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1. Growth of single-crystal black phosphorus. 

We have prepared single crystals of black phosphorus (BP) with a Walker-type 
multianvil module (Rockland Research Co.) (1). The starting material of red phosphorus 
powder was pressed into a conical Lava crucible, which was asymmetrically placed into a 
graphite heater in order to achieve a temperature gradient during the crystal growth. The 
sample was heated up to 1473 K at 2 GPa for 2 hours and then slowly cooled down to 
773 K at a rate of 100 K/hour before quenching to the room temperature.  

2. Magneto-transport measurements with the palm cubic-anvil high pressure 
apparatus. 

Magneto-transport properties on the BP single crystal under hydrostatic pressures up to 
15 GPa were measured by using a “Palm” cubic anvil apparatus in the Institute of Physics, 
Chinese Academy of Sciences (2). A standard four-probe configuration was used for all 

the resistivity measurements. The BP single crystal was suspended by four 20 m 
golden wires in a Teflon capsule, which is filled with the glycerol pressure transmitting 
medium (PTM) and located in the center of a MgO cubic gasket. Hydrostatic pressure is 
generated by compressing the cubic gasket with six tungsten-carbide (WC) anvils from 

three orthogonal directions. We employed the WC anvils of 44 mm2 top to generate 

pressures up to 8 GPa, and 2.52.5 mm2 top to 15 GPa. Such a three-axis compression 
together with the adoption of liquid PTM ensures excellent pressure homogeneity. During 
the magneto-transport measurements, the minimum pressure for the palm cubic-anvil 
apparatus is about 1 GPa since a sufficient loading force is needed to seal the cell. The 
electrical current was flowing within the a-c plane of the A17 phase (the puckered 
honeycomb layer), and the magnetic field was fixed along the orthorhombic b axis 
(perpendicular to the puckered honeycomb layer). We have measured the field 

dependence of resistivity +(H) from 0 to 8.5 T and -(H) from 0 to -8.5 T, and then 

obtained the longitudinal magneto-resistivity xx(H) = [xx
+(H) + xx

-(H)]/2 and Hall 

resistivity xy = [xy
+(H) - xy

-(H)]/2 in order to remove the mutual influences.   

3. Thermoelectric measurements performed in zero field under high  pressure with a 
piston-cylinder device. 

The temperature dependence of resistivity S(T) under H = 0 T at various pressures is 
shown in Fig. S1. S(T)  in a semiconductor could exhibit a maximum (Smax) at Tmax which 
is proportional to the energy gap (Eg) via the relationship (3): Smax~ Eg/2eTmax, . This 
behavior has been observed in BP at P < 1.0 GPa. We can estimate the energy gap Eg = 
0.14(2) eV under ambient pressure, which is close to the previous results (4). With 
increasing pressure up to 1.2 GPa, Tmax moves to a lower temperature, implying a 
reduction of the band gap under pressure. The band gap can be also derived from the 
resistivity. Correspondingly, the gap reduces under high pressure in the same way as that 



from the thermoelectric power measurement under pressure.  

The activated temperature dependence of S(T) at T > Tmax for P < 1.0 GPa is consistent 
with the semiconductor behavior in the resistivity at low temperatures under 
corresponding pressures. On crossing the critical pressure Pc ~ 1.0 GPa, S(T) near room 
temperature changes dramatically from dS/dT < 0 to dS/dT > 0 on top of a continuous 
reduction of the magnitude under pressure. A dS/dT> 0 at P ≥ 1.0 GPa is compatible to 
the Mott diffuse formula for a metal. Generally speaking, the thermoelectric power 
reflects the imbalance of the energy dependence of conductivity crossing the Fermi level; 
therefore it may reveal any subtle change of the Fermi surface. The Lifshitz transition has 
been believed to be applicable in the pressure-induced semiconductor-semimetal 
transition. Specifically, tips of two Dirac cones are touching at the transition. The Dirac 
Fermions are massless and should have a vanishing thermoelectric power. The S(P) of BP 
is reduced on crossing the Lifshitz transition, but is far from vanishing. These 
observations indicate that although the Lifshitz transition is manifested in the 
thermoelectric power, carriers near the Fermi energy are not Dirac-like, at least within an 
energy range of kT.  

 

Fig. S1 (Color online) Thermoelectric power as a function of temperature under H = 0 T below 2 
GPa. 
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3. Single-crystal X-ray structural study under high pressure 

Single-crystal X-ray diffraction (SXRD) under pressure was performed on a BP crystal 
with a diamond anvil cell (DAC) mounted on a Bruker P4 diffractometer with Mo K-
alpha radiation (λ = 0.71069 Å) at room temperature. The culet size of diamond anvil is 
0.5 mm. The sample was loaded in a 0.25 mm hole drilled in a preindented stainless steel 
gasket. The pressure can be determined according to the peak position of the gasket 
which has been calibrated against the gold pressure manometer. As shown in Fig. S2, the 
diffraction was collected with an image plate placed at 152 mm behind the sample and 

integrated into intensity versus 2with a software Fit2d. The setup provides an X-ray 
access along the b axis and perpendicular to the ac plane of the A17 phase. 

 

Fig. S2 (Color online) A schematic drawing of single-crystal X-ray diffraction and a single 
diffraction spot collected by an  image plate as the detector. 



 

Fig. S3 (Color online) (a) Single-crystal X-ray diffraction patterns under high pressure; (b) 
Powder X-ray diffraction patterns measured with a DAC, in which the sample was loaded in a 
0.25 mm hole drilled in a preindented stainless steel gasket, and CaF2 was used as the pressure 
manometer. 

We found a single spot was collected by the detector at the 2θ angle of ~25° (d ~ 1.65 Å), 
determined as the (151) plane in the A17 phase and (110) plane in the A7 phase. Fig. S3 
shows the peak shifting towards lower angles, which arises from a tiny tilting of the 
crystal by pressurizing. Because of the X-ray diffraction configuration described above, 
to fulfill the Bragg condition 2݀௛௞௟ߠ݊݅ݏ௛௞௟ ൌ ߣ  in both phases, the frame of the A7 
structure has to be reoriented as shown in Fig. S4, which is consistent with previous 
theoretical prediction (5).  
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Fig. S4 (Color online) Reconstructing process of the A7 phase. 

4. Quantum Shubnikov–de Haas (SdH) oscillations 

 

Fig. S5 (Color online) Temperature and field dependence of SdH oscillations (left column) and 
the result of fast Fourier transform (FFT) (right column) in the A17 phase at P ≤ 3 GPa. 
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Fig. S6 (Color online) Quantum oscillations found at different pressures. The inset: nods of the 
quantum oscillations versus the Landau index.   

 

Fig. S7 (Color online) Best fitting to of the temperature dependence of the amplitude of the 
oscillation at different pressures.  

5. Linear fitting at high fields of Hall resistivity ߩ௫௬ 
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Fig. S8 (Color online) The goodness of linear fitting by ݊௖ ≡ ቚ
ଵ

௘ோಹ
ቚ ൌ |݊௛ െ ݊௘| to the high fields 

of ߩ௫௬ at different pressures. 

The results presented in Fig. S8 are quite different from those reported in the literature (6) 
in which a diamond anvil cell has been used. First of all, the limited sample size in the 
high pressure chamber of a DAC makes it very difficult to have an accurate measurement 
of Hall resistivity. Instead, the authors only presented the Hall resistance. In addition to 
the influence of a non-hydrostatic pressure effect as discussed at the beginning of the 
main text, the layer orientation change on crossing the A17 to A7 phase transition may 
contribute to the difference between two measured results. It is natural to believe an 
anisotropic Hall resistivity in the layered A17 and A7 phases. The layers in the A7 phase 
are formed 45º relative to that in the A17 phase. Therefore, the measurement 
configuration to probe the layer contribution in the A17 phase picks up some component 
between layers, which is related to the sample’s thickness.  We have used a much thicker 
flake of BP crystal than that used in the study with a DAC.  

5. Superconductivity 

In order to shed light on the non-monotonic pressure variations of Tc, we examined the 

temperature dependence of the critical field Hc determined from the (T) data under 
different magnetic fields as shown in Fig. S9. Here, we defined Tc as the zero-resistivity 
temperature. Hc(Tc) follows the Ginzburg-Landau relation and the initial slope at Tc varies 
non-monotonically, as displayed in Fig. S10. Fig. S11 shows that the low-temperature 
region of zero-field resistivity for each pressure can be well fitted by the power law 
,ሺܶߩ 0ሻ ൌ ଴ߩ ൅  .௡ܶܣ



 

Fig. S9 (Color online) The field dependence of Tc at various pressures in the A7 and C phases. 

 

Fig. S10 (Color online) The evolution of critical field Hc and Tc under pressure. 
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Fig. S11 (Color online) Fitting with the power law ߩሺܶ, 0ሻ ൌ ଴ߩ ൅  ௡ (black solid lines) toܶܣ
the zero-field resistivity (color circles) at different pressures. 

6. First-principles calculation 

In our calculations the plane wave basis method is used (7). We adopt the generalized 
gradient approximation (GGA) with Perdew-Burke-Ernzerhof formula (8) for the 
exchange-correlation potentials. The norm-conserving pseudopotentials (9) are employed 
to model the electron-ion interactions. The kinetic energy cut-off and the charge density 
cut-off of the plane wave basis are chosen to be 80 Ry and 320 Ry, respectively. The 
charge density is calculated on a Γ-centered Brillouin-zone mesh of 24×24×24 points, 
with a Methfessel-Paxton smearing(10) of 0.02 Ry. The pressurized lattice constants are 
obtained from experiment. And then, the inner atomic positions are relaxed by 
minimizing the total energy. The phonons and the phonon perturbation potentials (11) are 
calculated on a Γ-centered 6×6×6 mesh, within the framework of density-functional 
perturbation theory(12). 

Maximally localized Wannier functions (MLWFs) (13, 14) are constructed on a 6×6×6 
grid of the Brillouin zone, using 8 random Gaussian functions as the initial guess. Fine 
electron (60×60×60) and phonon (30×30×30) grids are used to interpolate the electron-
phonon coupling (EPC) quantities with Wannier90 (15) and EPW codes(16). Dirac δ-
functions for electrons and phonons are replaced by smearing functions with widths of 45 
and 0.2 meV, respectively. The EPC constant λ can be determined through summation 
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over the Brillouin zone or integration of the Eliashberg spectral function ߙଶܨሺ߱ሻ  in 
frequency space as(17, 18), 

λ ൌ ଵ

ே೜
∑ λ௤௩௤௩ ൌ ׬2

ఈమிሺఠሻ

ఠ
݀߱. (1) 

The EPC constant λ௤௩ for mode ݒ at wavevector ݍ is defined by(17, 18),  

λ௤௩ ൌ
ଶ

԰ேሺ଴ሻேೖ
∑ ଵ

ఠ೜ೡ
ห݃௞,௤௩

௜௝ ห
ଶ
൫߳௤௜ߜ ൯௜௝௞ ൫߳௞ା௤ߜ

௝ ൯. (2) 

Here ݃௞,௤௩
௜௝  is the EPC matrix element, which describes the probability amplitude for 

scattering an electron with a transfer of crystal momentum q. ݆݅ and ݒ denote indices of 
energy bands and phonon modes, respectively.	߱௤௩ stands for the phonon frequency of 

the ݒ-th phonon mode with wavevector q. ߳௤௜  and ߳௞ା௤
௝  are eigenvalues of Kohn-Sham 

orbitals with respect to Fermi energy at given bands and momentums. ܰሺ0ሻ  is the 
electronic density of states (DOS) at the Fermi energy. Nq/Nk is the total number of q/k 
points in the fine Brillouin-zone mesh. The Eliashberg spectral function can be expressed 
as(17, 18), 

ሺ߱ሻܨଶߙ ൌ
ଵ

ଶ
∑ ൫߱ߜ െ ߱௤௩൯௤௩ λ௤௩߱௤௩. (3) 

For a BCS superconductor, Tc can be expressed by the McMillian-Allen-Dynes formula 
(MAD) (18), 

௖ܶ ൌ
ఠ೗೚೒

ଵ.ଶ
݌ݔ݁ ቂ

ିଵ.଴ସሺଵା஛ሻ

஛ሺଵି଴.଺ଶఓ∗ሻିఓ∗
ቃ. (4) 

where ߤ∗is the effective screened Coulomb repulsion constant, ߱௟௢௚  is the logarithmic 

average frequency, and the e-ph coupling constant λ is given by ߣ ൌ ܰሺܧிሻ〈ܫଶ〉/ܯ〈߱ଶ〉, 
in which N(EF) is the electronic density of states at the Fermi level, 〈ܫଶ〉 is the square of 
the electronic matrix element of the change of the crystal potential and ܯ〈߱ଶ〉 stands for 
the atomic mass. Since the N(EF) and average e-ph interaction depend on the details and 
the topology of FS, we have calculated the band structures and FS of the A7 phase at P = 
5.48 GPa (the lattice corresponds to 5.48 GPa in the experiment is used in the calculation) 
as shown in Fig. S12. There are two energy bands crossing the Fermi level forming a 
tetrahedral electron Fermi surface and hole pockets surrounding the center of hexagon, 
respectively. With further raising the pressure from 5.48 GPa, the valence band 
maximum increases, but the conduction band minimum decreases. As a consequence, the 
volumes that are enclosed by either electron or hole Fermi surfaces are enlarged, which is 
consistent with the carrier density change under high pressure in our experimental results. 
Compared to the band structures at P > 1 GPa in the A17 phase. (19) where the 
topological states form Dirac cones and massless fermions give rise to a small N(EF), the 



most striking feature in the A7 phase is  the almost flat bands near the Fermi level at L 
and X points of the Brillouin zone. A much enhanced N(EF) appears to be a primary 
factor leading to the emergence of superconductivity in the A7 phase. Furthermore, Tc 
and how it responds to pressure from experiments up to 6.7 GPa in the A7 phase can be 
reproduced with the MAD formula and the electron and phonon structures from first-
principals calculation. However, a slight decrease of Tc for P > 6.7 GPa does not match a 
continuous increase with pressure from the experiment. 

 

Fig. S12 (Color online) Band structures and Fermi surfaces of black phosphorus in the A7 phase 
under 5.48 GPa. (a) Fermi level is set to zero. The solid blue lines represent band structures given 
by a first principle calculation. The red circles denote band structures obtained from the 
interpolation of maximally localized Wannier functions (MLWFs); (b) high-symmetry points in 
the Brillouin zone; (c) tetrahedral electron Fermi surfaces; (d) hole pockets surrounding the center 
of hexagon. 
 

The band structure obtained by interpolation of MLWFs exhibits excellent agreement 
with the first-principles one below 3.0 eV. The electronic Hamiltonian, dynamical matrix, 
and EPC matrix element in the Wannier representation show exponential decay (Fig. 
S13), which further guarantees the reliability of subsequent Wannier interpolation.  



 

Fig. S13 (Color online) Spatial decays of the electronic Hamiltonian ‖HሺRሻ‖, the dynamical 
matrix ‖DሺRሻ‖  and the EPC matrix element ‖gሺR, 0ሻ	‖   and ‖gሺ0, Rሻ	‖   in the Wannier 
representation of black phosphorus in the A7 phase under 5.48 GPa. 

Up to 9.62 GPa, no imaginary frequency is found in the phonon spectra, indicating the 
dynamical stability of the A7 phase. This is consistent with the critical pressure of 10 GPa 
for the structural phase transition from the A7 to the C phase (20). The separation 
between acoustic phonon branches and the optical ones results in a gap in phonon DOS 
 ሺ߱ሻ (Fig. S14). Upon applying pressure, the acoustic phonon branches show obviousܨ
hardening, while the impact of pressure on the optical phonons is relatively small. We 
also find that the Eliashberg spectral  function ߙଶܨሺ߱ሻ  has two broadening peaks. 
Moreover, the similarity between ߙଶܨሺ߱ሻ and ܨሺ߱ሻ suggests that the strength of EPC 
matrix element around the Fermi level is close to each other. 

By setting ߤ∗ to 0.17, the superconducting transition temperatures at 5.48 and 6.71 GPa 
are in accord with experimental measurement (see Table SI). But in comparison to the 
monotonically increasing behavior of Tc versus pressure in experiment, there is an 
abnormal descend for the calculated Tc at 8.38 GPa. From the theoretical point of views, 
this can be attributed to the hardening of acoustic phonon modes and blue shift of the first 
peak in ߙଶܨሺ߱ሻ  (Fig. 14). Since the λሺ߱ሻ for 8.38 GPa begins to diverge with respect to 
that of 6.71 GPa at about 20 meV (Fig. 14(e)). The discrepancy in Tc between experiment 
and theoretical calculation may be attributed to (a)  ߤ∗  is an empirical parameter; its 
variation under pressure has not been taken into consideration; and (b)  in the simulation 
of layered structure (such as the A7 phase of black phosphorus), the van der Waals 
correction should be properly included. 



 

 

Fig. S14 (Color online) (a)-(d) Phonon DOS ܨሺ߱ሻ  and Eliashberg spectral function  

 ሺ߱ሻ for black phosphorus in the A7 phase under different pressures specified in (e); (e)ܨଶߙ

λሺ߱ሻ, which is defined by 2 ׬
ଵ

ఠᇲ

ఠ
଴

 .ሺ߱ᇱሻ݀߱ᇱܨଶߙ

 

Table SI Calculated EPC constant λ, log߱ and Tc under different pressures. The ߤ∗ is 
chosen to be 0.1 and 0.17 for comparison. 
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