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Supplementary Materials and Methods 
Participants Among the initial 898 participants provided in the HCP S900 release, we selected 
only those 816 that completed all four rs-fMRI scans and in whom structural MRI data (i.e., T2w, 
T1w, 1.25mm resampled T1w) were available. Remaining participants were members of 371 
unique families, among which 92 contained a monozygotic twin pair. We defined 4 groups: two 
that each contained one twin member (n=92 each), and two groups of unrelated participants, 
selected randomly (n=139 and n=140). We combined one group of monozygotic twins with one 
group of unrelated individuals as discovery dataset and used the remaining group of unrelated 
participants for validation. For a participant selection schema, see (Fig. S1) Our cohort selection 
excluded family relations between and within groups. All hippocampal subfield segmentations 
(below) were visually inspected. Participants with erroneous segmentations (n=20) were 
discarded. Details of each dataset were as follows: discovery (n=217, 122 women, mean±SD 
age=28.5±3.7 years) and validation (n=134, 77 women, age=28.7±3.8 years).  
 
MRI acquisition MRI data were acquired on the HCP’s custom 3T Siemens Skyra. Two T1w 
images with identical parameters were acquired using a 3D-MPRAGE sequence (0.7mm isotropic 
voxels, matrix=320´320, 256 sagittal slices; TR=2400ms, TE=2.14ms, TI=1000ms, flip 
angle=8°; iPAT=2). Two T2w images were acquired with identical geometry (TR=3200ms, 
TE=565ms, variable flip angle; iPAT=2). Four rs-fMRI scans were acquired using multi-band 
accelerated 2D-BOLD echo-planar imaging (2mm isotropic voxels, matrix=104´90, 72 sagittal 
slices; TR=720ms, TE=33ms, flip angle=52°; mb factor=8; 1200 volumes/scan). Subjects were 
instructed to keep their eyes open, look at fixation cross, and not fall asleep. While T1w and T2w 
scans were acquired on the same day, rs-fMRI scans were split over two days (two scans/day).  
 
Image preprocessing Structural and functional MRI data underwent HCP’s minimal 
preprocessing (1-3).  
a) Structural MRI. Images underwent gradient nonlinearity correction. When repeated scans 
were available, these were co-registered and averaged. Following brain extraction and readout 
distortion correction, T1w and T2w images were co-registered using rigid body transformations. 
Subsequently, non-uniformity correction using T1w and T2w contrast was applied (4). 
Segmentations of subcortical structures were extracted using FSL FIRST (5). Preprocessed 
images were nonlinearly registered to MNI152 space and cortical surfaces were extracted using 
FreeSurfer 5.3.0-HCP (6-8), with minor modifications to incorporate information from both T1w 
and T2w (1). Cortical surfaces in individual subjects were aligned using MSMAll (9) to the 
hemisphere-symmetric Conte69 template (10).  
b) rs-fMRI. Timeseries were corrected for gradient nonlinearity, and head motion was corrected 
using a rigid body transformation. The R-L/L-R blipped scan pairs were used to correct for 
geometric distortions. Distortion corrected images were warped to T1w space using a 
combination of rigid body and boundary-based registrations (11). These transformations were 
concatenated with the transformation from native T1w to MNI152, to warp functional images to 
MNI152. Further processing removed the bias field (as calculated for the structural image), 
extracted the brain, and normalized whole brain intensity. A high-pass filter (>2000s FWHM) 
corrected the time series for scanner drifts, and additional noise was removed using the ICA-FIX 
procedure (2). Additional tissue-specific signal regression was not performed (12, 13). 
 
Hippocampal subfield surface generation and feature sampling  
a) Subfield surface generation. Based on each subjects’ minimally processed T1w images in 
MNI152-space, we automatically segmented the left/right hippocampus into Subiculum 
(consisting of presubiculum, parasubiculum, subiculum proper), CA1-3, and CA4-DG using a 
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validated multi-template surface-patch algorithm (14). The algorithm was trained on an open-
access database of manual subfield segmentations and corresponding high-resolution 3T MRI 
data (15). Segmentations were visually quality controlled in all subjects and are available upon 
request. The algorithm incorporates a spherical harmonic shape parameterization and point 
distribution model of the surfaces (16). We generated medial sheet representations running 
through each subfield’s core using a Hamilton-Jacobi approach (17), to minimize partial volume 
effects during feature sampling. Furthermore, we propagated the spherical harmonic 
parameterization from the outer shell to the medial sheet to improve vertex-correspondence 
across individuals based on shape-inherent information.  
b) Surface-wide sampling of structural and functional features. Using the non-linear 
registration matrices between native and MNI152 space provided by HCP, we mapped medial 
sheet meshes and volumetric rs-fMRI data to native T1w. Functional time-series were sampled at 
each sheet vertex and at each vertex of the MSMAll-registered (9) mid-thickness cortical 
surfaces. We also sampled T1w/T2w intensity (4). Surface-sampled features were smoothed 
using a Gaussian diffusion kernel with 5 mesh units as full-width-at-half-maximum (FWHM) in 
all subfields and cortex. Sampling was carried out in native T1w and rs-fMRI space to minimize 
interpolation. We also synthesized lower dimensionality representations of the neocortex by 
averaging unsmoothed timeseries within 360 cortical areas (9) and 7 intrinsic functional networks 
(18). To reduce blurring between communities at the boundaries of the 7-network parcellation, 
we eroded each community label by two vertices. Subcortical volumetric timeseries were 
extracted from all subcortical voxels and averaged within each structure.  
 
Subfield-to-cortex connectivity analysis  
a) Per-subfield connectivity mapping. To summarize subfield-specific connectivity to the 
neocortex in each subject, we computed Pearson correlation coefficient maps between the 
average timeseries across all medial sheet vertices for a given subfield and each cortical vertex. 
Analysis was carried out separately for left and right subfields. Correlations underwent Fisher-z 
transformations and maps were averaged across scans. 
b) Connectome gradient mapping. After parcellating the cortex into 360 regions (9), we 
systematically computed z-scored connectivity matrices Z between each of the 4k medial sheet 
vertices and each cortical area. We utilized diffusion embedding (19), an unsupervised learning 
algorithm, to identify principal modes of spatial variations in connectivity when going from one 
subfield vertex to another. This technique has recently described spatial gradients in neocortical 
rs-fMRI connectivity (20). To adapt the approach to hippocampus-to-cortex connectivity, we 
converted Z into a cosine similarity matrix C, which scales with the angle between the 360-
dimensional connectivity profiles of each vertex pair. To allow for negative numbers, we applied 
an arccosine to C, divided the result by π (to scale to [0 1]), and subtracted it from 1 (such that 1 
denotes identical orientation). The other parameters were identical to those previously described 
(20), i.e., 𝜶= 0.5, automated diffusion time estimation, thresholding of every column in Z at its 
90th percentile. Left/right hippocampal components underwent Procrustes alignment (100 
iterations) (21). In a separate analysis, we performed the gradient mapping with 13 subcortical 
regions (brainstem, amygdala, caudate nucleus, nucleus accumbens, putamen, pallidum and 
thalamus) as additional regions of interest, with separate left/right regions for all areas except the 
brainstem. A MATLAB implementation of the diffusion embedding algorithm is available at 
https://github.com/MICA-MNI/micaopen/, the Python code on which our implementation is 
based on is available at https://github.com/satra/mapalign. 
 
Data analysis Analysis was carried out using SurfStat for MATLAB (22), available at 
http://www.math.mcgill.ca/~keith/surfstat.  
a) Subfield-specific connectivity analysis. We mapped the connectivity of each subfield in each 
hemisphere separately using one-sample t-tests on Fisher-to-z-transformed connectivity maps. 
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We also assessed differences in connectivity between subfields in each hemisphere, using mixed-
effects models with subject as random and subfield as fixed effect. Findings were corrected using 
random field theory for non-isotropic images, with cluster-defining thresholds (CDT) of 
CDT=0.001 and a family-wise error rate of 0.025 (23).  
b) Assessing the relation between subfield gradients and hippocampal anatomy. Within each 
subfield, we determined the correspondence between functional gradients and long-axis anatomy, 
by computing overlaps with manual segmentations of hippocampal head, body, and tail obtained 
from a previously published T1w MRI protocol and dataset (24). Specifically, we clustered 
gradients using k-means (k=3, no other constraint) and computed maximal Dice indices between 
clusters and head-body-tail segmentations.  

We also correlated gradient values across all subfield surface with T1w/T2w intensity, 
modeling subfield as a fixed effect. Results were verified after also controlling for per-vertex 
estimates of cerebrospinal fluid (CSF) partial volume, columnar volume, and temporal signal to 
noise ratio. CSF partial volume as estimated using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/), 
columnar volume was computed as the average volume of the columns formed by a medial 
sheet’s vertex’s surrounding triangles with their corresponding outer shell triangles, and temporal 
signal-to-noise ratio was computed as the mean of the signal in each vertex divided by its 
standard deviation. All analyses were systematically carried out for the first three gradients. 
Notably, G1, G2, and G3 collectively explained 52% of variance (Fig. S3). 

All correlations between gradients and other markers were compared across gradients 
using Steiger’s test (25). As the sign of the gradient is arbitrary, we flipped the sign of gradients 
with negative correlations resulting in only positive correlations. This provides more conservative 
significance testing as the difference between correlation values decreases or remains the same.  
c) Relation to task co-activation patterns and reverse inference. Support for long-axis 
specialization in humans has so far been provided mainly by task-based fMRI. We confirmed this 
using Neurosynth (download date: November 2, 2017) (26), which performed an automated meta-
analysis of 11406 neuroimaging studies. We produced task co-activation networks for each voxel 
by placing 6mm spheres in each hippocampal voxel and assessing which voxels in neocortical 
gray matter were likely to be reported as active when the seed region is active. We used nearest 
neighbor interpolation to assign co-activation patterns to hippocampal subfield vertices and 
performed diffusion embedding on the resulting co-activation matrix.  

To assess cognitive differences across the principal gradient, we calculated the centroids 
of its top and bottom 33%. Using the task co-activation networks of these centroids, we 
performed an automated reverse inference (26). In brief, for each term appearing in the 
Neurosynth database, we computed a reverse inference map which is the probability of a voxel 
being reported as active given that the term appeared in the manuscript. To determine which 
terms are associated with the top and bottom of the principal gradients, we correlated the 
centroids’ task co-activation networks with all reverse inference maps.  
 
Reliability and reproducibility assessment Several analyses assessed consistency of our main 
findings. To estimate subject-specific test-retest stability, we split each subject’s functional scan 
into two sets (each set contained 1 scan from each day and each phase encoding direction). 
Hippocampal-cortical connectivity profiles of both sets, as well as gradient maps were correlated 
for each subject. As components with diffusion embedding are not necessarily in the same order, 
we computed gradients for each set within a subject, aligned these to the group-level components 
of all other subjects with Procrustes alignment, and correlated aligned components. 
Reproducibility was determined by re-computing results in the validation dataset and correlating 
hippocampal-cortical connectivity profiles and the group-level components between discovery 
and validation datasets.  
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Fig. S1. Schematic of the subject selection. From the initial 898 subjects, 82 were discarded for 
missing scans. Another 353 to remove familial relationships across subjects. Where possible, a 
monozygotic twin pair was retained. The monozygotic twins were split into two datasets of 92 
subjects each, with each group containing one member of each pair. The remaining subjects were 
split into two groups. We then build the discovery and verification cohorts based on these 
subgroups. All groups underwent a visual quality control to exclude inaccurate hippocampal 
segmentations. 
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Fig. S2. Selective increases in neocortical connectivity from one subfield versus the other two. 
Subiculum connected more strongly to the default mode network and CA1-3 connected more 
strongly to somatomotor and limbic regions, while CA4-DG did not show a selective increase in 
neocortical integration compared to the other regions. Findings were corrected for multiple 
comparisons.  
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Fig. S3. Overview of the hippocampal gradients. (A) Variance explained by the first 25 
components for the left and right hippocampi. (B) First 5 gradients of the subiculum (left) CA1-3 
(middle) and CA4-DG (right). Large and small surfaces represent the left and right hippocampus, 
respectively. Solid and dashed arrows denote posterior (P) to anterior (A) and lateral (L) to 
medial (M) direction, respectively. 
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Fig. S4. Long-axis specialization of the right hippocampus. The principal gradient of both meta-
analytic task-fMRI co-activation (first column) and rs-fMRI (second column) ran in anterior-
posterior direction. K-means clusters (k=3) of the rs-fMRI connectivity derived gradient (third 
column) overlapped strongly with manual segmentations of hippocampal head, body, and tail 
based on a previous atlas (24) (fourth column). Solid and dashed arrows denote posterior (P) to 
anterior (A) and lateral (L) to medial (M) direction, respectively. 
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Fig. S5. Automated reverse inference based on Neurosynth. (A) Task-based co-activation 
networks of the centroids of the top (posterior) and bottom (anterior) 33% of the principal 
gradient. (B) Top 15 terms most strongly associated with the task co-activation derived networks 
of the anterior and posterior seeds. Terms associated with anatomy and task design were 
discarded.  
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Fig. S6. Right hippocampal second gradient and T1w/T2w intensities. Systematic correlation 
analyses indicated highest correlations between surface-sampled T1w/T2w and the second 
gradient, which runs in along the hippocampal infolding. Solid and dashed arrows denote 
posterior (P) to anterior (A) and lateral (L) to medial (M) direction, respectively. 
  



 
 

10 
 

 
Fig. S7. Correspondence between T1w/T2w and quantitative T1 relaxation time (qT1) 
measurements from a different dataset of 20 healthy adults (24). Pearson correlations are shown 
in the bottom left of each scatterplot. Overall, correspondence is good, although differences exist 
across the subfields.  
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Fig. S8. Comparison of hippocampal-cortical and hippocampal-whole brain G1 (top), G2 
(middle), and G3 (bottom) for the left (left) and right (right) hippocampus. Gradients remain 
virtually unchanged after including subcortical areas. Cortical gradient surfaces represent the 
gradients as used in the body of the manuscript. Whole brain gradients are computed after 
additional including subcortical areas. Scatter plots show the vertex-wise correspondence 
between these two gradients and their correlation values.  
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