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Calculating the scaling constant of the modi-

fied power prior

In this appendix we describe the algorithm that was used to obtain the
posterior results of the modified power prior (MPP). This algorithm is based
on the principle of path sampling [1].

Friel and Pettitt [2] describe algorithms for calculating the marginal like-
lihood of a model using power posteriors. The goal of their method is to
calculate the marginal likelihood (i.e.

∫

θ
L(θ|H)αp(θ) dθ, with α = 1). In

their algorithm, they introduce the weight α as an auxiliary variable, only
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for computational purposes. It is straightforward to adapt their algorithm
to also calculate C(α) =

∫

θ
L(θ|H)αp(θ) dθ for all other values of α.

The main idea behind the algorithm of Friel and Pettitt is that the log-
arithm of C(α) is equal to an integral of the log-likelihood, where the inte-
gration is done with respect to α. Friel and Pettitt (p. 594) showed that
d
dα

log(C(α)) = Ep(θ|α,H) (log(L(θ|H))), i.e. the expected log-likelihood of the
historical data as a function of parameters that are sampled from the power
prior L(θ|H)αp(θ). This result yields that

log (C(α)) =

∫ α

α∗=0

Ep(θ|α∗,H) (log(L(θ|H))) dα∗. (1)

Our path sampling algorithm for calculating C(α) based on (1) consists
of the following steps:

1. Choose ∆α, the increase in α per iteration and niter, the number of
MCMC samples per iteration. Initialise α = 0, and initialise the model
parameters using a draw from the prior p(θ).

2. Repeat the following until α ≥ 1:

(a) Increase the value of α by ∆α.

(b) Sample niter MCMC iterations from the power prior distribution
with weight α.

(c) Calculate the average log-likelihood of the historical data using all
the parameter sets sampled for the current value of α

3. Calculate the cumulative sum of the average log-likelihood values that
were calculated in the last step, as a function of α.

4. C(α) is now proportional to the exponential of the cumulative sum
calculated in the previous step.

This algorithm efficiently calculates C(α) for a number of values of α
between 0 and 1. A prerequisite for this algorithm is that it is possible to
sample from the power prior L(θ|H)αp(θ), e.g. using MCMC sampling. In
the MCMC sampling of Step 2b, the last MCMC sample of the previous
value of α is used for the initial values of the parameters. If the step size of α
is sufficiently small, the power prior distribution L(θ|H)αp(θ) should remain
approximately stable between successive values of α and a short burn-in
phase may suffice for the MCMC sampler in Step 2B.
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We implemented this path sampling method using a step size for α equal
to ∆α = 0.01 and niter = 5000 MCMC samples per iteration. After run-
ning the algorithm for C(α), the posterior results of the power prior can be
computed by sampling from

p(α, θ|D,H) ∝
1

C(α)
L(θ|D)L(θ|H)αp(θ)p(α), (2)

using a Metropolis-Hastings algorithm and looking up the value of C(α) for
every candidate value of α using the results of the first algorithm. This
Metropolis-Hastings sampler requires that the value of C(α) is available for
every α in [0,1], though the path sampling algorithm described above only
calculates C(α) for a number of fixed values of α. However, inspection of the
values of log(C(α)) showed that this function can be accurately approximated
by a linear function. To calculate C(α) for values of α in between the points
used in the path sampling method, we use linear interpolation of log(C(α)).

Model specification for the baseline hazard

To model the baseline hazard, we used the piecewise exponential specifica-
tion given by Murray et al. [3]. The follow-up time was divided into K
intervals and a constant baseline hazard was assumed within each interval.
The likelihood of the data was given by

L(θ|D,H) =

n
∏

i=1

K
∏

k=1

[exp (dikµik + (min(κk, yi)−min(κk−1, yi)) e
µik)] , (3)

where yi is the follow-up time (until death or censoring) for patient i, κk is
the end of the interval k, dik = 1 if patient died in interval k and 0 otherwise,
and µik is the hazard rate for person i in interval k. Following Murray et
al., we used K = max

(

5,min( r
8
, 20)

)

intervals, where r denotes the total
number of deaths in the observed data (including both current and historical
data), and the cut-offs between intervals were chosen using the empirical
distribution of the observed event times. Cut-off κk, k = 1, . . . , K − 1 was
chosen as the 100× k

K
th percentile of the observed follow-up times for patients

who have died, with κ0 chosen as 0 and κK as the maximum follow-up time.
A correlated prior process was used for the baseline hazard, with p(α) =
p(α|η)p(η), where α describes the logarithm of the baseline hazard and η
describes the smoothness of the baseline hazard. The prior p(α|η) is given
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by

α1 ∼ N(0, 104)

αk|η, αk−1 ∼ N(αk−1, η
2), k = 2, . . . , K (4)

and p(η) is uniform on [0.01,100].

Additional tables and figures

The tables and figures below present additional results of the analysis of the
HOVON data and the simulation study. Further explanation of these tables
and figures is given in the main text of the article. The estimated sample
size reduction in Table S4 is calculated as

1−
(Φ(0.025) + Φ(1 − Pc))

2

(Φ(0.025) + Φ(1 − Ps))2
, (5)

where Ps denotes the estimated power of the specific method, Pc denotes
the estimated power of the “Current data” analysis, and Φ() is the quan-
tile function of the standard normal distribution. This formula is based on
standard formulas for sample size calculations, which depend on the power
and the significance level via the term (Φ(α/2) + Φ(1− β))2, where α is the
significance level and β the probability of a type II error. The estimated
sample size reduction in Equation 5 is obtained by comparing the results of
this term between the borrowing method and the “Current data” analysis,
under the assumption that the type error rate is controlled at a 5% level.
Note that these sample size reductions are only valid if the type I error rate
is adequately controlled.
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Figure S1: HOVON data: sensitivity of the posterior distribution (solid lines) of
ση in the MAP approach to the prior distribution (dashed lines). The green line
gives the posterior of ση using only the data of HOVON 29 and 42, which is the
informative prior for the analysis of HOVON 42A.
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Figure S2: HOVON data: sensitivity of the posterior distribution (solid lines) of
α in the MPP to the prior distribution (dashed lines)
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Figure S3: Simulation study: Kaplan-Meier curves of a simulated data set in
Scenario 1, including the population survival curves corresponding with the 2.5th
and 97.5th percentile of the trial-specific effect
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Figure S4: Simulation study: Kaplan-Meier curves of a simulated data set in
Scenario 2, including the population survival curves corresponding with the 2.5th
and 97.5th percentile of the trial-specific effect
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Figure S5: Simulation study: Kaplan-Meier curves of a simulated data set in
Scenario 3, including the population survival curves corresponding with the 2.5th
and 97.5th percentile of the trial-specific effect
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Figure S6: Simulation study: Kaplan-Meier curves of a simulated data set in
Scenario 4, including the population survival curves corresponding with the 2.5th
and 97.5th percentile of the trial-specific effect
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Figure S7: Simulation study: Kaplan-Meier curves of a simulated data set in
Scenario 5, including the population survival curves corresponding with the 2.5th
and 97.5th percentile of the trial-specific effect
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Figure S8: Simulation study: Kaplan-Meier curves of a simulated data set in
Scenario 6, including the population survival curves corresponding with the 2.5th
and 97.5th percentile of the trial-specific effect
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Table S1: Average bias (95% confidence interval) of estimated treatment effect in simulation study, based on 500 simulated
data sets

Scenario 1 2 3 4 5 6
Time trend No Yes Yes No No No
Heterogeneity Small Small Small None Moderate Large
Current data -0.018 (-0.031 - -0.005) -0.018 (-0.031 - -0.005) -0.018 (-0.031 - -0.006) -0.019 (-0.032 - -0.005) -0.017 (-0.030 - -0.004) -0.018 (-0.031 - -0.005)
Pooled data -0.018 (-0.030 - -0.005) -0.095 (-0.108 - -0.083) -0.016 (-0.029 - -0.003) -0.020 (-0.031 - -0.009) -0.018 (-0.036 - 0.000) -0.018 (-0.049 - 0.014)
Pocock’s method -0.018 (-0.030 - -0.006) -0.082 (-0.094 - -0.070) -0.017 (-0.030 - -0.004) -0.020 (-0.031 - -0.008) -0.020 (-0.036 - -0.005) -0.028 (-0.055 - -0.002)
Power prior with α = 0.5 -0.017 (-0.029 - -0.006) -0.080 (-0.092 - -0.068) -0.017 (-0.029 - -0.004) -0.019 (-0.030 - -0.008) -0.018 (-0.033 - -0.002) -0.019 (-0.045 - 0.008)
MPP -0.016 (-0.028 - -0.004) -0.069 (-0.081 - -0.058) -0.015 (-0.028 - -0.003) -0.018 (-0.030 - -0.007) -0.015 (-0.029 - -0.001) -0.017 (-0.033 - -0.001)
MAP approach -0.018 (-0.030 - -0.006) -0.043 (-0.055 - -0.031) -0.017 (-0.030 - -0.005) -0.020 (-0.032 - -0.008) -0.018 (-0.030 - -0.005) -0.020 (-0.033 - -0.007)
Robust MAP approach -0.018 (-0.030 - -0.006) -0.036 (-0.049 - -0.024) -0.017 (-0.029 - -0.004) -0.019 (-0.032 - -0.007) -0.018 (-0.030 - -0.005) -0.020 (-0.033 - -0.007)
Method of Murray et al. -0.017 (-0.030 - -0.005) -0.084 (-0.097 - -0.072) -0.016 (-0.030 - -0.003) -0.020 (-0.031 - -0.009) -0.016 (-0.032 - -0.000) -0.017 (-0.035 - 0.001)
Test-then-pool method 0.014 (0.002 - 0.026) -0.008 (-0.021 - 0.004) -0.009 (-0.022 - 0.004) -0.001 (-0.013 - 0.010) 0.013 (-0.000 - 0.026) -0.011 (-0.024 - 0.002)
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Table S2: Average posterior standard deviation (95% confidence interval) of estimated treatment effect in simulation study,
based on 500 simulated data sets

Scenario 1 2 3 4 5 6
Time trend No Yes Yes No No No
Heterogeneity Small Small Small None Moderate Large
Current data 0.158 (0.157 - 0.158) 0.158 (0.157 - 0.159) 0.158 (0.157 - 0.159) 0.158 (0.158 - 0.159) 0.158 (0.157 - 0.159) 0.160 (0.158 - 0.162)
Pooled data 0.129 (0.129 - 0.130) 0.129 (0.128 - 0.129) 0.147 (0.146 - 0.147) 0.129 (0.129 - 0.130) 0.129 (0.129 - 0.130) 0.131 (0.129 - 0.132)
Pocock’s method 0.135 (0.134 - 0.135) 0.134 (0.134 - 0.135) 0.151 (0.151 - 0.152) 0.135 (0.135 - 0.135) 0.135 (0.134 - 0.136) 0.137 (0.135 - 0.138)
Power prior with α = 0.5 0.135 (0.135 - 0.136) 0.135 (0.134 - 0.135) 0.151 (0.150 - 0.151) 0.135 (0.135 - 0.136) 0.135 (0.135 - 0.136) 0.137 (0.135 - 0.138)
MPP 0.137 (0.137 - 0.138) 0.139 (0.138 - 0.140) 0.152 (0.151 - 0.152) 0.136 (0.136 - 0.137) 0.143 (0.142 - 0.144) 0.153 (0.151 - 0.155)
MAP approach 0.148 (0.148 - 0.149) 0.149 (0.149 - 0.150) 0.155 (0.154 - 0.155) 0.145 (0.144 - 0.145) 0.153 (0.152 - 0.154) 0.158 (0.157 - 0.160)
Robust MAP approach 0.151 (0.150 - 0.152) 0.151 (0.151 - 0.152) 0.157 (0.156 - 0.157) 0.149 (0.149 - 0.150) 0.154 (0.153 - 0.155) 0.158 (0.157 - 0.160)
Method of Murray et al. 0.133 (0.132 - 0.134) 0.133 (0.132 - 0.134) 0.148 (0.147 - 0.149) 0.132 (0.132 - 0.133) 0.139 (0.137 - 0.141) 0.150 (0.147 - 0.153)
Test-then-pool method 0.143 (0.141 - 0.144) 0.150 (0.149 - 0.152) 0.155 (0.154 - 0.156) 0.137 (0.136 - 0.138) 0.151 (0.149 - 0.152) 0.159 (0.157 - 0.161)
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Table S3: Average root mean square deviation (95% confidence interval) of estimated treatment effect in simulation study,
based on 500 simulated data sets

Scenario 1 2 3 4 5 6
Time trend No Yes Yes No No No
Heterogeneity Small Small Small None Moderate Large
Current data 0.208 (0.203 - 0.213) 0.208 (0.203 - 0.214) 0.208 (0.203 - 0.213) 0.211 (0.205 - 0.217) 0.209 (0.204 - 0.214) 0.211 (0.205 - 0.217)
Pooled data 0.183 (0.178 - 0.189) 0.199 (0.191 - 0.206) 0.202 (0.197 - 0.207) 0.173 (0.168 - 0.177) 0.221 (0.212 - 0.230) 0.333 (0.316 - 0.350)
Pocock’s method 0.183 (0.178 - 0.189) 0.194 (0.188 - 0.201) 0.201 (0.196 - 0.206) 0.178 (0.173 - 0.183) 0.210 (0.202 - 0.217) 0.295 (0.281 - 0.309)
Power prior with α = 0.5 0.183 (0.178 - 0.189) 0.194 (0.187 - 0.200) 0.201 (0.196 - 0.206) 0.178 (0.174 - 0.183) 0.209 (0.201 - 0.216) 0.291 (0.278 - 0.305)
MPP 0.185 (0.179 - 0.190) 0.194 (0.187 - 0.200) 0.201 (0.196 - 0.206) 0.179 (0.174 - 0.184) 0.202 (0.196 - 0.208) 0.224 (0.217 - 0.231)
MAP approach 0.193 (0.188 - 0.198) 0.198 (0.193 - 0.203) 0.203 (0.198 - 0.208) 0.190 (0.185 - 0.194) 0.202 (0.197 - 0.207) 0.209 (0.203 - 0.215)
Robust MAP approach 0.196 (0.192 - 0.201) 0.199 (0.194 - 0.204) 0.206 (0.201 - 0.211) 0.196 (0.191 - 0.201) 0.202 (0.197 - 0.208) 0.209 (0.203 - 0.215)
Method of Murray et al. 0.185 (0.179 - 0.190) 0.197 (0.190 - 0.204) 0.202 (0.197 - 0.207) 0.175 (0.170 - 0.180) 0.213 (0.205 - 0.220) 0.236 (0.228 - 0.244)
Test-then-pool method 0.190 (0.185 - 0.196) 0.197 (0.191 - 0.203) 0.205 (0.199 - 0.210) 0.179 (0.174 - 0.184) 0.206 (0.200 - 0.211) 0.212 (0.206 - 0.217)
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Table S4: Estimated percentage reduction in required sample size for future study, based on increase in power in simulation
study compared with “Current data” analysis

Scenario 1 2 3 4 5 6
Time trend No Yes Yes No No No
Heterogeneity Small Small Small None Moderate Large
Pooled data 31.3 52.4 8.5 41.7 14.2 -4.7
Pocock’s method 31.3 48.7 4.1 37.7 17.4 -2.3
Power prior with α = 0.5 30.1 47.8 3.6 36.3 15.8 -5.7
MPP 27.1 43.6 1.8 35.2 14.2 -0.5
MAP approach 14.3 21.6 4.5 25.4 10.1 2.7
Robust MAP approach 11.9 17.2 -0.9 16.2 7.1 2.7
Method of Murray et al. 28.2 47.4 7.2 38.5 13.0 0.5
Test-then-pool method 5.9 7.6 -1.9 27.2 -9.7 -2.3
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Table S5: Average power and type I error rate of the 95% credible interval of the treatment effect in data sets with 1 historical
trial, based on 500 simulated data sets

Scenario 1 2 3 4 5 6
Time trend No Yes Yes No No No
Heterogeneity Small Small Small None Moderate Large
Power

Current data 0.644 0.650 0.650 0.628 0.634 0.628
Pooled data 0.762 0.788 0.642 0.770 0.708 0.644
Pocock’s method 0.720 0.774 0.642 0.730 0.688 0.642
Power prior with α = 0.5 0.716 0.758 0.642 0.720 0.692 0.636
MPP 0.714 0.744 0.640 0.726 0.682 0.634
MAP approach 0.668 0.684 0.644 0.670 0.642 0.640
Robust MAP approach 0.654 0.652 0.642 0.640 0.632 0.636
Method of Murray et al. 0.752 0.766 0.644 0.752 0.688 0.650
Test-then-pool method 0.672 0.674 0.646 0.698 0.622 0.602
Type I error rate

Current data 0.050 0.052 0.050 0.050 0.058 0.052
Pooled data 0.088 0.082 0.052 0.052 0.198 0.440
Pocock’s method 0.064 0.062 0.052 0.044 0.112 0.274
Power prior with α = 0.5 0.064 0.064 0.052 0.046 0.104 0.262
MPP 0.062 0.058 0.052 0.046 0.086 0.080
MAP approach 0.054 0.054 0.052 0.044 0.056 0.050
Robust MAP approach 0.050 0.050 0.054 0.050 0.052 0.052
Method of Murray et al. 0.080 0.076 0.052 0.056 0.110 0.108
Test-then-pool method 0.058 0.054 0.052 0.046 0.072 0.048

Note: the width of each side of the 95% binomial proportion confidence interval (not shown in the table) is approximately 2% to 3% for
the type I error rate and 4% for the power.
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