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Supplementary Information Text 

Materials and Methods 
Spatial precision task 
One hundred images of common objects were selected from a set previously used by our group 
(1). Images were presented on a laptop computer screen set at a comfortable distance from the 
patient. Three hundred and sixty locations on the computer screen were generated along the 
circumference of a circle centered on the screen with a spacing of 1°. During encoding, the 100 
objects appeared one at a time at pseudorandomly assigned circle locations and subjects were 
asked to judge whether each object would more likely be found indoors or outdoors (Figure 1; 
1.2 +/- 0.2 second ITI; .5 second ISI). Following a short (~1 minute) delay, subjects were shown 
each object again in pseudorandom order, this time at the top of the screen. Subjects were 
instructed to wait 1 second (until text that read ‘Wait…’ disappeared from the screen) before 
using a mouse wheel to move the object to where it appeared during encoding. Subjects 
pressed the space bar to indicate that they were finished placing the object. If subjects 
performed more than one session, new objects and locations were used. No more than one 
session was performed on each day. 
 
Behavioral analysis 
Error on the spatial precision task was measured as the number of degrees between where 
subjects placed the object and the correct location. Histograms were used to examine the 
distribution of error values. We used mixture modeling, as implemented by the MemFit function 
of Memtoolbox (2), to obtain an estimate of two parameters describing these distributions: the 
guess rate (g), which reflects the area under the uniform distribution, and the standard deviation 
of the von Mises distribution (SDMem). We used the cumulative distribution function of the von 
Mises distribution estimated for each session to split trials into three conditions: High precision, 
Low precision, and Guess. Trials that had less than a 10% chance of being remembered with 
some degree of precision were placed in the Guess condition. The remaining trials were sorted 
by error and split evenly into the High and Low precision conditions. 
 
Electrode localization 
The electrode localization was performed using pre- and post-implantation structural T1-
weighted 1mm isotropic MRI scans as well as post-implantation CT scans. For each participant, 
the post-implantation MRI and CT scans were registered to the pre-implantation scan using a 6-
parameter rigid body transformation implemented with Advanced Normalization Tools – ANTs 
(3). Electrodes were localized within MTL subregions using a high-resolution (.55 mm) in-house 
anatomical template with manual tracings of hippocampal subfields and parahippocampal gyrus 
subregions (4). Regions of interest (ROIs) included the CA1, DG/CA3, subiculum (Sub), lateral 
and medial entorhinal cortex (LEC, MEC), and the perirhinal (PRC) and parahippocampal (PHC) 
cortices. Hippocampal subfield segmentation followed our previously published protocols (4). 
The labeled template was resampled and aligned to each subject’s pre-implantation scan using 
ANTs Symmetric Normalization, so that the labels could be used to guide localization. Each 
electrode location was determined by examining the co-registered pre- and post-implantation 
MRIs and identifying the ROI that corresponded to the center of the electrode artifact in the 
post-implantation MRI and CT. Cases in which electrodes were on the border between ROIs or 
between gray matter and white matter were noted as such. Outside the MTL, electrode 
localization was guided by a FreeSurfer cortical parcellation of the pre-implantation MRI (5). 
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Data collection and preprocessing 
Intracranial EEG data were recorded using a Nihon Khoden recording system, analog-filtered 
above 0.01 Hz and digitally sampled at 5000 Hz. After acquisition, data were demeaned and 
band-pass filtered from 0.3 Hz to 350 Hz using a two pass zero phase delay Butterworth infinite 
impulse response (IIRR) filter. Power spectra were examined to identify line noise and a 
Butterworth notch filter was used to remove 60 Hz noise and harmonics. All electrodes were re-
referenced to a white matter electrode located on the same depth electrode probe. A neurologist 
(J.L.) with subspecialty training in epilepsy visually inspected continuous recordings from each 
session to identify all data with interictal epileptiform discharges. Data were also inspected for 
excessive noise, including broadband electromagnetic noise from hospital equipment. To avoid 
potentially biasing the results, the neurologist was blinded to trial information (e.g. stimulus 
onset and behavioral performance) as well as to electrode location. Only data from recordings 
contralateral to the seizure source or outside of the seizure onset zone were used in 
subsequent analyses. 
 
Gamma power analyses  
Intracranial recordings were broken into event-related epochs (3 seconds pre-stimulus onset 
and 3 seconds post-stimulus offset) and convolved with complex Morlet wavelets, implemented 
using the FieldTrip toolbox, to obtain a measure of instantaneous power (6). Center frequencies 
ranged from 1 to 150 Hz, with a spacing of 1 Hz and a variable cycle number of 4-15. Power 
was baseline corrected to the average pre-stimulus power across all trials (0.5 to 0.2 prior to 
stimulus onset), resulting in a measure of relative power per frequency (power divided by pre-
stimulus power) at each time point. While we examined a wider range of power in the 
spectrograms (up to 150 Hz), we used an a priori gamma frequency range of 40-100 Hz for our 
gamma power analyses. This frequency range was based on prior literature showing MTL 
gamma activity in this range (7, 8, 9) and reflected the dominant gamma frequency range that 
was influenced by task performance (Fig. S2). For the within-session analysis, we then 
averaged baseline corrected power over our gamma frequency range (40-100 Hz) and retrieval 
window (0.25-1 second post-stimulus onset). We took the absolute value of the angular error 
and logged the resulting values to account for the non-normal distribution of error. Pearson 
correlation was used to test the relationship between single trial power in each MTL electrode 
and error. P values from these correlations were then Bonferroni-corrected for the number of 
MTL electrodes in each patient (see Table 1 for the number of electrodes). For the across-
session analysis, electrodes were divided into nine regions: 1) the CA1 subfield, 2) the 
hippocampus, including the CA1, 3) the entorhinal, perirhinal, and parahippocampal cortices, 4) 
the lateral temporal cortex, 5) the insula, 6) the caudal prefrontal cortex (broadman area (BA) 
6/8), 7) the orbitofrontal cortex, 8) the anterior cingulate cortex, and 9) the dorsolateral prefrontal 
cortex (BA 9/10/46). Electrodes that were on the border between the CA1 subfield and other 
hippocampal subfields were included in the hippocampal region but not in the CA1 region. 
Regions where we had electrode contacts in fewer than three subjects (e.g. amygdala) were 
excluded from the analysis. There were not enough electrodes across subjects in either the 
DG/CA3 or subiculum to be able to look at activity separately within these regions. Power was 
baseline corrected to the average pre-stimulus power (as described above), and subsequently 
z-transformed separately within each session to account for differences in power and noise 
across sessions. 
 
We used a cluster-based permutation approach implemented using the FieldTrip toolbox to 
examine the correlation between gamma power and error (including the Guess condition) and 
precision (excluding the Guess condition) at each time point within each region (6, 10). We also 
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used this method to examine the relationship between theta (3-8 Hz) power and error in each 
region and found a significant negative correlation between theta power and error during the 
retrieval window in CA1 and a significant positive correlation that emerged after the retrieval 
window in dlPFC (Fig. S4). Neither of these regions showed a significant correlation between 
theta power and precision. For Figures 5d-f and 6b, trials were divided into High precision, Low 
precision, and Guess conditions, then z-transformed power was averaged over the retrieval time 
window (0.25- 1s post-stimulus onset) and a one-way ANOVA was performed across the three 
conditions. In regions where we found a main effect of error, we tested for pairwise differences 
between conditions using post hoc Holm-Sidak tests. 
 
The number of expected guesses in the High and Low precision conditions (Fig. S5) was 
balanced using the following method. The number of degrees spanned by each condition was 
calculated for each session and used to determine the number of expected guesses in each 
condition as predicted by the uniform distribution. If there were more expected guesses in the 
Low precision condition, we added simulated ‘guesses’ to the High precision condition so that 
the number of High and Low precision guesses would be equal. These simulated ‘guesses’ 
were generated by taking the mean power in the Guess condition during the retrieval window. 
We also added the same number of simulated ‘null’ trials to the Low precision condition to keep 
the trial count balanced across conditions. These ‘null’ trials were generated by taking the mean 
power in the Low precision condition during the retrieval window.  
 
Granger Prediction Analysis 
The preprocessed LFP was first downsampled to 250 Hz before obtaining the mean gamma 
power time series (40-100 Hz) during the full retrieval period (0-1s post stimulus onset). These 
data were epoched, detrended, and normalized over time and across trials to increase 
stationarity (11). A model order of five was chosen for each session. This order was determined 
by the Bayesian information criteria, which was calculated using the Multivariate Granger 
Causality (MGVC) Matlab Toolbox (12). The MGVC toolbox was also used to calculate the time-
domain Granger prediction index for High precision, Low precision, and Guess trials for each 
CA1 and dlPFC electrode pair. The difference in Granger prediction values between conditions 
(e.g. High-Guess) was calculated for each electrode pair, averaged over electrode pairs within 
each session for each direction (CA1 to dlPFC and dlPFC to CA1), and then averaged across 
sessions. A null average difference distribution was created by shuffling the trial labels 500 
times before calculating the difference in Granger prediction values between conditions. These 
distributions of permuted difference values were then averaged first over electrode pairs and 
then across sessions, as described above (13). The observed average Granger difference value 
was compared to this null average Granger difference distribution. P-values were calculated as 
the fraction of times the null average Granger difference values were equal to or more extreme 
than the observed average Granger difference value. 
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Fig. S1. Error histograms, mixture model fit, and cutoff values for the Guess condition 
for each session. a-g, The black curve indicates the mixture model fit, the blue curve 
indicates the pdf of the Von Mises distribution, the red dashed line indicates the pdf of the 
uniform distribution, and the black dashed lines indicate the cutoff values for the Guess 
condition. g: guess rate; sd: standard deviation of the Von Mises distribution (SDMem); pdf: 
probability density function; S1: Session 1; S2: Session 2; S3: Session 3. 
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Fig. S2. Gamma frequency range and task performance. We calculated the mean CA1 
power during the retrieval window at successive gamma frequency ranges using a sliding 
window moving average of 20 Hz. The center frequencies showing a significant effect of error 
across conditions (High precision, Low precision, and Guess) ranged from 35 to 104 Hz, 
consistent with our a priori selection of 40-100 Hz as our gamma frequency range of interest 
(a). The center frequencies showing a significant correlation between gamma power and error 
(b) covered a similar range (32 to 111 Hz). Dotted gray horizontal line indicates p < 0.05.  
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Fig. S3. Gamma power and error. Time course of gamma power in the lateral temporal 
cortex (a), insula (b), caudal prefrontal cortex (Brodmann areas 6/8) (c), orbitofrontal cortex 
(d), and anterior cingulate cortex (e). Stimulus onset is at time zero and the retrieval window 
(0.25 to 1 second post-stimulus onset) is shaded in gray. Gray horizontal lines indicate time 
points where there are significant correlations between gamma power and error (p < 0.05). 
The lateral temporal cortex showed a significant effect of error pre-stimulus onset. Colored 
shaded regions indicate s.e.m. 
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Fig. S4. Theta power and error. Time course of theta (3-8 Hz) power in the CA1 subfield (a) 
and dlPFC (b). Stimulus onset is at time zero and the retrieval window (0.25 to 1 second post-
stimulus onset) is shaded in gray. Dotted gray horizontal lines indicate time points where 
there are significant correlations between gamma power and error (p < 0.05, cluster-
corrected). Colored shaded regions indicate s.e.m. We found a significant negative correlation 
between theta power and error during the retrieval window in CA1 and a significant positive 
correlation that emerged after the retrieval window in dlPFC. Neither of these regions showed 
a significant correlation between theta power and precision. 
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Fig. S5. Gamma power in the CA1 and dlPFC: number of expected guesses balanced 
across High and Low precision conditions. Mean gamma power over the retrieval window 
(.25 to 1 second post-stimulus onset) in the CA1 (a) and dlPFC (b) for High precision, Low 
precision and Guess conditions with the number of expected guesses balanced across High 
and Low precision conditions. We ran a one-way ANOVA across conditions (High, Low, and 
Guess) in each region. The results of these ANOVAs were similar to those obtained without 
balancing (CA1: F(2, 462) = 12.5, p = 5 x 10-6; High vs. Guess: p = 3 x 10-6; High vs. Low: p = 
0.06; Low vs. Guess: p = 0.004; dlPFC: F(2, 651) = 3.19, p = 0.04; High vs. Guess: p = 0.037; 
High vs. Low: p = 0.32; Low vs. Guess: p = 0.25). 
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Fig. S6. Gamma power is unrelated to the distance object was moved. We examined the 
relationship between gamma power and the distance the object was moved by calculating the 
angular distance from the top of the screen (the starting point) to where the subjects placed 
each object. Trials were sorted by this distance and divided evenly into three conditions: 
Close, meaning objects that were placed closer to the top of the screen, Medium, meaning 
objects that were placed a medium distance from the starting point, and Far. The time course 
of gamma power is shown in the CA1 (a) and dlPFC (b) for Close, Medium, and Far Trials. 
No significant correlations between gamma power and distance were found at any time point 
(p > 0.05, cluster corrected). Additionally, CA1 (c) and dlPFC (d) gamma power was 
averaged over the retrieval window and a one-way ANOVA was performed across the three 
conditions. These ANOVAs did not show a significant effect of distance in either region 
(CA1: F(2, 426) = 1.1; p = 0.32; dlPFC: F(2, 603) = 0.78; p = 0.46). Colored shaded regions 
and error bars indicate s.e.m. 
 



 
 

11 
 

 
Fig. S7. Gamma power decreases over the course of the test session do not drive the 
error/precision effects. To assess the relationship between gamma power and trial order, 
trials were divided evenly into three conditions: Beginning, meaning trials from the first third of 
the test session, Middle, and End. The time course of gamma power in the CA1 (a) and 
dlPFC (b) is shown for trials at the Beginning, Middle, and End of the test session. Gray 
horizontal lines indicate time points where there are significant correlations between gamma 
power and trial order (p < 0.05, cluster corrected). Colored shaded regions indicate s.e.m. c, 
d, Mean gamma power over the retrieval window (.25 to 1 second post-stimulus onset) for 
trials at the Beginning, Middle, and End of the test session in the CA1(c) and dlPFC (d). One-
way ANOVAs with trial order (Beginning, Middle, and End) as fixed factors revealed a 
significant effect of order in the dlPFC (F (2, 603) = 11.2; p = 0.00002) and a marginal effect 
in the CA1 (F(2, 426) = 2.7; p = 0.07). Error bars indicate s.e.m. e, To assess the relationship 
between trial order and error, the number of High precision, Low precision, and Guess trials 
was calculated for each condition (Beginning, Middle, and End), and a two-way ANOVA was 
performed with trial order (Beginning, Middle, and End), and error (High, Low, and Guess) as 
fixed factors. This ANOVA resulted in p values > 0.05 (Trial order: F (2, 12) = 0.5, p = 0.6; 
Error: F(2,12) = 0.3, p = 0.7; Interaction: F(4, 24) = 0.2, p = 0.9), indicating that the number of 
High precision, Low precision, and Guess trials does not change over the course of the test 
session. 
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Fig. S8. Mean dlPFC to CA1 Granger prediction values for each condition. P > 0.05 as 
determined by permutation testing (see SI Materials and Methods). 
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