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Figure S1. Pre-integration sensing coincides with phosphorylation of IRF3 and occurs prior 

to early reporter expression during HIV-GFP infection. Related to Figure 1.  

(A) Flow cytometry plots of CD86 vs GFP expression in DCs after infection with HIV-GFP +/- RAL 

for the indicated times. (MOI = 1.5)  

(B) qPCR of accumulating HIV-1 DNA and RNA during infection in DCs +/- RAL. n = 3 donors.  

(C) Immunoblots of whole cell lysates 24 h after infection with HIV-GFP +/- RAL or EFV. Phospho-

specific antibodies detect phosphorylated S366 for STING, S172 for pTBK1, and S396 for IRF3. 

(D) Immunoblots of nuclear/cytoplasmic fractionations of DCs treated for the indicated times in the 

presence or absence of RAL or EFV. Phospho-specific antibodies detect S396 for IRF3 and Y701 

for STAT1. 10 µg of protein was loaded in each well and blots for nuclear and cytoplasmic fractions 

were developed under identical conditions for the antibodies shown. Under these conditions, the 

antibody used for detecting total IRF3 was less sensitive than anti-p-IRF3 when immunoblotting for 

IRF3 in the nuclear fraction, possibly due to masking of the epitope.  GAPDH and Histone H3 

serve as controls for fractionation of the cytoplasm and nucleus, respectively.  The authors note 

that the appearance of GAPDH in the nuclear fraction for the 8 h HIV-GFP time point in samples 

from both donors shown could be a coincidental technical effect, as this was not observed in 

sample preparations of other donors.  

(E) qPCR of ISG15 expression during infection in DCs in the presence or absence of RAL and 

EFV. n = 4 donors.  

(F) DCs at day 4 after differentiation were infected with replication competent CD4/CCR5-tropic 

HIV-1 (2.5 ng/ml p24) either with or without Vpx.  DC media was replaced at day 1 and day 2 after 

infection. Data show ELISA of p24 concentration in DC supernatants at 72 h post inoculation and a 

time course of ISG15 expression in matched donors.  n = 4 donors. 

Panels with pooled data show mean +/- SEM. See also Figure S1. 
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Figure S2. IFNs and ISGs are induced to different degrees before and after HIV-1 integration. 

Related to Figure 2.  

(A) Bioactive type I IFN and (B) NF-κB activity in supernatants from DCs exposed to increasing 

titers of HIV-GFP, HIV-GFP +RAL, HIV-GFP +EFV (n = 6 donors); or R848 as shown (n = 4 

donors); mean +/- SEM. 

(C) Reactome pathway analysis of up-regulated transcripts identified from a mixed model 

regression analysis (FDR < 0.01 and absolute log2 fold change > 1). 

(D) Reactome pathway analysis of down-regulated transcripts identified as in (A). 

(E) Array data plotted for individual genes in DCs during HIV-GFP infection +/- RAL over the 

depicted time course (IFNs and ISGs that are differentially induced, canonical IRF-dependent 

ISGs, genes involved in lipid metabolism that are repressed (ACOX1, ACSL5, ACADSB, PPARD), 

housekeeping genes (PGK1, TBP), and other genes implicated in the innate response (IRF3, 

TNF)). Boxes indicate mean and range of log2-normalized expression. n = 2 donors. 

(F) Hierarchical Ordered Partitioning and Collapsing Hybrid (HOPACH) clustering of genes from 

microarray analysis. Heat maps are row-scaled with colors representing fold-change from mock-

infected DCs. Hallmark IFN genes annotated by the Molecular Signatures Database, or classic 

ISGs (Schoggins et al. 2011) are denoted with orange or purple hash marks, respectively. 
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Figure S3. Blocking integration suppresses HIV-mediated DC activation and open chromatin 

responses. Related to Figure 3.  

(A) Flow cytometry of DCs from Donors 2 and 3 that were prepped for ATAC-seq. (Donor 1 is 

shown in Figure 6B). DC were infected with HIV-GFP in the presence of Vpx +/- RAL for 16, 32, or 

48 h, with plots depicting CD86 vs GFP expression.  

(B) Ingenuity Pathway Analysis software was used to identify likely Diseases and Biological 

Functions associated with open chromatin changes in HIV-infected DCs. Genes found in ATAC-

seq peaks that were differentially accessible compared to mock (p < 0.05) were used for the 

analysis. Heat maps are displayed as z scores for the relevant Functions and Pathways. Rows 

were sorted from top to bottom based on scores for HIV-GFP analysis at 48 h.  

(C) Canonical Pathways associated with differential open chromatin peaks identified from Ingenuity 

Pathway Analysis of ATAC-seq as in (B). 

(D) ATAC-seq gene-associated peak values for the housekeeping genes PGK1 and TBP or the 

ISGs shown were graphed for the conditions from (A) as counts per million reads (CPM). Peaks for 

APOBEC3A and IFIT3 were scaled by a factor of 3 in relation to other genes.  
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Figure S4. Type I IFN responses triggered by HIV-GFP or cGAMP are boosted by unrelated 

innate stimuli. Related to Figure 4.  

(A) Bioassay of type I IFN in supernatants from DCs that were primed for 28 h with HIV-GFP at an 

MOI of 0.5 or 1, then boosted with the indicated agonists overnight. Experiments were performed 

in parallel on DCs from 4 unique donors. Controls for agonist concentration = 0 (black circles) were 

performed once for each donor and plotted on each graph for reference.  

(B) Flow cytometry of DCs stimulated as in (A), plotted as CD86 vs GFP. Plots are representative 

from 1 of 4 donors.  

(C) DCs were treated with or without Vpx, then primed with either cGAMP or HIV-GFP as shown 

(Figure 4C, 4E), and then challenged with R848 (3 µg/ml) overnight.  Graphs indicate bioactive 

type I IFN from DC supernatants. n = 4 donors. 

(D) Type I IFN activity from DC supernatants that were primed for 28 h with HIV-GFP in the 

presence of EFV or RAL compared to IN-D116A, DeltaGag, or LKO-GFP, that were then treated 

with control (media) or boosted with R848 (3 µg/ml) overnight h. n = 5 donors.  

(E). qPCR results plotted as heatmap of a prime-boost dose response matrix using cGAMP and 

PAM3. DCs were primed with 1 µg/ml 2,3-linked cGAMP for 7 h and boosted +/- PAM3 (100 ng/ml) 

for 1 h. Heatmaps represent qPCR data from 1 of 2 donors.  

(F) The indicated stimuli on the x-axis were administered directly to type I IFN reporter cells or NF-

κB reporter cells to determine (1) if these innate agonists could directly stimulate reporter activity, 

and (2) to evaluate the specificity of the reporter systems to distinguish IFN- and NF-κB-activating 

cytokines.  Treatments were used at the following concentrations: HIV-GFP (MOI 15), TNFα (500 

ng/ml), cGAMP (5 µg/ml), PAM3 (100 ng/ml), R848 (3 µg/ml), IFNa2a (as shown), and IL-1β (as 

shown).  Reporter activity was scored after 7 h (see STAR METHODS).   

(G) Bioactive type I IFN from DC supernatants after priming cells with HIV-GFP or cGAMP as 

indicated (Figure 4C, 4E) and then challenging with either PAM3 (100 ng/ml), R848 (3 µg/ml), or 

increasing doses of cGAMP.  Data represent mean +/- SEM. 



C

kDa

70

40

70

IB: cGAS

MAVS

MyD88

STING

actin

40

40

THP-1
em

py v
ec

tor

cG
AS K

O5

cG
AS K

O6

MAVS K
O1

MAVS K
O2

MyD
88

 K
O5

MyD
88

 K
O7

STIN
G K

O5

STIN
G  K

O7

mock
HIV-GFP
+RAL
PAM3
HIV-GFP
+RAL +PAM3

E

LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
1

10

100

1000

re
la

tiv
e 

ex
pr

es
si

on

IFNB1

LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7

1

10

100

re
la

tiv
e 

ex
pr

es
si

on

ISG15

LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
0.0001

0.001

0.01

0.1

1

re
la

tiv
e 

ex
pr

es
si

on

IFNL1

LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
LCV2

cG
AS K

O5

MAVS KO1

MYD88
 KO7

STIN
G K

O7
0.1

1

10

100

1000

re
la

tiv
e 

ex
pr

es
si

on

IL1B

co
ntro

l s
h

cG
AS sh

PKR sh

TRIM
5 s

h

1

10

100

IF
N

 (U
/m

l)

LPS
mock

co
ntro

l s
h

cG
AS sh

MAVS sh

TRIM
5 s

h

1

10

100

1000

IF
N

 (U
/m

l)

polyI:C
mock

A DC: B THP-1:

0 4 8 16 20 24
1

10

100

1000

Time (h)

IF
N

 (U
/m

l)

mock
HIV-GFP(G)
HIV-GFP(G) +EFV
HIV-GFP(G) +RAL

0 4 8 16 20 24
0

50000

100000

150000

Time (h)

re
la

tiv
e 

ex
pr

es
si

on

GFP

D
THP-1: cGAS KO5 cGAS KO6

insertiondeletion insertiondeletion

Figure S5

THP-1:



Figure S5. cGAS/STING and MYD88 are required for priming and boosting of IFN responses, 

respectively. Related to Figure 5.  

(A) Bioactive type I IFN in supernatants from DCs transduced with shRNAs against the indicated 

targets that were transfected with polyI:C (100 ng/ml) or treated with LPS (1 ng/ml) for 16 h.  

(B) Bioactive type I IFN and qPCR of GFP reporter expression in supernatants from THP-1 cells 

infected with HIV-GFP +/- EFV or RAL for the indicated times. n = 3. 

(C) Immunoblots of lysates from THP-1 populations modified using the lentiCRISPR system. Two 

unique sgRNAs are shown for each target (cGAS, MAVS, MyD88, or STING), along with the vector 

control (LCV2).  

(D) Tracking of Indels by Decomposition (TIDE) sequencing analysis of THP-1 cell pools 

transduced with lentiCRISPR clones cGAS KO5 and KO6 to assess target site perturbation prior to 

selection and population expansion.  Red bars indicate indel formation as the percent of cells in the 

population containing insertions or deletions near the expected cut site. The anti-cGAS antibody 

used in panel (C) (Cell Signaling, Cat #15102S) is reported to bind an epitope surrounding Ala19 of 

cGAS, which is upstream of the region perturbed by CRISPR/Cas9 gRNA for cGAS KO6 (Arg28). 

Therefore, a perturbed cGAS or a frameshifted product generated from cGAS KO6 should still be 

detected by the anti-cGAS antibody, as seen for cGAS KO6 in panel (C) with a band migrating just 

below wild type.   

(E) THP-1 CRISPR cells were primed with HIV-GFP+RAL or left unprimed (mock) for 28 h and 

then treated with vehicle or PAM3 (100ng/ml) for 1 h.  Expression levels of IFNB1, IFNL1, ISG15, 

and IL1B were assessed by qPCR relative to GAPDH.  n = 3.  

Panels with pooled data show mean +/- SEM. 
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Figure S6. Availability of IRF3 sets the limit for HIV-mediated innate responses. Related to 

Figure 6. 

(A) DCs were derived from CD14+ monocytes that were transduced with a control vector 

expressing puromycin (LKO.1), IRF3 shRNA, or an IRF3 overexpression vector. At day 4, DCs 

were challenged with HIV-GFP at MOIs of 0.5, 1.5, or 5 and analyzed by flow cytometry at 48 h to 

assess CD86 and GFP. Plots represent 1 of 4 donors.  

(B) Immunoblots of DC whole cell lysates following transduction with LKO.1, IRF3 shRNA, or an 

IRF3 overexpression vector.  

(C) Plots showing GFP, %CD86+, and bioactive type I IFN activity, 48 h after HIV-GFP infection at 

an MOI of 0.15, 0.5, 1.5, and 5 in DCs transduced with LKO.1 or a vector overexpressing IRF3. n = 

4 donors (GFP and %CD86+) or 7 donors (IFN).  

(D) Bioactive type I IFN activity from DC supernatants from indicated conditions after 48 h of 

stimulation. HIV-GFP MOI=5; R848 (3 µg/ml) was added 28 h after infection. n = 4 donors.  

(E) NF-κB activity from supernatants of DCs treated under the conditions shown in (D). n = 4 

donors. 

(F) Bioactive type I IFN activity from supernatants of DCs treated under the conditions shown, 

similar to (D), comparing overexpression of IRF3 to the S396A mutation.  

(G) qPCR of ISG15, CXCL10, and IFNB1 expression from DCs infected with HIV-GFP under the 

conditions shown for 28 h.  

(H) Immunoblots of whole cell lysates from DCs that had been transduced with a control vector 

(LKO.1) or an IRF3 overexpression vector which were challenged at day 4 with HIV-GFP +/- RAL 

for 24 h.  Blots show levels of total and phosphorylated IRF3 (p-IRF3) under the conditions shown 

compared to actin controls. 

Panels with pooled data show mean +/- SEM. 

 

 



A B
Sensing of HIV-1 replication Elaboration of the cGAS/STING axis through MyD88

New RNA

Plasma Membrane

Cytosol

ssRNA

Gag

New virus 
components

AZT
EFV

amplified cGAS sensing

IFNB1/IFNL1

cGAMP

cGAS

STING
TBK1

IRF3

Nucleus

ER

cDNA

Integration

ISGs TNF/IL1B

NF- B

unmasking viral cDNA
or host damage?

IFNB1/IFNL1

cGAMP

cGAS

STING
TBK1

IRF3

ER

Plasma Membrane

Cytosol

ssRNA

cDNA

Integration

NF- B

Endosome

TNF/IL1BISGs
Nucleus

MyD88

TLR

TLR

IL-1R

Figure S7

“Prime”

“Boost”



 
Figure S7. Model for how HIV replication and MyD88 stimulation elaborate STING-mediated 

IFN responses. Related to Figure 7. 

(A) HIV cDNA is inefficiently detected by cGAS during entry. Replication of virus increases this 

response by either unmasking preexisting cDNA, triggering collateral host damage that is sensed 

by cGAS, or a combination thereof. 

(B) Low IFN responses driven by the cGAS/STING axis (either during HIV infection or exogenous 

cGAMP administration) can be enhanced by stimulation through unrelated pathways, such as 

those activating MyD88. 
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