
" man {ki, kj} +1-— Qi

(1)



where [;; = Zu iy Oy, ki = Zu @y, 1s the node connectivity, and the index u runs across all
nodes of the network. Basically, w;; is a measure of similarity in terms of the commonality of
the nodes they connect to. If ¢ and j are unconnected and do not share any neighbors then
wij = 0. An w;; = 1 means that ¢ and j are connected, and the neighbors of the node with
fewer connections are also neighbors of the other node.
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Figure S1: Model fit results from simulations 4, 5 and 6 for SNR = 1, p = 0.9, and
a; ~ Unif [log(1.9),log(2.1)]. SEPARATE results are in pink, CLUST in green and ECLUST

in blue.
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Figure S2: Stability results from simulations 4, 5 and 6 for SNR = 1, p = 0.9, and
a; ~ Unif [log(1.9),log(2.1)]. SEPARATE results are in pink, CLUST in green and ECLUST
in blue.
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Figure S3: Hosmer-Lemeshow statistics from simulations 4, 5 and 6 for SNR =1, p = 0.9, and
a; ~ Unif[log(1.9),log(2.1)]. SEPARATE results are in pink, CLUST in green and ECLUST
in blue.
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Figure S4: Hosmer-Lemeshow p-values from simulation 4 for SNR = 1, p = 0.9, and
a; ~ Unif [log(1.9),log(2.1)]. SEPARATE results are in pink, CLUST in green and ECLUST
in blue.
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Figure S5: Hosmer-Lemeshow p-values from simulation 5 for SNR = 1, p = 0.9, and
a; ~ Unif [log(1.9),log(2.1)]. SEPARATE results are in pink, CLUST in green and ECLUST
in blue.
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Figure S6: Hosmer-Lemeshow p-values from simulation 6 for SNR = 1, p = 0.9, and
a; ~ Unif [log(1.9),log(2.1)]. SEPARATE results are in pink, CLUST in green and ECLUST
in blue.
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Figure S7: Number of estimated clusters from applying the dynamicTreeCut algorithm to
hierarchical clustering of the dissimilarity matrix with average linkage. Left panel: CLUST
uses 1 — Cor(X,;) and ECLUST uses the euclidean distance of Cor(Xgig) as measures of
dissimilarity. Right panel: CLUST uses 1 — TOM (Xy;) and ECLUST uses the euclidean
distance of TOM (Xgif) as measures of dissimilarity. Empirical distributions based on 200
simulation runs.
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Figure S8: Effective number of selected variables for simulations 1-3 for SNR =1,p=0.9. A
variable was considered “selected” if its corresponding cluster representative was selected.
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Figure S9: Effective number of selected variables for simulations 4-6 for SNR =1, p = 0.9 and
a; ~ Unif [log(1.9),log(2.1)]. A variable was considered “selected” if its corresponding cluster
representative was selected.



D Simulation Results Using TOM

D.1 Simulation 1

350 1

300 1

250 1

180 1

RMSE

120 1

90 1

180 1

150 1

120 1

90 1

bttty

¢++

L4
i1t

=L L4

as a Measure of Similarity

++.-1-.-1- =T

enet

T
lasso

avg_enet avg_lasso pc_enet pc_lasso

method B3 SEPARATE B8 CLUST B3 ECLUST

enet

T
lasso

avg_enet avg_lasso pc_enet pc_lasso

Figure S10: Simulation 1 — Root mean squared error on an independent test set using the
TOM as a measure of similarity from 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S11: Simulation 1 — Correct Sparsity based on the training set using the TOM as a
measure of similarity from 200 simulation runs. Vertical panels represent varying correlation
between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S12: Simulation 1 — True positive rate vs. false positive rate based on the training set
using the TOM as a measure of similarity. Each point represents 1 simulation run (there are
a total of 200 simulation runs). Vertical panels represent varying correlation between active
clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S13: Simulation 1 — Average Jaccard Index from 10 CV folds of the training set using the
TOM as a measure of similarity. We fit the model to each of the 10 CV folds resulting in 10 sets of
selected predictors. We then calculate the Jaccard Index between all (120) possible combinations
of these sets and take the average. This process is repeated for each of the 200 simulation
runs. Vertical panels represent varying correlation between active clusters. Horizontal panels
represent different signal-to-noise ratios.
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Figure S14: Simulation 1 — Average Spearman correlation from 10 CV folds of the training set
using the TOM as a measure of similarity. We fit the model to each of the 10 CV folds resulting in
10 sets of estimated regression coefficients. We then calculate the Spearman correlation between
all (120) possible combinations of these sets and take the average. This process is repeated for
each of the 200 simulation runs. Vertical panels represent varying correlation between active
clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S15: Simulation 1 — Average Pearson correlation from 10 CV folds of the training set
using the TOM as a measure of similarity. We fit the model to each of the 10 CV folds resulting
in 10 sets of estimated regression coefficients. We then calculate the Pearson correlation between
all (120) possible combinations of these sets and take the average. This process is repeated for
each of the 200 simulation runs. Vertical panels represent varying correlation between active
clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S16: Simulation 2 — Root mean squared error on an independent test set using
the TOM as a measure of similarity from 200 simulation runs. (A) «; ~ Unif[0.4,0.6],
(B) a;j ~ Unif[1.9,2.1]. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent different signal-to-noise ratios.
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Figure S17: Simulation 2 — Correct Sparsity based on the training set using the TOM as a
measure of similarity from 200 simulation runs. (A) «; ~ Unif[0.4,0.6], (B) «; ~ Unif[1.9,2.1].
Vertical panels represent varying correlation between active clusters. Horizontal panels represent
different signal-to-noise ratios.
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Figure S18: Simulation 2 — True positive rate vs. false positive rate based on the training set
using the TOM as a measure of similarity. (A) «; ~ Unif[0.4,0.6], (B) o; ~ Unif[1.9,2.1]. Each
point represents 1 simulation run (there are a total of 200 simulation runs). Vertical panels
represent varying correlation between active clusters. Horizontal panels represent different
signal-to-noise ratios.
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Figure S19: Simulation 2 — Average Jaccard Index from 10 CV folds of the training set using
the TOM as a measure of similarity. (A) a; ~ Unif[0.4,0.6], (B) a; ~ Unif[1.9,2.1]. We fit the
model to each of the 10 CV folds resulting in 10 sets of selected predictors. We then calculate
the Jaccard Index between all ( ) possible combinations of these sets and take the average.
This process is repeated for each of the 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S20: Simulation 2 — Average Spearman correlation from 10 CV folds of the training set
using the TOM as a measure of similarity. (A) a; ~ Unif[0.4,0.6], (B) «; ~ Unif[1.9,2.1]. We
fit the model to each of the 10 CV folds resulting in 10 sets of estimated regression coefficients.
We then calculate the Spearman correlation between all (120) possible combinations of these sets
and take the average. This process is repeated for each of the 200 simulation runs. Vertical pan-
els represent varying correlation between active clusters. Horizontal panels represent different
signal-to-noise ratios.
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Figure S21: Simulation 2 — Average Pearson correlation from 10 CV folds of the training set
using the TOM as a measure of similarity. (A) a; ~ Unif[0.4,0.6], (B) «; ~ Unif[1.9,2.1]. We
fit the model to each of the 10 CV folds resulting in 10 sets of estimated regression coefficients.
We then calculate the Pearson correlation between all (120) possible combinations of these sets
and take the average. This process is repeated for each of the 200 simulation runs. Vertical pan-
els represent varying correlation between active clusters. Horizontal panels represent different
signal-to-noise ratios.

21

=4dNS

c0

=4dNS

I

¢ =dNS

¢'0 =UNS

=HNS

I

¢ =dNS



D.3 Simulation 3

400 1

300 1

200

210 1

180 1

RMSE
g

120 1

90 1

180 1

150 1

120 1

90 1

p=10.2 p=0.9

I
T
—= = s AW

MARS avg_MARS pc_MARS MARS avg_MARS pc_MARS

method E3 SEPARATE B8 CLUST B3 ECLUST

Figure S22: Simulation 3 — Root mean squared error on an independent test set using the
TOM as a measure of similarity from 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent different signal-to-noise ratios.
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between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S24: Simulation 3 — True positive rate vs. false positive rate based on the training set
using the TOM as a measure of similarity. Each point represents 1 simulation run (there are
a total of 200 simulation runs). Vertical panels represent varying correlation between active
clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S25: Simulation 3 — Average Jaccard Index from 10 CV folds of the training set using the
TOM as a measure of similarity. We fit the model to each of the 10 CV folds resulting in 10 sets of
selected predictors. We then calculate the Jaccard Index between all (120) possible combinations
of these sets and take the average. This process is repeated for each of the 200 simulation
runs. Vertical panels represent varying correlation between active clusters. Horizontal panels
represent different signal-to-noise ratios.
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E Simulation Results Using Pearson Correlations as a Measure
of Similarity
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Figure S26: Simulation 1 — Root mean squared error on an independent test set using the

Correlation as a measure of similarity from 200 simulation runs.

Vertical panels represent

varying correlation between active clusters. Horizontal panels represent different signal-to-noise

ratios.
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Figure S27: Simulation 1 — Correct Sparsity based on the training set using the Pearson cor-
relation as a measure of similarity from 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S28: Simulation 1 — True positive rate vs. false positive rate based on the training set

using the Pearson correlation as a measure of similarity. Each point represents 1 simulation run
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(there are a total of 200 simulation runs). Vertical panels represent varying correlation between
active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S29: Simulation 1 — Average Jaccard Index from 10 CV folds of the training set using
the Pearson correlation as a measure of similarity. We fit the model to each of the 10 CV folds
resulting in 10 sets of selected predictors. We then calculate the Jaccard Index between all (120)
possible combinations of these sets and take the average. This process is repeated for each of
the 200 simulation runs. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent different signal-to-noise ratios.
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Figure S30: Simulation 1 — Average Spearman correlation from 10 CV folds of the training
set using the Pearson correlation as a measure of similarity. We fit the model to each of the
10 CV folds resulting in 10 sets of estimated regression coefficients. We then calculate the
Spearman correlation between all (120) possible combinations of these sets and take the average.
This process is repeated for each of the 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S31: Simulation 1 — Average Pearson correlation from 10 CV folds of the training set
using the Pearson correlation as a measure of similarity. We fit the model to each of the
10 CV folds resulting in 10 sets of estimated regression coefficients. We then calculate the
Pearson correlation between all (120) possible combinations of these sets and take the average.
This process is repeated for each of the 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S32: Simulation 2 — Root mean squared error on an independent test set using the
Pearson correlation as a measure of similarity from 200 simulation runs. (A) «; ~ Unif[0.4,0.6],

(B) a; ~ Unif[1.9,2.1].

Vertical panels represent varying correlation between active clusters.

Horizontal panels represent different signal-to-noise ratios.
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Figure S33: Simulation 2 — Correct Sparsity based on the training set using the Pear-
son correlation as a measure of similarity from 200 simulation runs. (A) «; ~ Unif[0.4,0.6],
(B) a;j ~ Unif[1.9,2.1]. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent different signal-to-noise ratios.
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Figure S34: Simulation 2 — True positive rate vs. false positive rate based on the train-
ing set using the Pearson correlation as a measure of similarity. (A) «; ~ Unif[0.4,0.6],
(B) a; ~ Unif[1.9,2.1]. Each point represents 1 simulation run (there are a total of 200 simu-
lation runs). Vertical panels represent varying correlation between active clusters. Horizontal
panels represent different signal-to-noise ratios.
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Figure S35: Simulation 2 — Average Jaccard Index from 10 CV folds of the training set using the
Pearson correlation as a measure of similarity. (A) a; ~ Unif[0.4,0.6], (B) «; ~ Unif[1.9,2.1].
We fit the model to each of the 10 CV folds resulting in 10 sets of selected predictors. We then
calculate the Jaccard Index between all (120) possible combinations of these sets and take the
average. This process is repeated for each of the 200 simulation runs. Vertical panels represent
varying correlation between active clusters. Horizontal panels represent different signal-to-noise

ratios.
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Figure S36: Simulation 2 — Average Spearman correlation from 10 CV folds of the train-
ing set using the Pearson correlation as a measure of similarity. (A) «; ~ Unif[0.4,0.6],
(B) a;j ~ Unif[1.9,2.1]. We fit the model to each of the 10 CV folds resulting in 10 sets of
estimated regression coefficients. We then calculate the Spearman correlation between all (120)
possible combinations of these sets and take the average. This process is repeated for each of
the 200 simulation runs. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent different signal-to-noise ratios.
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Figure S37: Simulation 2 — Average Pearson correlation from 10 CV folds of the train-
ing set using the Pearson correlation as a measure of similarity. (A) «; ~ Unif[0.4,0.6],
(B) a;j ~ Unif[1.9,2.1]. We fit the model to each of the 10 CV folds resulting in 10 sets of
estimated regression coefficients. We then calculate the Pearson correlation between all (120)
possible combinations of these sets and take the average. This process is repeated for each of
the 200 simulation runs. Vertical panels represent varying correlation between active clusters.

Horizontal panels represent different signal-to-noise ratios.
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Figure S38: Simulation 3 — Root mean squared error on an independent test set using the Pear-
son correlation as a measure of similarity from 200 simulation runs. Vertical panels represent

varying correlation between active clusters. Horizontal panels represent different signal-to-noise
ratios.
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Figure S39: Simulation 3 — Correct Sparsity based on the training set using the Pearson cor-
relation as a measure of similarity from 200 simulation runs. Vertical panels represent varying
correlation between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S40: Simulation 3 — True positive rate vs. false positive rate based on the training set
using the Pearson correlation as a measure of similarity. Each point represents 1 simulation run
(there are a total of 200 simulation runs). Vertical panels represent varying correlation between
active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure S41: Simulation 3 — Average Jaccard Index from 10 CV folds of the training set using
the Pearson correlation as a measure of similarity. We fit the model to each of the 10 CV folds
resulting in 10 sets of selected predictors. We then calculate the Jaccard Index between all (120)
possible combinations of these sets and take the average. This process is repeated for each of
the 200 simulation runs. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent different signal-to-noise ratios.
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Figure S42: Pearson correlation matrices of simulated predictors based on subjects with (a)
E =0, (b) E =1, (c) their absolute difference and (d) all subjects. Dendrograms are from
hierarchical clustering (average linkage) of one minus the correlation matrix for a, b, and d and
the euclidean distance for ¢. The module annotation represents the true cluster membership for
each predictor, and the active annotation represents the truly associated predictors with the
response.
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