Electronic Supporting Information

## Hierarchiral Tandem Assembly of Planar [3×3] Building Units into {3×[3×3]} Oligomers: Mixed-Valency, Electrical Conductivity and Magnetism

Fei Yu,<sup>†</sup> Mohamedally Kurmoo,<sup>§</sup> Gui-Lin Zhuang,<sup>‡</sup> and Jing-Lin Zuo<sup>\*,†</sup>

<sup>†</sup> State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China.

§ Institut de Chimie de Strasbourg, Université de Strasbourg, CNRS-UMR 7177, 4 rue Blaise Pascal, 67008 Strasbourg, France.

<sup>‡</sup>College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China.

\*Email: zuijl@nju.edu.cn

|                                        |          | Cu <sub>9</sub>                        |          |
|----------------------------------------|----------|----------------------------------------|----------|
| Cu1-N1                                 | 2.025(5) | Cu1-N2                                 | 1.924(4) |
| Cu1-N15                                | 1.937(4) | Cu1-N16                                | 1.969(5) |
| Cu2-N3                                 | 1.967(5) | Cu2-N3 <sup>i</sup>                    | 1.967(5) |
| Cu2-N4                                 | 1.952(5) | Cu2-N4 <sup>i</sup>                    | 1.952(5) |
| Cu3-N5                                 | 1.911(5) | Cu3-N6                                 | 2.020(5) |
| Cu3-N9                                 | 1.968(5) | Cu3-N10                                | 1.931(5) |
| Cu4-N7 <sup>i</sup>                    | 2.066(6) | Cu4-N7                                 | 2.066(6) |
| Cu4-N8 <sup>i</sup>                    | 1.917(6) | Cu4-N8                                 | 1.917(6) |
| Cu5-N11                                | 2.011(5) | Cu5-N12                                | 2.036(6) |
| Cu5-N13 <sup>i</sup>                   | 2.047(5) | Cu5-N14 <sup>i</sup>                   | 2.006(5) |
| Cu6-N17 <sup>i</sup>                   | 1.919(5) | Cu6-N17                                | 1.919(5) |
| Cu6-N18                                | 2.053(7) | Cu6-N18 <sup>i</sup>                   | 2.053(7) |
| N2-Cu1-N1                              | 81.1(2)  | N2-Cu1-N15                             | 161.4(2) |
| N2-Cu1-N16                             | 103.1(2) | N15-Cu1-N1                             | 104.6(2) |
| N15-Cu1-N16                            | 80.8(2)  | N16-Cu1-N1                             | 150.0(2) |
| N3-Cu2-N3 <sup>i</sup>                 | 149.0(3) | N4-Cu2-N3                              | 81.6(2)  |
| N4 <sup>i</sup> -Cu2-N3 <sup>i</sup>   | 81.6(2)  | N4 <sup>i</sup> -Cu2-N3                | 106.6(2) |
| N4-Cu2-N3 <sup>i</sup>                 | 106.6(2) | N4-Cu2-N4 <sup>i</sup>                 | 149.9(3) |
| N5-Cu3-N6                              | 80.9(2)  | N5-Cu3-N9                              | 103.6(2) |
| N5-Cu3-N10                             | 161.4(2) | N9-Cu3-N6                              | 150.3(2) |
| N10-Cu3-N6                             | 104.2(2) | N10-Cu3-N9                             | 80.9(2)  |
| N7 <sup>i</sup> -Cu4-N7                | 140.6(3) | N8-Cu4-N7                              | 80.9(2)  |
| N8 <sup>i</sup> -Cu4-N7 <sup>i</sup>   | 80.9(2)  | N8 <sup>i</sup> -Cu4-N7                | 105.2(2) |
| N8-Cu4-N7 <sup>i</sup>                 | 105.2(2) | N8 <sup>i</sup> -Cu4-N8                | 162.2(3) |
| N11-Cu5-N12                            | 80.8(2)  | N11-Cu5-N13 <sup>i</sup>               | 141.2(2) |
| N12-Cu5-N13 <sup>i</sup>               | 114.7(2) | N14 <sup>i</sup> -Cu5-N11              | 106.3(2) |
| N14 <sup>i</sup> -Cu5-N12              | 146.0(2) | N14 <sup>i</sup> -Cu5-N13 <sup>i</sup> | 80.9(2)  |
| N17 <sup>i</sup> -Cu6-N17              | 160.5(3) | N17-Cu6-N18                            | 81.0(2)  |
| N17 <sup>i</sup> -Cu6-N18              | 105.3(2) | N17-Cu6-N18 <sup>i</sup>               | 105.3(2) |
| N17 <sup>i</sup> -Cu6-N18 <sup>i</sup> | 81.0(2)  | N18 <sup>i</sup> -Cu6-N18              | 143.2(3) |

Table S1. Selected bond lengths (Å) and angles (°) for  $Cu_9$  and  $Cu_{27}$ .

|           | C         | Cu <sub>27</sub> |          |
|-----------|-----------|------------------|----------|
| Cu1-N1    | 2.007(5)  | Cu1-N2           | 2.037(5) |
| Cu1-N19   | 1.995(5)  | Cu1-N20          | 2.061(5) |
| Cu1-O2    | 1.970(9)  | Cu1-O2'          | 2.031(6) |
| Cu2-N3    | 1.994(5)  | Cu2-N4           | 2.221(5) |
| Cu2-N25   | 2.031(5)  | Cu2-N26          | 1.981(5) |
| Cu2-N109  | 1.969(6)  | Cu2-C289         | 1.969(6) |
| Cu3-N5    | 1.963(5)  | Cu3-N6           | 2.310(5) |
| Cu3-N31   | 2.069(5)  | Cu3-N32          | 1.940(5) |
| Cu3-N111  | 1.950(7)  | Cu3-C291         | 1.950(7) |
| Cu4-N7    | 2.022(5)  | Cu4-N8           | 1.988(5) |
| Cu4-N21   | 1.972(5)  | Cu4-N22          | 2.223(5) |
| Cu4-N118  | 1.992(6)  | Cu4-C298         | 1.992(6) |
| Cu5-N9    | 1.956(5)  | Cu5-N10          | 1.960(5) |
| Cu5-N27   | 1.954(5)  | Cu5-N28          | 1.958(5) |
| Cu6-N11   | 1.924(5)  | Cu6-N12          | 2.072(5) |
| Cu6-N33   | 1.941(5)  | Cu6-N34          | 1.969(5) |
| Cu7-N13   | 2.058(6)  | Cu7-N14          | 1.944(5) |
| Cu7-N23   | 1.956(5)  | Cu7-N24          | 2.285(6) |
| Cu7-N120  | 1.971(7)  | Cu7-C300         | 1.971(7) |
| Cu8-N15   | 1.937(5)  | Cu8-N16          | 1.980(5) |
| Cu8-N29   | 1.905(5)  | Cu8-N30          | 2.071(5) |
| Cu9-N17   | 1.943(5)  | Cu9-N18          | 2.121(6) |
| Cu9-N35   | 1.927(5)  | Cu9-N36          | 2.136(5) |
| Cu10-N37  | 1.970(5)  | Cu10-N38         | 2.044(5) |
| Cu10-N55  | 2.000(5)  | Cu10-N56         | 2.060(5) |
| Cu10-O1   | 2.034(10) | Cu10-O1'         | 2.005(6) |
| Cu11-N39  | 1.961(5)  | Cu11-N40         | 2.227(5) |
| Cu11-N61  | 2.014(5)  | Cu11-N62         | 1.992(5) |
| Cu11-N113 | 1.984(6)  | Cu11-C293        | 1.984(6) |
| Cu12-N41  | 1.946(6)  | Cu12-N42         | 2.254(7) |
| Cu12-N67  | 2.048(5)  | Cu12-N68         | 1.992(5) |
| Cu12-N115 | 1.966(7)  | Cu12-C295        | 1.966(7) |

| Cu13-N43  | 2.023(5)  | Cu13-N44  | 1.999(5) |
|-----------|-----------|-----------|----------|
| Cu13-N57  | 1.972(5)  | Cu13-N58  | 2.257(6) |
| Cu13-N110 | 1.982(6)  | Cu13-C290 | 1.982(6) |
| Cu14-N45  | 1.942(5)  | Cu14-N46  | 1.960(5) |
| Cu14-N63  | 1.969(5)  | Cu14-N64  | 1.969(5) |
| Cu15-N47  | 1.895(5)  | Cu15-N48  | 2.070(5) |
| Cu15-N69  | 1.927(6)  | Cu15-N70  | 1.984(5) |
| Cu16-N49  | 2.066(7)  | Cu16-N50  | 1.924(6) |
| Cu16-N59  | 1.958(6)  | Cu16-N60  | 2.219(7) |
| Cu16-N112 | 1.946(6)  | Cu16-C292 | 1.946(6) |
| Cu17-N51  | 1.938(6)  | Cu17-N52  | 1.978(6) |
| Cu17-N65  | 1.925(5)  | Cu17-N66  | 2.070(6) |
| Cu18-N53  | 1.900(6)  | Cu18-N54  | 2.113(6) |
| Cu18-N71  | 1.921(5)  | Cu18-N72  | 2.124(7) |
| Cu19-N73  | 2.004(5)  | Cu19-N74  | 2.035(5) |
| Cu19-N91  | 2.004(5)  | Cu19-N92  | 2.059(5) |
| Cu19-O3   | 2.042(10) | Cu19-O3'  | 2.061(6) |
| Cu20-N75  | 1.970(5)  | Cu20-N76  | 2.230(5) |
| Cu20-N97  | 2.027(5)  | Cu20-N98  | 1.977(5) |
| Cu20-N117 | 2.003(6)  | Cu20-C297 | 2.003(6) |
| Cu21-N77  | 1.955(5)  | Cu21-N78  | 2.296(5) |
| Cu21-N103 | 2.048(6)  | Cu21-N104 | 1.937(5) |
| Cu21-N119 | 1.956(6)  | Cu21-C299 | 1.956(6) |
| Cu22-N79  | 2.022(5)  | Cu22-N80  | 1.972(5) |
| Cu22-N93  | 1.975(5)  | Cu22-N94  | 2.251(5) |
| Cu22-N114 | 1.988(6)  | Cu22-C294 | 1.988(6) |
| Cu23-N81  | 1.962(5)  | Cu23-N82  | 1.941(5) |
| Cu23-N99  | 1.964(5)  | Cu23-N100 | 1.945(5) |
| Cu24-N83  | 1.910(5)  | Cu24-N84  | 2.074(5) |
| Cu24-N105 | 1.939(5)  | Cu24-N106 | 1.975(5) |
| Cu25-N85  | 2.052(6)  | Cu25-N86  | 1.937(5) |
| Cu25-N95  | 1.957(5)  | Cu25-N96  | 2.226(5) |
| Cu25-N116 | 1.998(6)  | Cu25-C296 | 1.998(6) |

| Cu26-N87    | 1.939(5) | Cu26-N88    | 1.971(5) |
|-------------|----------|-------------|----------|
| Cu26-N101   | 1.919(5) | Cu26-N102   | 2.071(5) |
| Cu27-N89    | 1.926(5) | Cu27-N90    | 2.153(5) |
| Cu27-N107   | 1.918(5) | Cu27-N108   | 2.159(5) |
| N109(C289)- | 1 206(8) | N111(C291)- | 1 104(8) |
| C290(N110)  | 1.200(8) | C292(N112)  | 1.194(8) |
| N113(C293)- | 1 160(0) | N115(C295)- | 1 1/7(9) |
| C294(N114)  | 1.100(0) | C296(N116)  | 1.14/(8) |
| N117(C297)- | 1.154(7) | N119(C299)- | 1 160(8) |
| C298(N118)  | 1.134(7) | C300(N120)  | 1.100(0) |
|             |          |             |          |

Symmetry code for **Cu**<sub>9</sub>: (i) -*x*+1, *y*, -*z*+1/2; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, *y*, -*z*+1/2.

 Table S2. Hydrogen-bond geometry (Å, °) for Cu<sub>9</sub>. (D, donor atom; A, acceptor atom).

| D-H···A                   | $D \cdots A$ | D-H···A |
|---------------------------|--------------|---------|
| C45-H45…O3 <sup>ii</sup>  | 3.521(18)    | 165     |
| C31-H31…O1 <sup>iii</sup> | 3.32(3)      | 135     |
| C42-H42…O3 <sup>ii</sup>  | 3.428(17)    | 158     |
| C49-H49A…O4 <sup>iv</sup> | 2.66(4)      | 139     |

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+3/2, -*y*+3/2, -*z*+1; (iv) -*x*+3/2, -*y*+5/2, *z*+1.



Fig. S1. Experimental (Expt.) and simulated (Simu.) PXRD patterns of (a) Cu<sub>9</sub> and (b) Cu<sub>27</sub>.



Fig. S2. Thermogravimetric analyses of  $Cu_9$  and  $Cu_{27}$  under  $N_2$ . The heating rate was 5 °C min<sup>-1</sup> from 40 to 800 °C.



**Fig. S3**. Views of the crystal structure of (a)  $Cu_9$  and (b)  $Cu_{27}$ .  $SO_4^{2-}$  anion, and CH<sub>3</sub>OH for  $Cu_9$ , CH<sub>3</sub>CN for  $Cu_{27}$  molecules are omitted for clarity.



**Fig. S4**. Views of the intramolecular overlap of the ligands on one face of a Cu<sub>9</sub> molecule showing the average interplanar distances, shorter than the van der Waal sum of the atomic radii.



Fig. S5. Views of the crystal packing along the (a) *ab*-plane of Cu<sub>9</sub> and (b) *bc*-plane of Cu<sub>27</sub> showing the short intermolecular interactions in solid red lines;  $SO_4^{2-}$  anion, and CH<sub>3</sub>OH for Cu<sub>9</sub>, CH<sub>3</sub>CN for Cu<sub>27</sub> molecules are omitted for clarity.

|                  | С-Н…π       | Distance (Å) | С-Н…π       | Distance (Å) |
|------------------|-------------|--------------|-------------|--------------|
| Cu               | С33-Н33…π   | 2.727        | С36-Н36…π   | 2.878        |
| Cu <sub>9</sub>  | С16-Н16…π   | 2.879        | π…π         | 3.32         |
|                  | С14-Н14…π   | 2.889        | С15-Н15…π   | 2.702        |
|                  | С16-Н16…π   | 2.798        | С31-Н31…π   | 2.849        |
| Cu               | С48-Н48…π   | 2.896        | С64-Н64…π   | 2.834        |
| Cu <sub>27</sub> | С79-Н79…π   | 2.803        | С94-Н94…π   | 2.847        |
|                  | С95-Н95…π   | 2.720        | С142-Н142…π | 2.781        |
|                  | С143-Н143…π | 2.796        | С223-Н223…π | 2.738        |

Table S3. Intermolecular interactions (Å) for  $Cu_9$  and  $Cu_{27}$ .

| С224-Н224…π | 2.885 | π…π | 3.35 |
|-------------|-------|-----|------|
|-------------|-------|-----|------|



**Fig. S6**. Views of the crystal packing for  $Cu_9$  (a) and  $Cu_{27}$  (b) in the *ac*-plane;  $SO_4^{2-}$  anion, and CH<sub>3</sub>CN for  $Cu_{27}$  molecules are omitted for clarity.



Fig. S7. Views of the single crystals of  $Cu_9$  (left) and  $Cu_{27}$  (right) under a microscope with reflecting (top) and transmitting (bottom) light. The single crystals of  $Cu_9$  and  $Cu_{27}$  appear metallic under reflecting light.



**Figure S8**. Views of the crystals of  $Cu_{27}$  under a microscope by using reflecting light. Frames 1 and 2 were in CH<sub>3</sub>OH, 3, 4 and 5 were taken during the solvent drying, 6 was after completely dried, and for 7 and 8 a drop of CH<sub>3</sub>OH was added. Red and yellow circles follow two individual crystals during the process. Note the lines on the crystals along which the cleavage takes place.



Fig. S9. X-band EPR spectra of randomly oriented polycrystalline samples of  $Cu_9$  and  $Cu_{27}$  at 298 K, at a microwave frequency of 9.545 GHz and power of 0.189 mW.

Table S4. Spin population of Cu<sub>9</sub> and Cu<sub>27</sub>.

| Cu <sub>9</sub>                 | Cu1     | Cu2     | Cu3     | Cu4     | Cu5     | Cu6     | Cu1'    | Cu3'    | Cu5'    |
|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Alpha<br>population             | 9.40328 | 9.39976 | 9.26015 | 9.36714 | 9.33358 | 9.36969 | 9.40335 | 9.40006 | 9.33357 |
| Beta population                 | 8.91883 | 8.87610 | 8.82197 | 9.13362 | 9.31549 | 9.13868 | 8.91898 | 8.87653 | 9.31546 |
| Spin<br>population              | 0.48444 | 0.52366 | 0.43818 | 0.23352 | 0.01809 | 0.23101 | 0.48437 | 0.52353 | 0.01810 |
| Atomic charge                   | 0.67789 | 0.72414 | 0.91787 | 0.49924 | 0.35093 | 0.49164 | 0.67767 | 0.72341 | 0.35097 |
| Evaluated<br>oxidation<br>state | +2      | +2      | +2      | +1      | +1      | +1      | +2      | +2      | +1      |

| Cu <sub>27</sub>                | Cu1     | Cu2     | Cu3     | Cu4     | Cu5     | Cu6     | Cu7     | Cu8     | Cu9     |
|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Alpha<br>population             | 9.37921 | 9.45696 | 9.48018 | 9.42192 | 9.13984 | 9.35504 | 9.42855 | 9.36269 | 9.27814 |
| Beta population                 | 8.74797 | 8.88571 | 8.93338 | 8.82927 | 8.74633 | 8.86087 | 8.86652 | 8.87054 | 9.25743 |
| Spin<br>population              | 0.63123 | 0.57125 | 0.54680 | 0.59264 | 0.39351 | 0.49416 | 0.56203 | 0.49214 | 0.02071 |
| Atomic charge                   | 0.87282 | 0.65732 | 0.58644 | 0.74881 | 1.11382 | 0.78409 | 0.70493 | 0.76677 | 0.46442 |
| Evaluated<br>oxidation<br>state | +2      | +2      | +2      | +2      | +1      | +2      | +2      | +2      | +1      |
| Cu <sub>27</sub>                | Cu10    | Cu11    | Cu12    | Cu13    | Cu14    | Cu15    | Cu16    | Cu17    | Cu18    |
| Alpha<br>population             | 9.38561 | 9.46617 | 9.49332 | 9.41555 | 9.12893 | 9.35889 | 9.37921 | 9.35761 | 9.28810 |
| Beta population                 | 8.75529 | 8.89399 | 8.94874 | 8.82281 | 8.74096 | 8.84700 | 8.74797 | 8.87610 | 9.26189 |
| Spin<br>population              | 0.63033 | 0.57218 | 0.54457 | 0.59273 | 0.38797 | 0.51189 | 0.63123 | 0.48151 | 0.02620 |
| Atomic charge                   | 0.85910 | 0.63984 | 0.55794 | 0.76164 | 1.13011 | 0.79411 | 0.87282 | 0.76629 | 0.45001 |
| Evaluated<br>oxidation<br>state | +2      | +2      | +2      | +2      | +1      | +2      | +2      | +2      | +1      |
| Cu <sub>27</sub>                | Cu19    | Cu20    | Cu21    | Cu22    | Cu23    | Cu24    | Cu25    | Cu26    | Cu27    |
| Alpha<br>population             | 9.36735 | 9.48348 | 9.47967 | 9.41059 | 9.13411 | 9.35022 | 9.43811 | 9.33724 | 9.30031 |
| Beta                            | 8.74018 | 8.91101 | 8.93246 | 8.80813 | 8.73458 | 8.84895 | 8.88548 | 8.87469 | 9.26192 |

| population                      |         |         |         |         |         |         |         |         |         |
|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Spin<br>population              | 0.62717 | 0.57247 | 0.54721 | 0.60246 | 0.39953 | 0.50127 | 0.55263 | 0.46256 | 0.03839 |
| Atomic charge                   | 0.89247 | 0.60551 | 0.58787 | 0.78127 | 1.13130 | 0.80083 | 0.67641 | 0.78807 | 0.43777 |
| Evaluated<br>oxidation<br>state | +2      | +2      | +2      | +2      | +1      | +2      | +2      | +2      | +1      |



**Fig. S10**. Tauc plots of  $[F(R)hv]^{1/2}$  vs [hv] for the bandgap sizes of Cu<sub>9</sub> (red) and Cu<sub>27</sub> (blue) showing the crude extrapolation to estimate the bandgaps.