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Supporting Information Text10

1. Intrinsic spin and energy flow11

By using the tensor form, which is independent of the choice of coordinate system, the linear elastic wave equations can be12

written as(1):13

∇ · σ = ρ
∂2u

∂t2
, [1]14

where σ = C : ε is the Cauchy stress tensor, ε = 1
2 (∇u+ (∇u)T ) is the infinitesimal strain tensor, u is the displacement vector,15

C is the stiffness tensor, ρ is the mass density, the symbol : represents the inner product of two second-order tensors. We16

consider monochromatic elastic wave fields with frequency ω in a uniform non-dispersive solid, the linear elastic wave equations17

can be represented as ∇ · σ = −ρω2u and the displacement field can be described by u(r, t) = u0(r)e−iωt.18

The time-average Poynting vector density of elastic wave that describes the energy flux density is:19

p = −1
2Re[σ

∗ · v], [2]20

where v = ∂
∂t
u = −iωu is the velocity of elastic wave and Re[·], Im[·] mean operators to get real part and imaginary part.21

v = ∂u
∂t

= −iωu, thus p = −ω2 Im[σ∗ · u]. In isotropic homogeneous solid, by using Lamé constants, one can get:22

C =


2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 , [3]23

where λ = K − 2
3G, µ = G, K is the bulk modulus and G is the shear modulus.24

As we know, the Poynting vector p describes the directional energy flux density of elastic wave. In fact it represents a sum25

of two terms with quite different physical meanings. Thus, one can write p into the form:26

p = po + ps, [4]27

where po and ps represent the orbital and spin constituents of the total energy flow(2). To unveil the intrinsic spin of elastic28

wave, we discuss it based on the longitudinal and transverse part separately. For longitudinal part uL, it satisfies the relation29

∇× uL = 0, and the time-average Poynting density can be written as:30

pL = ω

2

(
(2µ+ λ)Im[u∗L · (∇)uL] + λ

2∇× Im[u∗L × uL]
)

= poL + psL,

[5]31

where32

poL = ω

2 (2µ+ λ)Im[u∗L · (∇)uL] = ω

2 ρv
2
LIm[u∗L · (∇)uL]

psL = ω

2
λ

2∇× Im[u∗L × uL],
[6]33

with vL the velocity and uL the displacement field of longitudinal wave. Here, poL, the canonical or orbital Poynting density, is34

responsible for the energy transport of elastic longitudinal wave. psL, the spin Poynting density, does not transport energy but35

is originated from the spin angular momentum of elastic longitudinal wave.36

For transverse part uT , it satisfies the relation ∇ · uT = 0, and the time-average Poynting density can be written as:37

pT = ω

2

(
µIm[u∗T · (∇)uT ] + µ

2∇× Im[u∗T × uT ]
)

= poT + psT ,
[7]38

where39

poT = ω

2 µIm[u∗T · (∇)uT ] = ω

2 ρv
2
T Im[u∗T · (∇)uT ]

psT = ω

2
µ

2∇× Im[u∗T × uT ].
[8]40

vT is the speed of transverse wave. poT and psT have similar physical meanings like their longitudinal wave counterparts.41

For the complicated elastic wave with both longitudinal and transverse components, the total displacement field is42

u = uL + uT , but the Poynting vector p can not be represented by the linear sum of orbital and spin Poynting vectors of43

transverse part and longitudinal part, which means p 6= poL + psL + poT + psT . By analyzing the physics described by the44

mathematical definition, the total Poynting density p can be dissected into a sum of terms with quite different physical45

meanings:46

p = poL + psL + poT + psT + poh + psh, [9]47
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where poh = ω
2 ρv

2
LIm[u∗T · (∇)uL] + ω

2 ρv
2
T Im[u∗L · (∇)uT ] is the hybrid orbital Poynting density when transverse and longitudinal 48

propagating waves with non-parallel directions meet in solid and psh = ω
2
λ+2µ

2 ∇× Im[u∗T × uL + u∗L × uT ] is the extra energy 49

flux raised from hybrid spin in mixed longitudinal-transverse wave. 50

Using the state vector introduced in main text, the orbital and spin Poynting vector can be written as ‘local expectation 51

values’ of the corresponding operators: 52

poL = Re[〈uL|p̂L|uL〉]
poT = Re[〈uT |p̂T |uT 〉]
poh = Re[〈uT |p̂L|ψL〉+ 〈uL|p̂T |uT 〉]

psL ∝ ∇× 〈uL|Ŝ|uL〉

psT ∝ ∇× 〈uT |Ŝ|uT 〉

psh ∝ ∇× (〈uT |Ŝ|uT 〉+ 〈uL|Ŝ|uT 〉)

[10] 53

where p̂L,T = −iv2
L,T∇ are the orbital Poynting density operators and Ŝ is the spin-1 angular momentum density operator 54

for elastic wave, with u∗ · (Ŝ)u = Im[u∗ × u] (3–6). From the results, we can find that the spin of elastic wave plays an 55

important role in energy transport and specially, the hybrid spin can induce non-trivial contribution for Poynting vector in 56

mixed transverse-longitudinal wave. 57

Beside the spin texture cases in the main text, there is another intriguing spin distribution: two dimensional spin lattice. To 58

induce 2D spin lattice, it is simple to achieve so by exploiting the linear superposition of two longitudinal-transverse mixed 59

elastic waves: u = u1 + u2, as shown in Fig. S1: 60

u1/2 = uL,1/2 + uT,1/2

uL,1 ∝ exp(ikLy)ey
uL,2 ∝ exp(ikLx)ex
uT,1 ∝ exp(ikT y)ex
uT,2 ∝ exp(ikTx)ey

[11] 61

The corresponding quantum elastic spin can be derived as the following forms: 62

s = sL + sT + sh

sL ∝ −2 sin(kL(x− y))ez
sT ∝ 2 sin(kT (x− y))ez
sh ∝ (sin((kL − kT )y)− sin((kL − kT )x))ez

[12] 63

where kL,T are the wave vectors of longitudinal and transverse wave. The total spin s will vary periodically in two dimensions 64

shown in Fig. S1. Non-zero spatial partial differential of sh will induce non-trivial observable energy flow distribution 65

psh ∝ ∇× sh 6= 0. 66

2. Non-trivial Spin in spatial confined wave fields 67

In isotropic homogeneous solid, for the displacement field of elastic wave propagating along z direction, as shown in Fig. S2(a), 68

it only carries the orbital Poynting vector: po ∝ |po|ez, while the spin Poynting vector vanishes: ps = 0 because the spin 69

currents from the neighbouring loops cancel with each other (4). The plane wave solution is an unbounded state for elastic 70

wave, but for the evanescent cases with boundary or spatially confined elastic waves, there will immediately induce a non-zero 71

spin current shown in Fig. S2(b), namely, ps 6= 0, which can yield non-zero spin s. Thus, the physical mechanism dependent on 72

the spin can not be observed in bulk isotropic homogeneous solid due to the degenerated (cancelled) spin states, but it will be 73

valid on the evanescent waves or spatially confined cases (like Gaussian decay case), which can hold non-zero spin and support 74

the spin-dependent states. 75

Consider a single evanescent wave propagating along the x axis and decaying in the y > 0 half-space, namely, uE ∝ 76

exp(ikx) exp(−iωt), one can decompose the wave into longitudinal and transverse parts in isotropic homogeneous solid: 77

uE = uL,E + uT,E , |uL,E | ∝ exp(−κLy), |uT,E | ∝ exp(−κT y). According to the conditions ∇× uL,E = 0 and ∇ · uT,E = 0, 78

we obtain the evanescent wave forms: 79

uL,E = u0,L

( 1
iκL
k

0

)
exp(ikx− κLy),

uT,E = u0,T

(−iκT
k

1
0

)
exp(ikx− κT y),

[13] 80

where k2 − κ2
L,T = ω2

v2
L,T

. 81
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𝑢1 = 𝑢𝐿,1 + 𝑢𝑇,1

𝑢2 = 𝑢𝐿,2 + 𝑢𝑇,2

Fig. S1. Two dimensional spin lattice. The hybrid spin angular density(top plane, the color from red to blue denotes the spin value from maximal to minimal) of the total elastic
waves (bottom plane, the color from red to blue denotes the displacement value from maximal to minimal) will behave in two-dimensional lattice form.

4 of 11 Yang Long, Jie Ren† and Hong Chen



(a) (b)

Fig. S2. For elastic wave in unbound isotropic solid (a), the spin currents from neighboring loop cancel with each other, which make the spin Poynting vector ps vanishes,
ps = 0. But for bound media or spatially confined elastic wave in isotropic materials (b), the case will be different. Non-zero circulation of spin currents will induce non-zero
spin current, namely, ps 6= 0.
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(b)Fig. S3. Spin texture in mixed longitudinal-transverse elastic wave of Gaussian beam. The hybrid spin density of mixed longitudinal-transverse wave Gaussian beam is plotted.

By using the spin angular momentum operators, we can calculate their corresponding spin density values in the evanescent82

wave:83

sL ∝
2κL
k

exp(−2κLy)ez,

sT ∝
2κT
k

exp(−2κT y)ez.
[14]84

The physical mechanism behind the generation of non-zero spin densities is that the inhomogeneous energy intensity (namely,85

the displacement field strength), which can destroy the cancellation of the spin current loops in bulk propagation wave. The86

total spin of elastic wave uE will be s = sL + sT , the hybrid spin sh vanishes due to the cancellation of spin projection,87

〈uL,E |Ŝ|uT,E〉+ 〈uT,E |Ŝ|uL,E〉 = 0.88

In the main text, we show that the Gaussian beam of elastic longitudinal wave can hold non-trivial spin density. For the89

Gaussian longitudinal wave form in xOy plane, |u| ∝ exp(−y2/δ2), we can find the non-trivial spin density. Considering the90

longitudinal wave Gaussian beam in high frequency and the width δ is larger than wave length, δ � λL, one can ignore the91

beam divergence, k ≈ kL. Thus the longitudinal Gaussian wave beam can be written as:92

uL,G = u0

 1
2iy
kLδ

2

0

 exp(−y
2

δ2 ) exp(ikLx− ωt). [15]93

One can calculate its corresponding spin density by using the spin angular momentum operator:94

s ∝ 4y
kLδ2 exp(−2y2

δ2 )ez. [16]95

Different with the evanescent wave at single-side boundary, the Gaussian wave beam can hold two opposite spin distribution96

simultaneously on both sides of beam: sz > 0 for y > 0, and sz < 0 for y < 0. As discussed in the main text, this spin texture97

in Gaussian beam is locked with momentum kL, which can reflect its intrinsic geometric properties.98

We also calculate the hybrid spin density of the elastic field that contains both longitudinal and transverse Gaussian beams99

simultaneously, as shown in Fig. S3. In this case, the hybrid spin from longitudinal-transverse mixing concentrates mainly on100

the center area and has a periodic flipping form along x.101

3. Spin momentum locking: Quantum spin Hall effect102

Spin-momentum locking of surface mode is one main feature in quantum spin Hall effect (QSHE) (7, 8) and 3D topological103

insulators (9, 10), which defines the strong locking relation between spin profile and momentum direction. Here, we will show104

that non-trivial strong spin-momentum locking of elastic wave exists at the boundary of solid. It is well known that there exists105

one kind of surface wave usurf on solid, Rayleigh wave, which is combination of longitudinal and transverse waves and has the106

evanescent wave form normal to solid surface. The spin angular momentum density ssurf of Rayleigh wave shown in Fig. S4(a)107
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Fig. S4. Strong spin-momentum locking phenomena on elastic surface mode.(a) Spin densities of Rayleigh wave vs momentum, which shows that spin-momentum locking. (b)
Dispersion relationship of Rayleigh wave on aluminum surface, the color represent the sign of their corresponding spin densities: Red: ssurf,z > 0 and Blue: ssurf,z < 0.

reveal strong spin-momentum locking, similar to that in QSHE (7, 8) and 3D topological insulators for electrons (11, 12): 108

The Rayleigh wave with k > 0 and k < 0 will have opposite spin angular momentum densities ssurf,z > 0 and ssurf,z < 0 109

shown in Fig. S4(b). Thus, similar with light, the surface mode of solid, Rayleigh wave with evanescent form exhibits counter 110

propagating opposite-spin edge modes, i.e., the QSHE of elastic wave. 111

A. Not robust surface elastic wave . Here, we will discuss the robustness of the surface elastic mode. As we know, one of 112

the basic models of 3D topological insulators is based on the Dirac equation for a relativistic electron (13, 14). A planar 113

interface between two half-spaces, where electrons are described by the Dirac equations with positive and negative masses, 114

supports topological surface states. These modes are known as Jackiw-Rebbi surface modes (13, 14). And their forward- 115

and backward-propagating waves have orthogonal polarization spinors, which can be related to the fact that the topological 116

Jackiw-Rebbi modes represent helical massless fermions and they have suppressed backscattering and are robust against 117

disorder (11, 12). As discussed above, the surface elastic wave modes, Rayleigh wave, can have the main feature of QSHE: 118

spin-momentum locking. However, unlike the topological Jackiw-Rebbi modes, the surface elastic wave modes, similar to the 119

QSHE of light (3), have a fixed spinor that is independent of the momentum. This is related to the fact that the surface 120

elastic wave modes are not helical fermion, but have usual scattering properties and are not robust against impurities or 121

disorder. Thus, one can say that surface elastic modes exhibit unidirectional spin-related transport (QSHE) but with trivial Z2 122

topological properties (Cspin2 mod 2 = 0, Cspin = CLspin + CTspin = 4). 123

B. Spin-selected elastic wave routing. Non-trivial spin-momentum locking have shown to occur on the surface (boundary) of 124

an isotropic solid. The similar spin-controlled excitation behavior can be also observed in anisotropic materials, interfacing 125

with isotropic materials (15). Different from isotropic homogeneous solid, anisotropic materials may hold longer wave 126

vectors compared with isotropic materials. When the beam in anisotropic media with large wave vectors meets the interface 127

(set as y = 0) separating isotropic media and anisotropic media, it will induce total reflection and induce evanescent 128

wave in isotropic media side (y < 0). This evanescent form of surface wave results in the circularly polarized profile: 129

u = uL,0(k/τL,−i, 0)eikx+τLy + uT,0(ik/τT , 1, 0)eikx+τT y. For this profile in the isotropic medium side, it will have the 130

non-trivial spin density as: 131

s = 〈u|Ŝ|u〉 ∝ −k
(
|uL,0|2

τL
+ |uT,0|

2

τT

)
, [17] 132

where τL,T =
√
k2 − k2

L,T , and kL,T = ω
vL,T

. The key requirement on the spin-controlled elastic routing is the hyperbolic-like 133

dispersion shown in Fig. S5(a), which is similar with the necessary condition for directional excitation of modes in hyperbolic 134

optical metamaterials (15). 135

We note that although the selective elastic wave routing is in the anisotropic medium side, the chiral excitation of elastic spin 136

is characterized in the isotropic medium side. Different spin excitation in the isotropic side selectively couples with the different 137

directional wave routing in the anisotropic side through the selective evanescent waves of different spins at the interface. For 138

the critical angles in hyperbolic dispersion, their densities of states (DOS) will become infinite, which implies that the emitted 139

wave will propagate within the extraordinary modes forming a cone with an opening critical angles. And meanwhile, these high 140

DOS modes in a hyperbolic metamaterial would be made up of the superposition of different components with k > kL,T or 141

k < −kL,T , which induces evanescent waves in isotropic media with non-trivial spin. Thus in hyperbolic-like elastic anisotropic 142

materials, the spin-related strong coupling strength between circularly polarized elastic point load and these high DOS modes 143

will realize the spin-selected elastic wave routing. 144
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Fig. S5. Non-trivial spin Hall Effect (SHE) of elastic wave in bulk can be achieve in anisotropic media interfaced with isotropic media. (a) The equifrequency relationship of
elastic wave in anisotropic media, which has the similar characteristic of hyperbolic relationship. (b) The spin angular momentum density s for evanescent wave in isotropic
media side. In the gray area, the spin angular momentum density is degenerated and can not induce obvious coupling with high DOS modes in hyperbolic-like elastic media.
But outside the gray area, the evanescent wave form will carry non-trivial spin and meanwhile induce strong spin-selected couplings.
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If a circularly polarized point load is placed in isotropic side, in near-field proximity to the interface of the anisotropic elastic 145

media with hyperbolic-like dispersion, shown in Fig.(4) of the main text, the wave emission will be efficiently coupled to the 146

high local density of states (LDOS) modes. By calculating the spin angular momentum density of evanescent wave in isotropic 147

material side based on Eq. 17, shown in Fig. S5(b), the induced evanescent wave possesses strong spin-momentum locked 148

phenomena: different momentum directions with opposite spins. Thus when the circularly polarized point load excites the 149

evanescent wave with non-trivial spin, and then they will highly couple with the corresponding high LDOS modes and excite 150

one wave radiation propagating along a critical angle in hyperbolic-like elastic media. Similar with the spin-controlled results 151

on boundary of isotropic media, the elastic spin s is responsible for unidirectional bulk elastic wave transport in anisotropic 152

media, which can be regarded as elastic spin Hall effect (SHE). Elastic SHE can serve as a highly efficient approach to achieve 153

the tunable confined elastic energy and information transport with selected directions. The anisotropic materials discussed here 154

is mainly based on the elastic metamaterials, which can realize the arbitrary elastic parameters by designing micro-structure. 155

C. Comparing with QSHE of light. Comparing with QSHE of optics (3), there are several unique properties in elastic wave 156

spin: (i) For elastic wave, the solid can support longitudinal propagation wave form in bulk, the counterpart of which can 157

not be found in optics since electromagnetic waves are transverse. Longitudinal component in elastic waves contributes to 158

both the orbital and spin angular momentum. And more specially, the longitudinal components can mix with the transverse 159

components in elastic waves. Therefore, although the optic wave spin density only contains the contributions from transverse 160

wave, s = sT , the total elastic wave spin will additionally include the terms from longitudinal wave and the hybrid spin from 161

longitudinal-transverse mixing, s = sL + sT + sh. (ii) For optics, the surface plasmon modes can only be supported on the 162

interface of two media with some specific conditions, i.e, metal and vacuum. For elastic wave, the surface mode, Rayleigh wave, 163

appears on the solid boundary with free boundary conditions. The outside space does not support elastic wave, so that is a 164

perfect elastic insulator. The Rayleigh wave can only exist in the single solid side of the boundary. (iii) For light, transverse 165

electric field (TE) and transverse magnetic field (TM), reflects the dual symmetry of electromagnetic waves. For the surface 166

mode of light, it merely holds either TE or TM mode (3), so the non-trivial QSHE is based on the dual-symmetry broken on 167

interface. But for elastic wave, only Rayleigh wave will be considered for analyzing the spin, with a vanishing hybrid spin from 168

longitudinal-transverse mixing, but with a restricted dispersion between longitudinal and transverse wave components. 169

4. Experimental scheme for QSHE of elastic wave 170

In this section, we provide an experimental scheme to observe the QSHE of elastic wave. To excite elastic wave with non-trivial 171

spin, we should realize the circularly polarized point load firstly, namely F = Fxex + iFyey. Here, we use four elastic point 172

sources with different phases to induce effective excitation effects of circularly polarized point load. The similar experimental 173

scheme can also be found in electromagnetic wave (15, 16). In practices, the circularly polarized elastic point load can be 174

realized by piezoelectric ceramics or laser beam array with different excitation phases. Here, we take piezoelectric ceramics 175

scheme as example, shown in Fig. S6. Their phase patterns can be realized by introducing delays in the external AC driving 176

circuits (for laser beam, it will be the optical lens system). With placing them into the cavities on the surface of aluminum 177

shown in Fig. S6(b), one can excite the chiral elastic wave with non-trivial spin locally. It should be mentioned that the 178

geometrical size of point source arrays would make influences about the final effective excitation effect. Actually, its size 179

should be smaller than one wavelength of elastic wave to improve performances, so-called sub-wavelength regime, similar to the 180

electromagnetic case (15, 16). One can reduce the size of sources or make experiments in lower frequency. It is easy to reduce 181

the size for laser beam through the focusing function of optical lens. 182

To show the validity of this approach, we simulate the elastic field on aluminum excited by finite size source arrays in 183

Fig. S6. From the numerical simulations for real cases, we can see that surface elastic wave will propagate along opposite 184

directions for different phase patterns, which reflects the spin-momentum locking of elastic waves with opposite spins. 185

5. Simulation details 186

All numerical results are obtained by commercial finite element analysis software (COMSOL). The materials used in the 187

simulations of Fig. 4(a,b) of the main text are aluminum, which has mass density ρ = 2700kg/m3, Young’s modulus E = 70GPa, 188

and Poisson’s ratio ν = 0.33. 189

In Fig. 4(a) of the main text, the simulation area is the square block with side length 40cm. Two chiral point loads are 190

placed on the center of solid with a distance 1cm from each other. All boundaries are all set as low-reflecting boundary. To 191

realize different circular-polarized point load, we set Fx = 1/
√

2N , and Fy = ±i/
√

2N to excite the corresponding waves with 192

different spin: + for spin up, - for spin down. The exciting frequency is f = 100kHz. 193

In Fig. 4(b) of the main text, the simulation area is the rectangle block with width 100cm and height 40cm. The point 194

load is placed on the edge of solid with free boundary condition. Other boundaries are all set as low-reflecting boundary. The 195

exciting frequency is f = 100kHz. 196

In Fig. 4(c) of the main text, the simulation area is the square block with side length 100cm. The top block is anisotropic 197

material and the bottom block is isotropic material. A circular-polarized point load is placed inside the isotropic solid and a 198

short distance (≈ 4cm) from the interface between anisotropic material and isotropic material. The stiffness tensor used for the 199
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Fig. S6. Experimental scheme for QSHE of elastic wave. (a) Piezoelectric ceramics is driven by AC voltages with frequency ω and phase φi. (b) Four piezoelectric ceramics
with different excitation phases are placed into four cavities on the surface of aluminum. The φ1, φ2, φ3 and φ4 are their excitation phases. This scheme will induce effective
circularly polarized point load which would carry non-trivial spin density. (c) The amplitude of elastic field excited by these four piezoelectric ceramics. Their excitation phases
are labeled with white digitals in plot: φ1 = 0, φ2 = −π2 , φ3 = −π and φ4 = − 3π

2 . After placed this array into the boundary of aluminum block, it will excite uni-directional
surface elastic wave. (d) φ1 = 0, φ2 = π

2 , φ3 = π and φ4 = 3π
2 . The uni-directional excitation of boundary mode can be realized by using different phase patterns, which

reflects spin-momentum locking relationship (QSHE of elastic wave). The similar experimental schemes havs also been found in electromagnetic wave (15, 16).
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anisotropic material is: 200

Caniso,eff = C0


0.17 0.33 0.33 0 0 0
0.33 0.5 0.33 0 0 0
0.33 0.33 0.67 0 0 0

0 0 0 0.17 0 0
0 0 0 0 0.17 0
0 0 0 0 0 0.17

 , [18] 201

where C0 = 5.75GPa, ρ = 2.7g/cm3. For the isotropic material, it is: 202

Ciso,eff = C0


0.67 0.33 0.33 0 0 0
0.33 0.67 0.33 0 0 0
0.33 0.33 0.67 0 0 0

0 0 0 0.17 0 0
0 0 0 0 0.17 0
0 0 0 0 0 0.17

 . [19] 203

The exciting frequency of sources is set as f = 5kHz. 204
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