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Image Representations
Color Histogram The color histogram is a simple global image representation and is invariant under image rotation and
translation. A color histogram for an image is generated by concatenating N higher order bits for features in the chosen color
space. We used the Hue, Saturation and Value (HSV) space1 since it separates color from intensity information and makes an
image representation based on HSV relatively robust to changes in appearance due to differences in lighting conditions. The
histogram is generated by counting the number of pixels with the same color and accumulating it in 23N bins. Quantizing the
hue component more precisely than the value and saturation components makes the HSV histogram more sensitive to color
differences and less sensitive to brightness and depth differences. We used a 30×10×3 hue value saturation quantization of
the HSV space to generate 900-dimensional color histogram image vectors.

Color Correlogram The color histogram has the drawback of being a purely global description of the color content in an
image. It does not include any spatial information. Purely local properties when used can be extremely sensitive to appearance
changes due to slight changes in angle, zoom, etc. Purely global properties like those used in the color histograms can give
false positives in an image retrieval task as it tends to classify images from widely separated scenes as belonging to the same
scene if they have similar color content. A color correlogram describes global distributions of local spatial color correlations.
We followed the procedure in2 to compute the color correlogram as follows. The color correlogram γci,c j

(k) of an image I, is a
three dimensional table whose entry (ci,c j,k) is the probability of finding a pixel of color c j at a distance k ∈ {1,2,3, ...,d}
from a pixel of color ci in the image. For pixels p1 = (x1,y1) and p2 = (x2,y2), we use the L∞ norm to measure the distance
between them, such that |p1− p2|= max(|x1− x2|, |y1− y2|). Relative to the histogram, the correlogram is robust to changes
in appearance caused by occlusions, zoom, and viewing angles3. The size of the correlogram is O(m2d) where m is the total
number of colors and i, j ∈ {1,2,3, ...,m}. This imposes substantial storage requirements for large values of d. So we chose
to work with a compressed version of the color correlogram where we sum the conditional probabilities of color pairs over a
restricted set of distances. For constructing the color correlograms, the HSV color space is quantized into 12×3×3 bins. We
let k ∈ {1,3,5,7} and use a restricted version of the color correlogram as in Equation 1.

γ̄ci,c j(I) = ∑
k∈{1,3,5,7}

γ
k
ci,c j

(I) (1)

This procedure resulted in 11664-dimensional feature vectors. A singular value decomposition (SVD) is carried on the
120×11664 image by feature matrix. As in our previous work2, 4, 5, the decomposed image vectors are scaled by the singular
values (utilizing all available 120 singular values) to generate 120-dimensional image vectors.

Histogram of Oriented Gradients (HOG) The histogram of oriented gradients (HOG) is used widely in object detection
applications6. We used the UOCTTI variant7 as implemented in VLFeat version 0.9.20 (www.vlfeat.org8). HOG computes
a histogram of oriented gradients over square cells, typically 8 pixels per side. We also used the typical value of orientation bin
size of 9. Since images were 640×480 pixels, there were 80×60 HOG cells. Dalal et al.6 originally proposed normalization
and truncation of HOG features via 4 normalization factors to obtain 36 HOG features. Felzenszwalb et al.7 proposed alternative
steps (using fewer features to speed up learning and detection) involving a principle components analysis of a collection of
HOG features to derive 13 contrast-insensitive HOG features. However, their analyses also indicated that detection performance
for some object classes improved when using some additional contrast-sensitive features. The end result is a 31-dimensional
feature vector (see Felzenszwalb et al.7 for further details). Thus, we obtain 80×60×31 = 148800-dimensional HOG vectors.
A singular value decomposition (SVD) is carried on the 120×148800 image by feature matrix to generate 120-dimensional
image vectors.

GIST Oliva and Torralba9 proposed a model of real-world scene recognition, based on a low dimensional scene representation
that they called “Spatial Envelope”. Unlike HOG, this model was not designed to detect individual objects, rather it was aimed
at representing dominant spatial characteristics of a scene using a set of perceptual dimensions that were estimated using
spectral and coarsely localized information. This model successfully models a holistic representation of the scene and generates
a multidimensional space in which semantic categories of scenes (e.g. highways) cluster together. MATLAB code provided by
the original authors was used to construct GIST representations for our analyses (http://people.csail.mit.edu/
torralba/code/spatialenvelope/).

Speeded-up Robust Features (SURF) Speeded-up Robust Features (SURF), as the name suggests, is a fast algorithm partly
inspired by the Scale Invariant Feature Transform (SIFT), that detects interest points in a view-invariant manner. We first used
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the bagofFeature() function in the MATLAB computer vision system toolbox to extract SURF features for all 120 images for a
given participant. As an example, 1843200 features were extracted from the image set for one participant. K-means clustering
is performed to create a 500-word visual vocabulary. Each image is then represented as a histogram over these 500 clusters
using the MATLAB computer vision system toolbox encode() function.

ROI Analysis Results

Table S1. Results from the ROI analysis. The ROIs that show a relationship between neural distances and Hamming
distances between sets of tags (uncorrected p < 0.05) are listed in this table. The first column in the table specifies the model:
“h” is the model in Equation 5 with just the Hamm term (in addition to the terms that control for visual similarity and time
elapsed in the scanner), “hst” is the same model enhanced with space, time, and space∗ time terms, “hv” is the model in
Equation 6 with Hamm, Vivid, and Hamm∗Vivid terms, and “hvst” is the same model but with additional space, time, and
space∗ time terms. The second column specifies the ROI (of the 10 we considered: anterior, middle, and posterior
hippocampus, parahippocampal cortex, and posterior V1 (primary visual cortex) in both hemispheres, the third column
specifies the term in the model that the result corresponds to, the fourth column provides the estimated coefficient for the
corresponding term in the third column, the fifth column is the t-value for that coefficient (test across participants against 0), the
sixth column is a p-value based on a permutation test, and the last column is the Bonferroni corrected p-value (correcting for
140 multiple comparisons across all ROIs and model terms) which has a ceiling of 1.000)

Model ROI Term Coef t-stat p
(perm)

p
(Bonf.)

h R. Parahippocampal Gyrus Hamm 0.010 2.382 0.034 1.000
h R. Middle Hippocampus Hamm 0.012 5.083 0.002 0.280
h R. Posterior Hippocampus Hamm 0.009 2.589 0.035 1.000
h L. Parahippocampal Gyrus Hamm 0.009 2.228 0.049 1.000
h L. Middle Hippocampus Hamm 0.015 2.904 0.019 1.000
hst R. Parahippocampal Gyrus Hamm 0.010 2.310 0.036 1.000
hst R. Middle Hippocampus Hamm 0.010 4.102 0.002 0.280
hst R. Posterior Hippocampus Hamm 0.009 2.554 0.041 1.000
hst L. Parahippocampal Gyrus Hamm 0.009 2.231 0.050 1.000
hst L. Middle Hippocampus Hamm 0.0149 2.966 0.012 1.000
hst L. Anterior Hippocampus space 0.420 3.257 0.015 1.000
hst L. Anterior Hippocampus space∗ time -0.064 -2.776 0.024 1.000
hst L. Anterior Hippocampus time 0.187 2.732 0.021 1.000
hv R. Posterior Hippocampus Viv 0.113 2.912 0.020 1.000
hv R. Posterior V1 Hamm 0.022 2.650 0.029 1.000
hv R. Posterior V1 Hamm∗Viv -0.018 -2.861 0.025 1.000
hv L. Middle Hippocampus Hamm 0.020 3.660 0.003 0.420
hvst R. Posterior Hippocampus Viv 0.116 3.000 0.019 1.000
hvst R. Posterior V1 Hamm 0.023 2.642 0.034 1.000
hvst R. Posterior V1 Hamm∗Viv -0.018 -3.030 0.019 1.000
hvst L. Middle Hippocampus Hamm 0.021 3.811 0.002 0.280
hvst L. Anterior Hippocampus space 0.393 3.171 0.012 1.000
hvst L. Anterior Hippocampus space∗ time -0.059 -2.636 0.029 1.000
hvst L. Anterior Hippocampus time 0.173 2.621 0.024 1.000
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Table S2. The ROIs that show a greater relationship between neural distances and Hamming distances between sets of tags
(uncorrected p < 0.05) during vivid compared to non-vivid reminscence are listed in this table. The models are given by
Equation 6 (“hv”) as well as the same model with space, time, and space*time terms (“hvst”). The results shown here
correspond to the conjunction between the Hamm and Hamm∗Vivid terms. The t-values for Hamm and Hamm∗Vivid, and
the permutation-based p-value for min(tHamm,−tHamm∗Viv) are displayed (only regions with uncorrected p < 0.05 are shown).

Model ROI t-stat
(Hamm)

t-stat
(Hamm*Viv)

p (perm)

hv R. Posterior V1 2.647 -2.861 0.045
hvst R. Posterior V1 2.642 -3.030 0.045
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