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Section	S1.	Supplementary	Note	

	
Section	S1.1	External	validation	
We	performed	external	validation	that	clearly	demonstrate	the	superior	performance	of	our	PRECISE	
algorithm	as	compared	to	other	established	and	current	approaches	for	obtaining	patient-specific	pathway	
scores	across	multiple	tumor	types.	For	objective	external	validation	of	the	PRECISE	algorithm,	we	compared	
PRECISE	scores	with	two	established	and	previously	published	scores:		a	proteomics-based	pathway	score	
obtained	using	the	same	RPPA	data	reported	by	Akbani	et	al	(Akbani	et	al.,	2014)	--	which	we	call	“native”	
score	and	the	PARADIGM	(Vaske	et	al.,	2010)	--	which	measures	the	patient-specific	genetic	activities	
incorporating	curated	pathway	interactions	among	gene	using	expression	data.	We	compared	their	prognostic	
power	and	ability	to	detect	tissue-specific	signals	(as	detailed	below).	

	
External	methods	(Methodological	comparison)		
	

The	Naïve	 pathway	 score	was	 defined	 as	 the	 cumulative	 sum	 of	 all	 protein	 expression	 in	 a	 particular	
pathway.	This	method	gives	all	proteins	equal	weights	in	estimating	the	pathway-level	score,	thus	ignore	
existing	and	de	novo	network	information.		
	
The	Native	pathway	score	was	defined	by	the	sum	of	all	positive	regulatory	components	minus	that	of	the	
negative	 regulatory	 components	 in	a	particular	pathway	as	 reported	by	Akbani	et	al,	2014	and	also	has	
been	used	 in	a	 recently	published	TCGA	paper	 for	uterine	carcinosarcoma	 (UCS),	Cherniack	et	al.,	2017.	
This	method	takes	prior	directionality	(+/-)	 into	account	to	yield	pathway	scores	while	de	novo	networks	
are	not	used.		
	
PARADIGM	 uses	 pathways	 from	 the	 National	 Cancer	 Institute	 Pathway	 Interaction	 Database	 (NCI-PID).	
They	refer	to	molecular	entities	as	“concepts”,	which	include	gene	products	such	as	proteins	and	miRNAs,	
small	molecules,	protein	complexes,	and	abstract	concepts.	Each	concept	is	represented	as	“node”	in	the	
PARADIGM	graphical	model.	The	PARADIGM	algorithm	assigns	an	integrated	pathway	level	(IPL)	reflecting	
the	activity	of	a	concept.	The	significance	of	the	 IPL	for	each	concept	 in	each	patient	sample	 is	assessed	
using	a	permutation	analysis.	 	We	used	the	PARADIGM	analysis	(RNAseq	and	Copy	number)	results	from	
http://firebrowse.org.	1	This	method	uses	known	pathway	information	but	no	de	novo	networks.		
	

	 The	major	 difference	 from	 a	methodological	 perspective	 between	 these	methods	 and	 our	 PRECISE	
algorithm	 is	 that	we	estimate	and	 construct	de	novo	 cancer-specific	networks	 to	 calibrate	 the	patient-level	
pathway	signatures	by	exploiting	multiple	sources	of	information	obtained	from	cancer-specific	multi-platform	
data,	causal	structure	leaning	and	existing	interaction	database.	It	is	well	established	that	sub-networks	within	
signaling	pathways	and	their	products	undergo	changes	in	response	to	different	conditions.		The	Naïve,	Native	
and	PARADIGM	methods	do	not	use	the	cancer-specific	de	novo	networks.		
	
Such	network	rewiring	 in	cancers	are	manifested	at	the	 level	of	signaling	networks	and	 is	not	currently	well	
understood	(Lee	et	al.,	2012,	Creixell,	et	al.,	2015).	Thus,	assessing	the	cancer-specific	topology	and	structure	
of	proteomic	signaling	networks	as	well	as	relating	them	to	(prognostic)	clinical	outcomes	are	important	task	
toward	 understanding	 the	 biological	 mechanisms	 behind	 cancer	 development	 and	 progression	 and	
importantly,	therapeutic	implementation.	
																																																								
	



	 	 	
	
Power	to	detect	tumor-specific	signal	
	
We	compared	the	PRECISE	scores	with	the	Native	and	PARADIGM	scores	in	the	same	context	of	the	recently	
published	 paper	 (Cherniack	 et	 al,	 2017;	 Cancer	 Cell)	 across	 four	 tumor	 types:	 Uterine	 corpus	 endometrial	
carcinoma	 (UCEC,	 n=439),	 ovarian	 serous	 cyst	 adenocarcinoma	 (OV,	 n=431),	 Sarcoma	 (SARC,	 n=224)	 and	
uterine	 carcinosarcoma	 (UCS,	 n=48)	 –	 to	 assess	 shared/differentiated	 pathway-based	 features.	 	 For	
PARADIGM	analysis,	we	selected	985	concepts	 in	18	 significant	pathways	 that	are	a	union	set	of	 significant	
pathways	using	cutoff	0.15	of	the	significance	ratio	(avg.	Num.	Perturbations/Cohort	size)	for	each	tumor	type	
(Vaske	et	al.,	2010).	Our	native	scores	were	computed	as	described	 in	the	main	article	and	do	not	explicitly	
include	network	information.		
	
The	 clustered	heatmaps	 for	 the	native,	 PRECISE	 and	PARADIGM	scores	 are	 shown	 in	 Supplementary	 Figure	
S17.	There	 is	clear	evidence	 that	our	PRECISE	method	preserves	 tumor-specific	 signals	 (94%	of	UCS,	99%	of	
UCEC,	 99%	of	 SARC	 and	 98%	of	OV	 samples	were	 separately	 clustered)	 better	 than	 native	 and	 PARADIGM	
scores.	In	particular,	the	clusters	assessed	by	both	native	and	PARADIGM	contained	samples	with	mixed	tumor	
types.	 To	 further	 investigate	 how	much	 the	 specific	 pathway	 scores	 vary	 across	 cancer	 types,	 we	 plot	 the	
boxplots	 of	 combined	 (activated	 and	 suppressed)	 scores	 from	 the	 PRECISE	 for	 all	 the	 12	 pathways	 in	
Supplementary	Figure	S19.	 In	comparison	to	the	boxplots	with	Figure	7	B	 in	Cherniack	et	al.,	2017,	PRECISE	
produced	much	 lower	 p-values	 across	 pathways	 and	 showed	more	 evident	 pattern	 across	 different	 tumor	
types	(Supplementary	Figure	S18).	UCS	samples	showed	much	lower	activity/suppressed	levels	 in	Apoptosis,	
Breast	reactive,	cell	cycle,	RAS/MAPK,	TSC/mTOR	pathways	than	UCEC,	OV,	and	SARC.	UCS	and	SARC	samples	
showed	similar	patterns	in	core	reactive	and	hormone	receptor	pathways.	Collectively,	this	suggests	PRECISE	
has	much	higher	prognostic	power	in	detecting	pathway-specific	signals	across	tumor	types.	
	
 Prognostic power 
 
There	were	449	matched	KIRC	samples	in	the	PARADIGM	score	matrix	from	454	patients	in	our	RPPA	dataset.	
Using	the	cutoffs	of	-0.25	and	0.25	(as	used	in	Vaske,	et	al.	2010)	of	the	IPL	(Integrated	pathway	level)	scores,	
we	 classified	 the	 patient-level	 pathway	 scores	 into	 suppressed,	 neutral	 and	 activated.	 The	 apoptosis	 was	
measured	as	nodes	 (concepts)	within	10	different	PARADIGM	pathways.	From	the	Cox-proportional	hazards	
model,	all	 the	p-values	 for	 the	10	PARADIGM	apoptosis	concepts	were	greater	 than	0.08.	For	 the	Paradigm	
pathway	 with	 the	 lowest	 p-value,	 the	 Kaplan-Meier	 curves	 are	 shown	 in	 Supplementary	 Figure	 S17.	 The	
PRECISE	method	performs	better	 than	PARADIGM	and	native	methods	 to	predict	patients’	 survival	 times	 in	
unsupervised	manner.	We	also	compared	the	native	method	and	PRECISE	method	across	all	31	cancer	types	
and	 12	 pathways.	 The	 PRECISE	 scores	were	 significantly	 associated	with	 patients’	 survival	 times	 for	 the	 30	
tests	with	FDR	at	0.1,	while	the	native	score	provided	only	5	significant	associations	(Figure	4	c).	
 
Next, we	compared	the	survival	outcome	association	of	our	protein-based	pathway	signatures	of	the	12	
pathways	to	that	of	1000	random	protein	signatures.	For	a	given	pathway,	we	obtain	a	random	signature	as	
follows:	(1)	randomly	select	proteins	of	identical	size	to	the	number	of	proteins	in	the	pathway;	(2)	compute	
the	first	principal	component	(PC1)	using	the	selected	proteins	and	(3)	split	the	patient	cohort	into	three	
groups	according	to	30	and	70	percentiles	of	the	PC1.	Venet	et.	al.,	2011	suggested	the	PC1	method	because	it	
yields	more	stable	stratification	than	using	K-means	or	hierarchical	clustering.	We	use	the	proportions	of	
random	signatures	that	work	better	than	those	obtained	from	PRECISE	as	another	measure	of	the	significance	
with	a	False-discovery	rate	(FDR)	adjusted	p-values.	At	the	cutoffs	of	proportions,	0.1	and	0.05,	we	found	39	
and	23	pathway-based	signatures	respectively	across	all	31	tumor	types.	While	using	FDR=0.1,	we	found	31	
discoveries	(Figure	5);	15	discoveries	met	both	of	the	criteria.	Using	this	random	signature	approach,	there	



	 	 	
	
were	additional	new	findings:	for	example,	signatures	of	Core	reactive,	TSC/mTOR	and	Hormone	receptor	
pathways	were	selected	for	a	rare	cancer,	Lymphoid	Neoplasm	Diffuse	Large	B-cell	Lymphoma	(DLBC)	by	using	
the	criteria,	that	were	not	found	by	our	previous	FDR-adjustment	(see	Supplementary	Figure	S21	for	boxplots	
of	the	p-values	of	associations	of	1000	random	signatures).	Because	the	two	approaches	provide	distinct	
information	on	the	prognostic	power,	we	proved	an	additional	table	for	the	union	set	of	findings	using	FDR	
and	random	signature	approaches	(Supplementary	Table	S9). 	
	
	
Section	S1.2	Pan-cancer	multiple	`omics	data	and	Preprocessing	
Using	TCGA-assembler	1,	we	downloaded	mRNA	expression,	microRNA	expression,	DNA	methylation	data,	and	
clinical	data	from	TCGA	Data	Coordinating	Center.	For	mRNA	expression	data,	RNASeqV2	data	(generated	by	
illuminaga	or	iluminahiseq)	were	downloaded	and	preprocessed	using	`DownloadRNASeqData'	and	
`ProcessRNASeqData'	functions	for	gene-level	expression.	For	microRNA	expression	data,	miRNASeq	data	
(generated	by	illuminaga	or	illuminahiseq)	were	downloaded	using	the	`DownloadmiRNASeqData'	function.	
Using	the	`ProcessmiRNASeqData'	function,	we	processed	the	miRNASeq	data,	using	the	Hg19	reference	
genomes	to	map	the	reads.	Then	we	annotated	the	microRNAs	to	genes	using	the	`microRNA'	package	in	R	
version	3.2.0.	DNA	methylation	data	(generated	by	Illumina	Infinium	HumanMethylation	27K	or	450K)	were	
downloaded	and	preprocessed	using	`DownloadMethylationData',	`DownloadMethylation27Data'	and	
`DownloadMethylation450Data'.	For	cancer	types	that	had	both	types	of	assays,	the	overlapping	features	
between	both	assay	types	were	used.	Then	we	applied	ComBat	2	to	adjust	for	the	known	batch	effects	using	
an	empirical	Bayes	framework.	
We	assumed	that	DNA	methylation	affects	protein	expression	levels	by	influencing	mRNA	expression.	For	a	
gene,	we	selected	a	CpG	site	by	computing	the	absolute	correlations	between	the	mRNA	expression	and	CpG	
sites	outside	the	`gene	body'	region.	We	decomposed	the	expression	changes	(!)	of	each	gene	into	two	
components,	which	are	explained	by	methylation	(")	and	mechanisms	other	than	methylation:	

! = !$ + !$, !$ = '",	
where	'	is	a	regression	coefficient	that	represents	the	`gene	methylation'	effect.	A	CpG	site	corresponding	to	
a	gene	is	chosen	by	regression	on	the	combined	data,	including	data	from	6,844	patients	across	all	32	lineages.		
	
Section	S1.3	Enrichment	analysis	of	clusters		
To	investigate	our	PRECISE	clusters	in	relation	to	clinical	outcomes	and	mutation	data,	we	defined	an	
enrichment	probability	(EP).	For	demonstration	purposes,	we	take	as	example	of	breast	cancer	analysis.	The	
same	procedure	can	be	applied	for	the	enrichment	analysis	of	mutation	data.	We	define	an	EP	for	each	
subtype	of	breast	cancer	and	each	of	the	clusters.	We	have	breast	cancer	subtypes	of	PAM50,	basal-like,	
HER2-enriched,	luminal	A,	and	luminal	B	3.	The	BRCA	patients	were	located	in	three	clusters,	C1,	C2	and	C3.	
For	each	subtype,	we	defined	a	3-dimensional	vector	( = )*, )+, ), -,	where	). 	is	the	enrichment	probability	
for	cluster	/.	This	probability	vector	indicates	whether	the	patients	in	the	subtypes	are	grouped	together.	For	
each	subtype,	we	followed	a	Bayesian	hypothesis	testing	framework	to	test	whether	the	proportion	of	
patients	from	the	subtype	in	cluster	/	is	significantly	higher	than	the	proportion	of	patients	from	outside	the	
subtype	in	cluster	/.	Then,	we	considered	the	following	two-way	table	with	the	three	clusters	and	a	subtype:	

	
		 C1	 C2	 C3	 Total	
Subtype	(-)	 01*		 01+		 	01,	 	21	
Subtype	 0**		 	0*+	 	0*,	 	2*	

	



	 	 	
	

We	denote	the	number	of	patients	from	outside	the	subtype	in	cluster	/	by	01., / = 1,2,3	and	the	
number	of	patients	from	the	subtype	in	cluster	/	by	0*., / = 1,2,3.	The	total	numbers	of	patients	from	the	
subtype	and	from	outside	the	subtype	are	denoted	by	21	and	2*,	respectively.	We	assume	our	model	by	

06*, 06+, 06, ∼ "89:/0;�/<9(26, >6*, >6+, >6,)	and	(>6*, >6+, >6,) ∼ @/A/Bℎ9D: 1,1,1 .	
The	posterior	distribution	of	(>6*, >6+, >6,)	is	@/A/Bℎ9D:(06* + 1, 06+ + 1, 06, + 1).	For	each	cluster	/,	we	

calculate	the	posterior	probability	that	>1. < >*.,	
). = Pr >1. < >*. @<:< ,	

which	can	be	computed	using	Monte	Carlo	methods.	
	
	

Section	S1.4	Calculation	of	concordance	score	
For	each	cancer	type,	we	divided	the	whole	data	set	into	two	parts,	a	training	data	set	and	a	test	data	set.	
Using	the	test	data,	we	predicted	the	protein	expression	value	for	each	node	under	the	model	evaluated	from	
the	training	data.	We	computed	the	concordance	score	as	follows:	for	each	cancer	and	each	pathway,	

1
0HIJH

1
)

K L.6 ∈ L.6 − 2×PD L.6 , L.6 + 2×PD L.6

QRSTR

.

U

6V*

,	

where	0HIJH	is	the	number	of	samples	in	the	test	data,	)	is	the	number	of	proteins	(nodes)	in	the	
pathway,	and	L.6 	is	the	observed	value	for	the	/HX	test	sample	and	YHX	protein.	We	based	our	analysis	on	10-
fold	cross-validation.	
	
Section	S1.5	Calculation	of	permutation	p-values	for	network	connectivity	scores	
We	 investigated	 on	 the	 relationship	 between	 sample	 sizes	 and	 the	 connectivity	 score	 (CS),	 which	was	 the	
constructed	 as	 the	 ratio	 of	 the	 observed	 number	 of	 edges	 in	 the	 network	 to	 the	 total	 number	 of	 possible	
edges	(see	Supplementary	Figure	S24	(left	panel)).	We	did	find	a	marginal	positive	correlation	between	sample	
size	and	CS	with	Spearman	correlation,	0.55	 --	which	 indicates	 that	CS	values	are	 (somewhat)	driven	by	the	
sample	 sizes,	 although	 there	 is	 some	 variability.	 	 This	 is	 not	 surprising	 given	 the	 fact	 that	 we	 have	 more	
statistical	power	to	detect	true	network	edges	as	sample	size	increases.		
	
To	 investigate	 this	 further,	 we	 generated	 the	 null	 CS	 distribution	 for	 a	 given	 pathway	 and	 tumor	 type	 as	
follows.	Briefly,	for	each	tumor	type	and	pathway,	we	randomly	select	the	same	number	of	proteins	in	a	given	
pathway	while	the	covariates	from	upstream	platforms	(mRNA,	microRNA	and	Methylation)	are	matched	to	
the	 this	 randomly	 selected	set	of	proteins.	After	 constructing	networks	 from	1000	 random	permutations	of	
the	proteins,	a	null	distribution	of	CS	is	obtained	for	the	pathway	and	cancer	type.	For	the	hypothesis,	that	a	
pathway	shows	high	level	of	cross-signaling	than	expected	at	random,	we	compute	the	permutation	p-value,	
)ZJ = K([\] > [\)/1000*111

.V* ,	 where	K ⋅ 	is	 an	 indicator	 function,	[\]	is	 the	 CS	 value	 obtained	 from	/th	
permutation	 and	[\	is	 the	 CS	 value	 from	 the	 data.	 These	)ZJ	values	 were	 not	 correlated	 with	 sample	 size	
(Supplementary	Figure	S24,	right	panel)	and	thus	provide	an	inherent	sample	size	adjustment.		
	
Section	S1.6	Robustness	of	cancer-specific	integrative	networks	
We	have	validated	the	robustness	of	our	cancer-specific	integrative	networks	by	comparing	with	a	recent	
method	OncoPPI	(Li	et	al.,	2017)	and	a	resampling	method.	The	OncoPPI	network	(Li	et	al.,	2017)	expands	the	
lung-cancer	associated	protein	interaction	landscape	for	discovery	of	novel	cancer	targets	and	connects	tumor	
suppressors	to	available	drugs,	offering	an	experimental	resource	for	exploitation	of	PPI-mediated	cancer	
vulnerabilities.	In	their	analysis,	83	genes	were	selected	based	on	frequency	of	alterations	in	lung	cancer	and	
known	involvement	in	cancer	signaling	pathways	and	only	12	genes	were	overlapped	with	the	genes	used	for	



	 	 	
	
our	analysis.	We	applied	OncoPPI	(http://oncoppi.emory.edu)	to	the	12	overlapping	genes	(see	
Supplementary	Figure	S25	for	OncoPPI	sub-network	for	the	12	genes).	The	PRECISE	networks	for	LUAD	and	
LUSC	are	displayed	in	Supplementary	Figure	S26	and	showed	the	same	edge	structure	between	the	two	tumor	
types,	except	for	the	directed	and	correlative	edges	between	AKT1,	AKT2,	AKT3	and	PTEN	in	LUAD	and	LUSC	
samples,	respectively.	The	OncoPPI	network	had	two	edges	AKT1-RAF1	and	AKT1-MAPK14	that	were	not	
included	in	the	PRECISE	network	(PRECISE	network	had	a	correlative	edge	between	RAF1	and	MAPK14).	We	
could	conclude	that	the	two	approaches	provide	distinct	networks	and	highlight	several	differences	in	the	
methodologies:		

(1) We	estimate	PPI	network	from	observational	data	integrating	upstream	data	such	as	mRNA	
expression,	microRNA	expression	and	DNA	methylation.	Thus,	the	PPI	network	we	obtain	is	a	
conditional	network	after	adjusting	for	regulators	from	upstream	data	as	well	as	protein	regulators	in	a	
pathway.	On	the	other	hand,	OncoPPI	is	based	on	a	PPI	detection	platform	that	identifies	marginal	
direct	interactions.		

(2) Our	approach	uses	pathway-based	procedure	with	the	two	main	reasons:	(1)	for	conditional	networks	
(see	item	(1)),	adjusting	for	only	the	regulators	within	pathways	is	an	efficient	strategy	to	use	prior	
knowledge;	and	(2)	we	have	a	final	aim	of	measuring	individual-specific	pathway	activities	and	finding	
pathway-based	prognostic	models.	Note	that	OncoPPI	selected	a	set	of	83	genes	based	on	frequency	of	
alterations	in	lung	cancer	and	known	involvement	in	cancer	signaling	pathways,	and	obtained	marginal	
interaction	data	for	each	pair	of	the	proteins.		

(3) OncoPPI	uses	the	previously	reported	PPIs	by	hard-thresholding,	edge	inclusion/exclusion	(Figure	1c	of	
Li	et	al.,	2017).	Our	PRECISE	estimation	method	for	cancer-specific	networks	conflates	Bayesian	
variable	selection	and	causal	structure	learning.	Thus,	if	the	data	does	not	support	a	particular	a	priori	
network	structure,	it	will	exhibit	low	posterior	probabilities	in	the	final	estimands	and	will	thus	be	
naturally	filtered	out.	In	addition,	instead	of	performing	hard-thresholding	(e.g.	OncoPPI)	on	known	
PPIs,	we	use	soft-thresholding	approach	by	calibrating	the	priors	of	regressions	based	on	the	combined	
interaction	scores	from	data-driven	de	novo	causal	structure	and	existing	PPI	information.		

	
For	assessing	robustness	of	our	estimated	protein	network,	we	selected	TSC/mTOR	pathway	for	LUAD	patients	
that	had	a	significant	connectivity	score	(CS),	0.8	with	the	permutation	p-value,	0.044	with	7	correlative	edges	
and	one	directed	edge.	To	make	a	sub-sample	set,	285	samples	(80%)	are	randomly	sampled	from	the	356	
LUAD	samples	after	matching	RPPA,	mRNA	expression,	miRNA	expression	and	DNA	methylation	data.	For	each	
sub-sample	set,	we	built	LUAD-specific	TSC/mTOR	pathway	using	our	PRECISE	algorithm.	We	investigate	the	
stability	of	an	edge	in	the	LUAD-specific	TSC/mTOR	network	across	100	sub-samples	by	computing	the	
proportion	of	the	sub-sample	sets	that	produced	the	network	with	the	edge	(Supplementary	Table	S9).	6	out	
of	8	edges	were	kept	across	all	100	sub-sample	sets.	For	the	correlative	edge,	RB1-RPS6KB1	was	conserved	
across	48	sets,	23	had	the	directed	edge,	RB1->	RPS6KB1	(23	sets	selected	RB1	as	a	covariate	of	RPS6KB1	and	
did	not	select	RPS6KB1	as	a	covariate	of	RB1	in	the	Bayesian	regressions),	and	other	29	sets	selected	no	edges	
between	RB1	and	RPS6KB1.	The	directed	edge	RPS6->RB1	is	conserved	for	88	sub-sample	sets.		
	
Section	S1.7	Normalized	mutual	information	
To	 compare	 the	 clustering	 performance,	we	 computed	 the	 normalized	mutual	 information	 (NMI)	 scores	 to	
evaluate	 the	 dependence	 between	 clusters	 and	 tumor	 types	 for	0	samples.	 Given	 two	 partitions,	b =
{b*, … , be}	and	g = {g*, … , ge},	 the	 contingency	 table	 that	 represents	 the	 overlap	 between	b	and	g	is	
denoted	by	[ = [.6 e×h

	
,	where	[.6 	is	 the	number	of	 samples	 that	 the	clusters	b. 	and	g6 	share.	The	NMI	 score	between	b	and	g	are	
defined	as	follows:	



	 	 	
	

NMI A, B =
−2∑.V*

e ∑6V*
h [.6 log

[.60
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∑.V*
e [.⋅ log

[.⋅
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h [⋅6 log
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0

.	

	
NMI	is	a	quantitative	measure	of	the	overlap	between	two	clusters,	taking	values	from	0	to	1	--	with	values	
close	to	0,	when	the	two	clusters	are	totally	dissimilar,	and	1	where	they	are	identical.	
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Section S2. Supplementary Figures and Tables 
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[Supplementary Figure S1] Cancer-specific networks for apoptosis (A) and cell cycle (B) pathways. 
(a) Heatmap depicting regulatory (-> or <-) and correlative (-) edges across all tumor lineages. (b) 
Network, where each of the edges is weighted and labeled by edge consistency (EC), defined as the 
number of tumor types that hold the particular edge.	
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[Supplementary Figure S2] Cancer-specific networks for hormone receptor (A) and DNA damage 
response (B) pathways. (a) Heatmap depicting regulatory (-> or <-) and correlative (-) edges across 
all tumor lineages. (b) Network, where each of the edges is weighted and labeled by edge 
consistency (EC), defined as the number of tumor types that hold the particular edge.	
	



	 	 	
	
A

 
B 

	
[Supplementary Figure S3]  Cancer-specific networks for RAS/MAPK (A) and PI3K/AKT (B) 
pathways. (a) Heatmap depicting regulatory (-> or <-) and correlative (-) edges across all tumor 
lineages. (b) Network, where each of the edges is weighted and labeled by edge consistency (EC), 
defined as the number of tumor types that hold the particular edge.	
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[Supplementary Figure S4]  Cancer-specific networks for EMT (A) and TSC/mTOR (B) pathways. (a 
Heatmap depicting regulatory (-> or <-) and correlative (-) edges across all tumor lineages. (b) 
Network, where each of the edges is weighted and labeled by edge consistency (EC), defined as the 
number of tumor types that hold the particular edge. 
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[Supplementary Figure S5]  Cancer-specific networks for core reactive (A) and hormone signaling 
(breast) (B) pathways. (a) Heatmap depicting regulatory (-> or <-) and correlative (-) edges across all 
tumor lineages. (b) Network, where each of the edges is weighted and labeled by edge consistency 
(EC), defined as the number of tumor types that hold the particular edge.	
	
	
	
	
	
	
	
	
	



	 	 	
	
	
	

	
	
	
[Supplementary Figure S6]	UpSet	plot	for	two-way	intersections	between	clusters	obtained	by	PRECISE	
and	tumor	types	
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[Supplementary Figure S7] Pan-cancer stratification using RPPA data only. (A) Heatmap depicting 
protein levels after unsupervised hierarchical clustering of 6,836 cancer samples across 32 tumor 
types and proteins included in the 12 pathways. Protein levels are indicated on a low-to-high scale 
(yellow-to-red). 23 clusters are defined. Annotation bars are included in the vertical lines for the 23 
clusters and tumor lineages. (B) Crosstab showing the number of tumor samples in each cluster. 
 
 



	 	 	
	

 
 
[Supplementary Figure S8] Pan-cancer stratification using mRNA expression data only. (A) 
Heatmap depicting mRNA expression levels after unsupervised hierarchical clustering of 6,836 
cancer samples across 32 tumor types and genes included in the 12 pathways. Gene expression 
levels are indicated on a low-to-high scale. 23 clusters are defined. Annotation bars are included in 
the vertical lines for the 23 clusters and tumor lineages. (B) Crosstab showing the number of tumor 
samples in each cluster. 
 
 
	

	
[Supplementary Figure S9] Kaplan-Meier curves for clusters obtained from mRNA expression, 
RPPA, and PRECISE scores for BRCA. The sample sizes are computed after clinical data are 
matched. 
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[Supplementary Figure S10] Boxplots	of	PRECISE	RTK	scores	for	HER2	+	versus	other	BRCA	patients.		
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[Supplementary Figure S11] Heatmap depicting combined activated and suppressed PRECISE 
scores for clusters identified on KIRC and THCA patients. The combined scores are signed by 
PRECISE statuses, -1 (suppressed), 1 (activated), or 0 (neutral). The signed scores are indicated on 
a suppressed-neutral-activated scale (blue-white-red). Annotation bars are in the horizontal lines for 
clusters C5 and C8 and tumor types. 	



	 	 	
	

	
	
[Supplementary Figure S12] Kaplan-Meier curves for the three groups of KIRC patients, defined by 
PRECISE scores as suppressed (green), neutral (black), and activated (red) for pathways with FDR < 
0.1. 	
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[Supplementary Figure S13] Kaplan-Meier curves for the three groups of MESO (A) and LGG (B) 
patients, defined by PRECISE scores as suppressed (green), neutral (black), and activated (red) for 
pathways with FDR < 0.1. 	
	
	
	
	



	 	 	
	

 
[Supplementary Figure S14] Boxplots	of	PRECISE	EMT	scores	across	mesenchymal	tumors	(LGG	and	GBM)	
and	epithelial	tumors	(OV,	LUAD,	and	STAD).	
	

	
[Supplementary Figure S15] Scatterplot of –log10 p-values of PRECISE versus PRECISE with no 
prior for BRCA patients. The vertical and horizontal lines indicate p-values at 0.05. 
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[Supplementary Figure S16] PRECISE Hormone receptor and Hormone signaling pathways for 
BRCA patients. For the same pathways, PRECISE with no prior and no upstream data provided 
empty networks. 
 
 
 
 
 
 
 

 
[Supplementary Figure S17] 	Kaplan-Meier curves of PARADIAM, PRECISE, and Native scores 
of apoptosis pathway for KIRC patients.
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	 [Supplementary Figure S18] Heatmaps for Native, PRECISE and PARADIGM scores for UCEC, OV, UCS and SARC patients.
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[Supplementary Figure S19] 	Boxplot of PRECISE pathway activities, showing how UCEC, OV, 
UCS and SARC are different. 
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[Supplementary Figure S20] 	Boxplots of the p-values of associations of 1000 random 
signatures with overall survival across 12 pathways. Orange dots stand for p-value from PRECISE 
statuses.   
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[Supplementary Figure S21] 	Boxplots of the p-values of associations of 1000 random 
signatures with overall survival across 12 pathways for DLBC patients. Orange circles stand for p-
value from PRECISE statuses and green triangles are the top 50 p-values among the 1000 
random signatures. The dashed line displays the location of log10(0.05).  
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[Supplementary Figure S22] (A) Diversity score, which is defined by standard deviation of 
connectivity scores (CS) across all cancer lineages; (B) The distribution of concordance scores 
across 12 pathways for all cancer lineages; (C) The explained sum of squares for each protein in 
apoptosis, breast reactive, cell cycle, and DNA damage response pathways for BRCA patients. 
 
 
 
 
 
 
 
 
 



	 	 	
	

 
 

 
[Supplementary Figure S23] PCA plots of 124 READ samples. (a) microRNA data before adjusting 
for the batch effect; (b) microRNA data after adjusting for the batch effect; (c) Methylation data before 
adjusting for the batch effect; (d) Methylation data after adjusting for the batch effect.] 

 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 	 	
	

	
[Supplementary Figure S24]  Scatter plot of sample size versus connectivity score (CS) (left) 
and	− log&' ()* (right), where the Spearman correlation is 0.55 and -0.15, respectively. The colors and 
sizes of the dots correspond to pathways and the sizes (no. of nodes). 
 
 
 
 
 
 

	
[Supplementary Figure S25] OncoPPI	sub-network	for	the	12	genes. 
	
	
	
	



	 	 	
	
	

	
[Supplementary Figure S26] PRECISE	network	for	12	genes	that	are	included	in	the	OncoPPI	data	(only	
genes	that	have	edges	are	displayed).	The	orange	and	green	edges	represent	LUAD	and	LUSC,	respectively.		
	
	
	
	

	
[Supplementary Figure S27] Heatmap depicting combined activated and suppressed PRECISE 
scores for ACC patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S28] Heatmap depicting combined activated and suppressed PRECISE 
scores for BLCA patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  

	
[Supplementary Figure S29] Heatmap depicting combined activated and suppressed PRECISE 
scores for BRCA patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S30] Heatmap depicting combined activated and suppressed PRECISE 
scores for CESC patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  

 
[Supplementary Figure S31] Heatmap depicting combined activated and suppressed PRECISE 
scores for CHOL patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S32] Heatmap depicting combined activated and suppressed PRECISE 
scores for CORE patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
 
 

 
[Supplementary Figure S33] Heatmap depicting combined activated and suppressed PRECISE 
scores for DLBC patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S34] Heatmap depicting combined activated and suppressed PRECISE 
scores for ESCA patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
 

 
[Supplementary Figure S35] Heatmap depicting combined activated and suppressed PRECISE 
scores for GBM patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S36] Heatmap depicting combined activated and suppressed PRECISE 
scores for HNSC patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
 
 

	
[Supplementary Figure S37] Heatmap depicting combined activated and suppressed PRECISE 
scores for KICH patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S38] Heatmap depicting combined activated and suppressed PRECISE 
scores for KIRC patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
 

 
[Supplementary Figure S39] Heatmap depicting combined activated and suppressed PRECISE 
scores for KIRP patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S40] Heatmap depicting combined activated and suppressed PRECISE 
scores for LGG patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
	

	
[Supplementary Figure S41] Heatmap depicting combined activated and suppressed PRECISE 
scores for LIHC patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S42] Heatmap depicting combined activated and suppressed PRECISE 
scores for LUAD patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
 
 

 
[Supplementary Figure S43] Heatmap depicting combined activated and suppressed PRECISE 
scores for LUSC patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S44] Heatmap depicting combined activated and suppressed PRECISE 
scores for MESO patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
 

 
[Supplementary Figure S45] Heatmap depicting combined activated and suppressed PRECISE 
scores for OV patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S46] Heatmap depicting combined activated and suppressed PRECISE 
scores for PAAD patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
	

	
[Supplementary Figure S47] Heatmap depicting combined activated and suppressed PRECISE 
scores for PCPG patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S48] Heatmap depicting combined activated and suppressed PRECISE 
scores for PRAD patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
 

 
[Supplementary Figure S49] Heatmap depicting combined activated and suppressed PRECISE 
scores for SARC patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S50] Heatmap depicting combined activated and suppressed PRECISE 
scores for SKCM patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
 

 
[Supplementary Figure S51] Heatmap depicting combined activated and suppressed PRECISE 
scores for STAD patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S52] Heatmap depicting combined activated and suppressed PRECISE 
scores for TGCT patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
	

	
[Supplementary Figure S53] Heatmap depicting combined activated and suppressed PRECISE 
scores for THCA patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
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[Supplementary Figure S54] Heatmap depicting combined activated and suppressed PRECISE 
scores for THYM patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
	

	
[Supplementary Figure S55] Heatmap depicting combined activated and suppressed PRECISE 
scores for UCEC patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
	

TSC/mTOR

RTK

RAS/MAPK

PI3K/AKT

EMT

DNA damage 
response

Core 
reactive

Cell cycle

Breast 
reactive

Apoptosis

−3 −1 1 3
Value

Color Key

TSC/mTOR

RTK

RAS/MAPK

PI3K/AKT

EMT

DNA damage 
response

Core 
reactive

Cell cycle

Breast 
reactive

Apoptosis

−4 0 2 4
Value

Color Key



	 	 	
	

	
[Supplementary Figure S56] Heatmap depicting combined activated and suppressed PRECISE 
scores for UCS patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
	

	
[Supplementary Figure S57] Heatmap depicting combined activated and suppressed PRECISE 
scores for UVM patients. The combined scores are signed by PRECISE statuses, -1 (suppressed),1 
(activated), or 0 (neutral).  
	

TSC/mTOR

RTK

RAS/MAPK

PI3K/AKT

EMT

DNA damage 
response

Core 
reactive

Cell cycle

Breast 
reactive

Apoptosis

−3 −1 1 3
Value

Color Key

TSC/mTOR

RTK

RAS/MAPK

PI3K/AKT

EMT

DNA damage 
response

Core 
reactive

Cell cycle

Breast 
reactive

Apoptosis

−1 0 1
Value

Color Key



Pathway Genes

1 Apoptosis BAK1,	BAX,	BID,	BCL2L11,	CASP7,	BAD,	BCL2,	BCL2L1,	BIRC2
2 Breast	reactive CAV1,	MYH11,	RAB11A,	RAB11B,	CTNNB1,	GAPDH,	RBM15
3 Cell	cycle CDK1,	CCNB1,	CCNE1,	CCNE2,	CDKN1B,	PCNA,	FOXM1
4 Core	reactive CAV1,	CTNNB1,	RBM15,	CDH1,	CLDN7
5 DNA	damage	response TP53BP1,	ATM,	BRCA2,	CHEK1,	CHEK2,	XRCC5,	MRE11A,	TP53,	RAD50,	RAD51,	XRCC1
6 EMT FN1,	CDH2,	COL6A1,	CLDN7,	CDH1,	CTNNB1,	SERPINE1
7 PI3K/AKT AKT1,	AKT2,	AKT3,	GSK3A,	GSK3B,	CDKN1B,	AKT1S1,	TSC2,	INPP4B,	PTEN
8 RAS/MAPK ARAF,	JUN,	RAF1,	MAPK8,	MAPK1,	MAPK3,	MAP2K1,	MAPK14,	RPS6KA1,	YBX1
9 RTK EGFR,	ERBB2,	ERBB3,	SHC1,	SRC
10 TSC/mTOR EIF4EBP1,	RPS6KB1,	MTOR,	RPS6,	RB1
11 Hormone	receptor ESR1,	PGR,	AR
12 Hormone	signaling	(Breast) INPP4B,	GATA3,	BCL2

Supplementary Table S1.      Pathways and gene/protein names



Cancer Breast Core DNA Hormone Hormone

code reactive reactive
damage	
response

	receptor
	signaling	
(Breast)

KICH 63 0.28	(0.967) 0.4	(0.722) 0.57	(0.263) 0.3	(0.848) 0.45	(0.263) 0.48	(0.418) 0.48	(0.43) 0.36	(0.888) 0.6	(0.218) 0.6	(0.207) 0.67	(0.193) 0	(0.921)

KIRC 454 0.44	(0.932) 0.47	(0.762) 0.71	(0.115) 0.6	(0.362) 0.6	(0.16) 0.48	(0.739) 0.67	(0.13) 0.64	(0.088) 0.7	(0.151) 0.5	(0.639) 1	(0) 0.33	(0.929)

KIRP 215 0.53	(0.462) 0.53	(0.744) 0.62	(0.216) 0.1	(0.999) 0.53	(0.356) 0.38	(0.972) 0.48	(0.744) 0.53	(0.464) 0.7	(0.156) 0.7	(0.158) 0.67	(0.237) 0.67	(0.239)

LUAD 356 0.5	(0.554) 0.6	(0.289) 0.71	(0.085) 0.6	(0.317) 0.53	(0.47) 0.38	(0.963) 0.57	(0.478) 0.47	(0.803) 0.7	(0.131) 0.8	(0.044) 1	(0) 0	(0.939)

LUSC 309 0.44	(0.84) 0.47	(0.67) 0.67	(0.075) 0.5	(0.498) 0.42	(0.898) 0.43	(0.773) 0.57	(0.447) 0.56	(0.234) 0.5	(0.506) 0.8	(0.021) 1	(0) 0.33	(0.919)

CORE 463 0.61	(0.272) 0.67	(0.152) 0.52	(0.751) 0.8	(0.038) 0.53	(0.628) 0.62	(0.266) 0.67	(0.133) 0.53	(0.553) 0.7	(0.141) 0.8	(0.029) 1	(0) 0.33	(0.891)

PAAD 115 0.33	(0.924) 0.53	(0.355) 0.57	(0.162) 0.5	(0.29) 0.36	(0.835) 0.48	(0.306) 0.52	(0.312) 0.28	(0.965) 0.8	(0.002) 0.6	(0.107) 1	(0) 0.67	(0.076)

STAD 40 0.28	(0.753) 0.27	(0.669) 0.52	(0.099) 0.4	(0.293) 0.33	(0.57) 0.24	(0.775) 0.38	(0.455) 0.33	(0.618) 0.5	(0.122) 0.7	(0.009) 0.67	(0.05) 0	(0.714)

CHOL 30 0.5	(0.241) 0.4	(0.621) 0.43	(0.552) 0.4	(0.611) 0.27	(0.99) 0.33	(0.942) 0.48	(0.367) 0.36	(0.891) 0.6	(0.186) 0.5	(0.367) 0.67	(0.132) 0	(0.885)

LIHC 177 0.5	(0.456) 0.2	(0.998) 0.48	(0.673) 0.4	(0.83) 0.47	(0.553) 0.38	(0.968) 0.67	(0.088) 0.47	(0.728) 0.6	(0.387) 0.6	(0.331) 1	(0) 0.33	(0.96)

MESO 61 0.28	(0.675) 0.33	(0.622) 0.19	(0.957) 0.3	(0.488) 0.25	(0.864) 0.24	(0.769) 0.33	(0.612) 0.28	(0.666) 0.4	(0.239) 0.5	(0.107) 1	(0) 0	(0.747)

BLCA 337 0.39	(0.964) 0.6	(0.281) 0.76	(0.033) 0.6	(0.305) 0.51	(0.622) 0.38	(0.984) 0.67	(0.093) 0.53	(0.429) 0.5	(0.566) 0.5	(0.556) 0.67	(0.21) 0.67	(0.197)

BRCA 850 0.56	(0.807) 0.8	(0.062) 0.62	(0.538) 0.8	(0.111) 0.64	(0.252) 0.57	(0.869) 0.71	(0.335) 0.69	(0.256) 0.9	(0.007) 0.9	(0.018) 0.67	(0.314) 0.33	(0.964)

UCEC 428 0.44	(0.898) 0.53	(0.691) 0.57	(0.547) 0.6	(0.287) 0.44	(0.91) 0.52	(0.649) 0.52	(0.69) 0.69	(0.04) 0.7	(0.126) 0.7	(0.119) 0.67	(0.188) 0	(0.913)

UCS 48 0.36	(0.547) 0.13	(0.996) 0.19	(0.988) 0.4	(0.329) 0.35	(0.399) 0.48	(0.117) 0.48	(0.114) 0.31	(0.676) 0.5	(0.154) 0.2	(0.824) 0.67	(0.076) 0	(0.795)

OV 240 0.5	(0.103) 0.53	(0.268) 0.33	(0.871) 0.4	(0.458) 0.38	(0.57) 0.52	(0.222) 0.43	(0.402) 0.61	(0.004) 0.6	(0.075) 0.6	(0.079) 0.67	(0.077) 0.33	(0.829)

CESC 169 0.42	(0.475) 0.47	(0.423) 0.52	(0.373) 0.6	(0.137) 0.36	(0.819) 0.43	(0.525) 0.52	(0.376) 0.39	(0.65) 0.5	(0.327) 0.4	(0.614) 0.67	(0.132) 0.67	(0.112)

THCA 376 0.53	(0.65) 0.6	(0.395) 0.71	(0.173) 0.7	(0.156) 0.44	(0.95) 0.52	(0.806) 0.67	(0.153) 0.64	(0.143) 0.6	(0.382) 0.6	(0.382) 0.67	(0.229) 0.67	(0.265)

TGCT 122 0.33	(0.895) 0.53	(0.36) 0.57	(0.145) 0.5	(0.304) 0.4	(0.425) 0.38	(0.831) 0.48	(0.273) 0.28	(0.949) 0.3	(0.808) 0.4	(0.567) 0.67	(0.112) 0.33	(0.878)

PRAD 347 0.56	(0.553) 0.73	(0.267) 0.52	(0.864) 0.5	(0.728) 0.44	(0.959) 0.52	(0.852) 0.52	(0.865) 0.53	(0.739) 0.7	(0.208) 0.7	(0.232) 0.67	(0.26) 0.67	(0.281)

ACC 46 0.25	(0.879) 0.2	(0.884) 0.57	(0.049) 0.2	(0.806) 0.35	(0.478) 0.33	(0.698) 0.43	(0.216) 0.28	(0.795) 0.4	(0.336) 0.4	(0.332) 0.33	(0.759) 0.67	(0.063)

GBM 75 0.28	(0.866) 0.4	(0.435) 0.48	(0.136) 0.4	(0.364) 0.31	(0.697) 0.48	(0.148) 0.48	(0.153) 0.36	(0.632) 0.4	(0.465) 0.5	(0.176) 0.33	(0.855) 0.33	(0.838)

LGG 428 0.53	(0.852) 0.53	(0.896) 0.76	(0.186) 0.3	(0.986) 0.6	(0.46) 0.62	(0.488) 0.52	(0.897) 0.56	(0.76) 0.7	(0.29) 0.7	(0.277) 1	(0) 0.33	(0.947)

PCPG 82 0.31	(0.853) 0.2	(0.961) 0.33	(0.883) 0.3	(0.765) 0.29	(0.932) 0.29	(0.88) 0.33	(0.893) 0.47	(0.209) 0.4	(0.509) 0.3	(0.775) 0.67	(0.117) 0	(0.866)

HNSC 202 0.44	(0.481) 0.33	(0.884) 0.38	(0.779) 0.5	(0.275) 0.45	(0.271) 0.38	(0.809) 0.67	(0.013) 0.33	(0.896) 0.6	(0.106) 0.4	(0.537) 0.67	(0.104) 0.33	(0.85)

ESCA 124 0.31	(0.905) 0.4	(0.567) 0.52	(0.261) 0.5	(0.295) 0.31	(0.901) 0.38	(0.809) 0.62	(0.025) 0.39	(0.582) 0.4	(0.587) 0.4	(0.556) 0.67	(0.099) 1	(0)

UVM 12 0.28	(0.736) 0.13	(0.989) 0.24	(0.831) 0.1	(0.924) 0.18	(0.977) 0.1	(0.991) 0.29	(0.676) 0.17	(0.976) 0.5	(0.165) 0.5	(0.143) 0	(0.687) 0	(0.702)

SKCM 335 0.39	(0.919) 0.33	(0.98) 0.67	(0.063) 0.6	(0.254) 0.44	(0.82) 0.52	(0.629) 0.62	(0.142) 0.58	(0.206) 0.6	(0.244) 0.8	(0.027) 0.67	(0.187) 0	(0.926)

SARC 220 0.5	(0.212) 0.6	(0.152) 0.48	(0.432) 0.4	(0.677) 0.42	(0.508) 0.38	(0.903) 0.48	(0.467) 0.47	(0.486) 0.4	(0.683) 0.6	(0.199) 0.67	(0.155) 0	(0.906)

DLBC 33 0.39	(0.42) 0.27	(0.67) 0.43	(0.226) 0.1	(0.908) 0.33	(0.761) 0.1	(0.986) 0.52	(0.143) 0.42	(0.283) 0.4	(0.268) 0.2	(0.73) 0.67	(0.051) 0	(0.67)

THYM 87 0.42	(0.374) 0.4	(0.539) 0.29	(0.894) 0.2	(0.931) 0.31	(0.928) 0.33	(0.894) 0.43	(0.396) 0.33	(0.906) 0.5	(0.246) 0.5	(0.255) 0.67	(0.102) 0.33	(0.853)

[1]	Sample	size	after	matching	RPPA,	DNA	methylation,	mRNA	expression,	and	microRNA	expression	data.

Supplementary	Table	S2. 	Connectivity	scores	(permutation	p-value)	of	the	integrated	cancer-specific	networks.	The	scores	that	have	permutation	p-value<0.1	are	in	red	color.

RTK TSC/mTORn[1] Apoptosis Cell	cycle EMT PI3K/AKT RAS/MAPK



Supplementary	Table	S3.	Major	findings	for	pan-cancer	shared	connectivity	across	lineages

Pathway Directed	(->)	or	undirected	(-)	Edges	with	EC>20	(number	of	lineages)

Apoptosis BCL2-BCL2L11	(27),	BAD-BID	(23),	BAK2-BID	(22)

Cell	cycle CCNB1	->	CCNE1	(19) ,	CCNB1-FOXM1	(26),	CCNB1-PCNA	(26)

Core	reactive CDH1-CTNNB1	(28),	CDH1-CLDN7	(24)

DNA	damage	response RAD51-MRE11A	(30),	TP53BP1-XRCC5	(28),	MRE11A-CHEK2	(26),	XRCC5-ATM	(25)

EMT SERPINE1-FN1	(28) ,	CDH1-CTNNB1	(27),	CDH1-CLDN7	(25)

PI3K/AKT
AKT1/AKT2/AKT3	-	GSK3A/GSK3B	(29),	GSK3A/GSK3B	–TSC2(24)

,	AKT1S1	->	AKT1/AKT2/AKT3	(19)
RAS/MAPK MAPK8	->	JUN	(22) ,	MAPK2K1-RAF1(28)

RTK ERBB2	->	EGFR	(22)
TSC/MTOR MTOR-RPS6	(28),	EIF4EBP1-RPS6	(23)

Hormone	receptor AR-ESR1	(28),	 PGR->ESR1	(20)

New	findings Breast	reactive CAV1-MYH11(22),	CTNNB1-RBM15(22),	RAB11A/RAB11B-RBM15(21)

(PPI	score<=0.5)	 PI3K/AKT GSK3A/GSK3B-AKT1S1	(26),	GSK3A/GSK3B-CDKN1B(23)

TSC/MTOR EIF4EBP1-RB1	(24)

Hormone	signaling BCL2-GATA3	(22)

PPI	score	>0.5



Cancer
	code

KICH 0 0 0 0 0 0 0 0 0 0 0 0 3 0 31 0 24 0 5 0 0 0 0 63
KIRC 0 1 0 0 51 1 0 383 14 4 0 0 0 0 0 0 0 0 0 0 0 0 0 454
KIRP 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 24 130 0 0 215
LUAD 1 0 0 31 31 1 290 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 356
LUSC 0 0 0 9 19 269 0 0 0 0 10 0 0 0 0 0 0 0 0 2 0 0 0 309
CORE 0 0 0 452 6 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 463
PAAD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 115 0 0 0 0 0 115
STAD 0 0 0 0 0 0 0 0 0 0 0 0 1 0 9 28 1 1 0 0 0 0 0 40
CHOL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 29 0 0 0 0 0 0 0 30
LIHC 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 73 0 0 0 0 103 0 177
MESO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 57 0 0 0 2 0 0 0 61
BLCA 0 0 0 0 14 182 0 1 0 0 2 0 0 0 0 0 0 1 137 0 0 0 0 337
BRCA 359 423 68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 850
UCEC 0 0 0 0 0 0 0 0 0 424 3 1 0 0 0 0 0 0 0 0 0 0 0 428
UCS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 4 0 0 0 0 0 0 48
OV 0 0 0 0 0 4 0 0 0 8 0 6 0 222 0 0 0 0 0 0 0 0 0 240
CESC 0 0 0 0 0 3 0 0 0 0 1 0 0 0 114 3 1 2 44 0 0 0 1 169
THCA 2 0 0 3 106 3 0 256 3 2 0 0 0 0 0 0 0 0 1 0 0 0 0 376
TGCT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 118 2 1 0 1 0 0 0 0 122
PRAD 2 0 0 0 0 0 0 0 0 20 0 324 0 1 0 0 0 0 0 0 0 0 0 347
ACC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 20 1 0 0 0 0 0 1 46
GBM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68 0 2 0 5 0 0 0 0 75
LGG 1 0 0 0 2 6 1 0 145 2 269 0 2 0 0 0 0 0 0 0 0 0 0 428
PCPG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 78 0 0 0 4 0 0 0 82
HNSC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 187 0 0 3 0 4 0 202
ESCA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 116 124
UVM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 12
SKCM 0 0 0 1 11 24 0 1 0 3 4 0 291 0 0 0 0 0 0 0 0 0 335
SARC 0 0 0 0 0 7 1 0 3 0 2 1 0 1 0 0 0 0 0 205 0 0 0 220
DLBC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 33
THYM 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 83 0 0 0 0 0 0 0 87

Total 365 424 68 497 240 503 293 642 226 465 291 332 297 228 375 389 294 119 201 240 130 107 118 6844

Supplementary	Table	S4.	The 31 pathological disease types in rows, and their relationship to the 23 subtypes defined by clustering the 
activated and suppressed PRECISE network score matrix.

C20 C21 C22 C23C15 C16 C17 C18 C19C12C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 TotalC13 C14



Sample Breast Cell Core DNA Hormone Hormone

size reactive cycle reactive damage receptor signaling

response (Breast)

C1 365 BRCA 1 0.2356 0.3425 0.0137 1 0.0137 0.9425 1 0.2027 0.9918 0 0

C2 424 BRCA 0.9976 0.4976 0.5283 0.2972 1 0.2689 0.9811 1 0.0943 1 0 0

C3 68 BRCA 1 0.9706 0.7059 0.7353 1 0.5735 0.9853 1 0.3088 1 0 0

C4 497 CORE 0.996 0 0.4165 0.1811 0.8732 0.2314 0.4326 0.8974 0.002 0.1529 0.0563 0

C5 240 THCA,	KIRC 0.8792 0 0.95 0 0.9625 0.1042 0.7792 0.9958 0.0208 0.1292 0 0

C6 503 LUSC,	BLCA 0.2068 0 0.5487 0 0.2843 0 0.3837 0.66 0 0.0358 0 0

C7 293 LUAD 0.8498 0.0068 0.7338 0 0.5529 0.0068 0.1365 0.4334 0 0.1945 0 0

C8 642 KIRC,	THCA 0.6308 0 0.7212 0 0.8692 0.0031 0.9019 1 0.0187 0.0016 0 0

C9 226 KIRP,	LGG 0.7124 0 0.9558 0 1 0.0973 0.3717 0.9027 0.0973 0.1239 0 0

C10 465 UCEC 0.3312 0.0108 0.286 0 0.3183 0.1032 0.3978 0.9763 0.0667 0.0473 0 0

C11 291 LGG 0.2818 0 0.9759 0 0.9966 0.0653 0.1478 0.8041 0 0.0103 0 0

C12 332 PRAD 0.997 0.0181 0.3675 0 0.8795 0.1355 0.0181 0.747 0 0.0392 0 0

C13 297 SKCM 0.0404 0 0.4848 0 0.2559 0.0471 0.367 0.4108 0 0.1481 0 0

C14 228 OV 0.4123 0 0 0 0.0351 0 0.0614 0.6711 0 0.0175 0 0

C15 375 KICH,	CESC,	TGCT,	ACC,	GBM 0.0027 0 0.104 0 0.1307 0.008 0.08 0.0213 0 0 0 0

C16 389 CHOL,	MESO,	ACC,	PCPG,	THYM 0.0206 0 0.0051 0 0.018 0 0.0334 0.0694 0.0077 0.0026 0.0026 0

C17 294 KICH,	LIHC,	HNSC 0.0136 0 0.0204 0 0.7755 0.0204 0.2007 0.0102 0 0 0 0

C18 119 PAAD 0 0 0.1513 0 0.3782 0.0504 0.0588 0.0168 0.4286 0.0084 0 0

C19 201 BLCA,	CESC 0.0697 0 0.4627 0 0.7711 0.2338 0.3831 0.6468 0 0 0 0

C20 240 KIRP,	SARC 0.2583 0 0.0792 0 0.5833 0 0.0083 0.4167 0 0.0125 0 0

C21 130 KIRP 0.9692 0 0.4923 0 0.5846 0 0.2 0.3154 0.1077 0.1 0 0

C22 107 LIHC 0.785 0 0 0 0.972 0 0.8224 0.3832 0 0.0374 0 0

C23 118 ESCA 0 0 0.1102 0 0.0169 0.0085 0.3983 0.1949 0 0 0 0

Supplementary Table S5.    The proportion of the samples with the combined suppressed and activated PRECISE score > 2.521 (the third quantile) to the number of samples in a cluster. 
                                            The proportions greater than 0.5 are in red.

RTK TSC/mTORCluster Enriched	tumor	type Apoptosis EMT PI3K/AKT RAS/MAPK



Supplementary	Table	S6.	Proportions (%) of mutations for each gene to the total number of mutations across all clusters

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23
TP53 7.56 5.5 0.69 9.97 2.41 11.68 7.9 0.34 2.75 2.06 2.06 0 4.12 4.12 4.12 2.75 11 4.81 5.5 3.09 0 1.37 6.19
APC 0 0 0 82.46 1.32 3.51 0.44 0.44 0 4.82 0 0.88 1.75 0 0 0.88 0.44 0 0.88 1.32 0 0.88 0
TTN 1.04 2.08 0 11.98 2.08 12.5 4.69 4.17 3.12 11.98 1.04 1.04 19.27 2.6 3.12 1.56 4.17 2.6 5.73 2.08 0.52 0.52 2.08

ARID1A 2.05 2.74 1.37 6.85 0.68 19.86 4.79 2.05 2.05 26.71 3.42 0.68 1.37 0 2.74 3.42 4.11 2.74 8.22 0.68 0 0.68 2.74
MUC16 1.05 1.05 0 9.47 3.16 13.68 17.89 0 1.05 10.53 0 1.05 13.68 1.05 1.05 2.11 6.32 3.16 6.32 3.16 1.05 2.11 1.05
CSMD3 0 0 0 8.99 3.37 16.85 20.22 1.12 0 8.99 1.12 2.25 14.61 0 2.25 3.37 7.87 0 3.37 1.12 1.12 0 3.37
KMT2C 8.79 2.2 3.3 5.49 0 15.38 3.3 5.49 0 5.49 0 4.4 2.2 0 9.89 8.79 5.49 1.1 13.19 1.1 0 1.1 3.3
NF1 0 4.6 2.3 5.75 1.15 9.2 5.75 2.3 5.75 9.2 6.9 0 18.39 2.3 9.2 4.6 2.3 2.3 5.75 1.15 0 0 1.15

KMT2D 0 0 0 3.19 4.26 30.85 2.13 0 0 4.26 3.19 3.19 0 0 5.32 4.26 11.7 1.06 21.28 1.06 0 0 4.26
PTEN 3.66 2.44 0 6.1 3.66 6.1 1.22 2.44 0 47.56 1.22 0 6.1 0 4.88 3.66 2.44 0 6.1 0 0 1.22 1.22
FAT1 2.99 0 0 0 0 23.88 1.49 0 0 22.39 0 0 0 0 2.99 0 34.33 2.99 7.46 1.49 0 0 0
ATRX 0 0 0 1.43 2.86 2.86 5.71 0 18.57 10 35.71 0 1.43 0 4.29 1.43 0 1.43 1.43 11.43 0 1.43 0
RB1 6.15 4.62 0 3.08 1.54 30.77 7.69 0 0 7.69 0 0 6.15 1.54 4.62 1.54 1.54 0 16.92 4.62 0 0 1.54

SYNE1 0 4.84 0 9.68 3.23 20.97 6.45 1.61 1.61 11.29 0 1.61 11.29 1.61 6.45 1.61 6.45 0 8.06 1.61 0 0 1.61
PBRM1 0 0 0 4.48 1.49 2.99 0 59.7 2.99 7.46 0 0 7.46 1.49 0 5.97 1.49 0 2.99 0 1.49 0 0
DNAH5 0 3.33 0 8.33 0 10 5 0 0 13.33 0 0 31.67 1.67 1.67 3.33 8.33 0 3.33 6.67 0 0 3.33
RYR2 3.7 0 0 11.11 1.85 18.52 20.37 0 0 14.81 0 0 9.26 0 1.85 0 3.7 1.85 5.56 1.85 0 0 5.56

CDKN2A 0 0 0 0 0 8.47 0 1.69 0 0 1.69 1.69 18.64 0 0 0 45.76 13.56 1.69 1.69 1.69 3.39 0
FAT4 1.85 1.85 1.85 16.67 1.85 14.81 3.7 0 0 22.22 0 1.85 12.96 0 7.41 3.7 0 3.7 3.7 0 0 0 1.85
LRP1B 1.85 0 0 11.11 3.7 5.56 12.96 1.85 0 12.96 3.7 0 29.63 0 1.85 1.85 5.56 3.7 0 0 0 0 3.7



Supplementary Table S7.     P-values for PRECISE scores using log-rank test for survival times. P-values with FDR<0.1 are displayed in red.

Breast Cell Core DNA Hormone Hormone

reactive cycle reactive damage receptor signaling

response (Breast)

KICH 0.2314 0.8269 0.1425 0.0354 0.8774 0.0017 0.7846 0.3415 0.0129 0.6407 0.9783 0.4518

KIRC 0.052 0.2289 0.0108 2.00E-04 0.0249 0.0282 0.0036 0.0023 0 0.3242 0.0107 0.5959

KIRP 0.1521 0.0416 0.0616 0.5576 0.6528 0.0753 0.4411 0.1201 0.1476 0.0056 0.7284 0.7465

LUAD 0.6559 0.426 0.3732 0.7086 0.7247 0.6532 0.8184 0.7839 0.3257 0.7434 0.6985 0.617

LUSC 0.7155 0.014 0.0264 0.9094 0.0846 0.9278 0.67 0.3806 0.0072 0.0552 0.2367 0.2477

CORE 0.0683 0.9057 0.0137 0.3177 0.5142 0.8225 0.6712 0.9755 0.2737 0.2815 0.7514 0.6666

PAAD 0.3835 0.964 0.0623 0.8045 0.0927 0.1209 0.4123 0.4089 0.1807 0.1549 0.4118 0.886

STAD 0.8908 0.7339 0.5906 0.901 0.9256 0.3358 0.0546 0.2864 0.0014 0.7815 0.8814 0.8585

CHOL 0.9304 0.3312 0.9649 0.866 0.4955 0.9521 0.5874 0.7658 0.9231 0.3263 0.4257 0.2358

LIHC 0.2996 0.1273 0.3664 0.2174 0.5993 0.5857 0.2066 0.1163 0.103 0.2747 0.7015 0.0263

MESO 0.1886 0.0785 0 0.0331 0.3363 0.4698 0.6395 0.4056 0.2227 0.5781 0.9423 0.4059

BLCA 0.5588 0.4582 0.8317 0.9166 0.4377 0.5955 0.9656 0.315 0.8503 0.9127 0.0325 0.3071

BRCA 0.3723 0.0048 0.7901 0.003 0.6133 0.1962 0.0497 0.1395 0.685 0.3126 0.3248 0.3391

UCEC 0.1395 0.9202 0.9413 0.4095 0.5071 0.0462 0.5318 0.8339 0.9261 0.958 0.0045 0.3623

UCS 0.5575 0.1573 0.4309 0.5448 0.9625 0.9164 0.4289 0.7348 0.4544 0.6756 0.6732 0.3808

OV 0.2346 0.1303 0.5309 0.1228 0.8325 0.0289 0.2693 0.1218 0.1551 0.5947 0.468 0.6204

CESC 0.2867 0.9858 0.2263 0.1712 0.2005 0.4852 0.1254 0.7191 0.6462 0.8741 0.7699 0.795

THCA 0.5813 0.1983 0.3093 0.1001 0.6968 0.0182 0.7186 0.1636 0.749 0.0066 0.963 0.0717

TGCT 0.084 0.6198 0.8769 0.4875 0.9002 0.9102 0.4004 0.3698 0.8745 0.7056 0.6676 0.4013

PRAD 0.837 0.4996 0.521 0.3899 0.3556 0.2224 0.5224 0.5873 0.8712 0.8072 0.9418 0.6094

ACC 0.234 0.0393 0.0017 0.2335 0.2138 0.0062 0.2238 0.3823 0.7832 0.2685 0.3451 0.7815

GBM 0.3173 0.9952 0.4727 0.8009 0.4452 0.3696 0.2673 0.6373 0.9712 0.0364 0.0659 0.5608

LGG 0.08 0.72 0.1453 0.6379 0 0.0166 0.464 0.0226 0.0044 0.6219 6.00E-04 1.00E-04

PCPG 5.00E-04 0.4524 0.2856 0.0352 0.2569 0.869 0.5205 0.5994 0.5373 0.2339 0.6189 0.2681

HNSC 0.919 0.2822 0.9191 0.6057 0.0388 0.5106 0.3167 0.2119 0.7566 0.5758 0.459 0.1059

ESCA 0.4792 0.9405 0.8352 0.12 0.3824 0.4761 0.0811 0.2893 0.3769 0.4289 0.041 0.7565

UVM 0.5809 0.6186 0.5809 0.5649 0.6989 0.4617 0.6707 0.6705 0.3834 0.3337 0.2549 0.4573

SKCM 0.0035 0.572 0.5185 0.6016 0.0039 0.0681 0.984 0.9391 0.1428 0.2575 0.9936 0.1698

SARC 0.7528 0.7169 0.3616 0.7743 0.4877 0.956 0.3294 0.0407 0.2895 0.1719 0.5406 0.5826

DLBC 0.232 0.7333 0.4759 0.0278 0.271 0.2998 0.5372 0.442 0.5147 0.0459 0.0108 0.6573

THYM 0.1011 0.4579 0.096 0.9448 0.0538 0.4323 0.1613 0.6244 0.3424 0.9481 0.2526 0.0594

TSC/mTORCancer Apoptosis EMT PI3K/AKT RAS/MAPK RTK



Supplementary Table S8. Pathway Signatures

Disease Pathway p-value
FDR	adjusted

p-value

P-value	
from	random	
signatures

ACC Cell	cycle 1.68E-03 2.02E-02 0.089

ACC EMT 6.19E-03 3.71E-02 0.117

BLCA Hormone	receptor 3.25E-02 3.91E-01 0.016

BRCA Breast	reactive 4.80E-03 2.88E-02 0.125

BRCA Core	reactive 2.96E-03 2.88E-02 0.096

CORE Cell	cycle 1.37E-02 1.64E-01 0.039

DLBC Core	reactive 2.78E-02 1.67E-01 0.028

DLBC TSC/mTOR 4.59E-02 1.84E-01 0.031

DLBC Hormone	receptor 1.08E-02 1.30E-01 0

KICH EMT 1.70E-03 2.04E-02 0.006

KICH RTK 1.29E-02 7.77E-02 0.045

KIRC RTK 2.24E-07 2.69E-06 0.037

KIRC Apoptosis 5.20E-02 6.93E-02 0.48

KIRC Cell	cycle 1.08E-02 2.15E-02 0.4

KIRC Core	reactive 2.06E-04 1.24E-03 0.222

KIRC DNA	damage	response 2.49E-02 4.24E-02 0.476

KIRC EMT 2.82E-02 4.24E-02 0.471

KIRC PI3K/AKT 3.60E-03 1.08E-02 0.36

KIRC RAS/MAPK 2.34E-03 9.35E-03 0.356

KIRC Hormone	receptor 1.07E-02 2.15E-02 0.317

KIRP TSC/mTOR 5.60E-03 6.71E-02 0.039

LGG DNA	damage	response 1.72E-07 2.06E-06 0

LGG Hormone	signaling	(Breast) 6.13E-05 3.68E-04 0.019

LGG EMT 1.66E-02 3.98E-02 0.159

LGG RAS/MAPK 2.26E-02 4.51E-02 0.143

LGG RTK 4.39E-03 1.32E-02 0.131

LGG Hormone	receptor 5.63E-04 2.25E-03 0.058

LIHC Hormone	signaling	(Breast) 2.63E-02 3.16E-01 0.009

LUSC Breast	reactive 1.40E-02 8.39E-02 0.026

LUSC RTK 7.16E-03 8.39E-02 0.015

MESO Cell	cycle 3.52E-05 4.23E-04 0

PCPG Apoptosis 4.64E-04 5.57E-03 0

PCPG Core	reactive 3.52E-02 2.11E-01 0

SKCM Apoptosis 3.46E-03 2.33E-02 0.016

SKCM DNA	damage	response 3.88E-03 2.33E-02 0.006

STAD RTK 1.35E-03 1.63E-02 0.003

TGCT Apoptosis 8.40E-02 9.10E-01 0.024

THCA TSC/mTOR 6.62E-03 7.95E-02 0.011

UCEC Hormone	receptor 4.47E-03 5.37E-02 0.015



Node	A Node	B Type A-B A->B B->A
RPS6KB1 EIF4EBP1 Bi-directed	(A-B) 100 0 0
RPS6 EIF4EBP1 Bi-directed	(A-B) 100 0 0
RB1 EIF4EBP1 Bi-directed	(A-B) 100 0 0
MTOR RPS6KB1 Bi-directed	(A-B) 100 0 0
RPS6 RPS6KB1 Bi-directed	(A-B) 100 0 0
RB1 RPS6KB1 Bi-directed	(A-B) 48 23 0
RPS6 MTOR Bi-directed	(A-B) 100 0 0
RPS6 RB1 Directed	(A->B) 0 88 0

Supplementary Table S9. The estimated TSC/mTOR network for LUAD 
patients using PRECISE algorithm. The first two columns represent source 
and target node names with the types of edges in the third column. The last 
three columns display proportions of the edges that appears in the 
PRECISE networks obtained from 100 subsampled dataset (80% of the 
samples). 




