Supplementary Information

Overlapping motifs on the herpes viral proteins ICP27 and ORF57 mediate interactions with the mRNA export adaptors ALYREF and UIF

Authors

Richard B. Tunnicliffe¹, Xiaochen Tian², Joanna Storer¹, Rozanne M. Sandri-Goldin², Alexander P. Golovanov¹

Affiliations

¹ Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, UK.

² Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4025, USA.

Correspondence and requests for materials should be addressed to A.P.G (email: <u>a.golovanov@manchester.ac.uk</u>) or R.M.S.-G. (email <u>rmsandri@uci.edu</u>).

Figure S1. Primary sequence based predictions of UIF domains using the PredictProtein server¹. (A) Secondary structure (SS) and solvent accessibility (SoI) as labeled. SS: α -helix are red blocks, β -sheet are blue blocks. SoI: Solvent accessible are blue blocks, buried residues are yellow blocks. SS1 produced using REFPROFsec, SS2 with PROFsec and Sol with PROFAcc algorithms². (B) Regions of predicted disorder shown as filled blocks calculated using the algorithms PROFbval, Ucon, NORSnet, Meta-disorder colored yellow, orange, grey and green respectively³.

Figure S2. Full ¹H NMR spectra of UIF constructs shown in part on Fig. 2A. Sample conditions were (A) 90 μ M UIF^{FL} in 20 mM HEPES, 150 mM NaCl, 50 mM Arg/Glu, 1 mM EDTA, 1 mM TCEP, pH 7.9. (B) 100 μ M UIF^{NT} in 50 mM HEPES, 1 mM EDTA, 1 mM TCEP, pH 7.9. (C) 1.0 mM UIF^{CT} in 20 mM Tris, 2mM DTT, pH 8.0.

Figure S3. NMR mapping of UIF^{NT} interaction with¹⁵N-labelled ICP27¹⁻¹³⁸. Free ICP27¹⁻¹³⁸ is colored red and ICP27¹⁻¹³⁸ with equimolar UIF^{NT} present is colored blue. Backbone amide signal assignments are labeled.

Figure S4. REF-C control spectra which indicated REF-C does not interact with ksORF57Δ153. HSQC spectra of ¹⁵N labeled REF-C in presence and absence of unlabeled ksORF57Δ153 are colored blue and red respectively.

Figure S5. 1D ¹H projections of ¹⁵N-HSQC spectra of REF¹⁻¹⁵⁵. Free REF¹⁻¹⁵⁵ in absence and presence of a potential binding partner as indicated are colored blue and red respectively: (A) ksORF57⁶⁸⁻¹⁷⁸, (B) ksORF57 Δ 153 and (C) ICP27 Δ 241. Signal broadening in dispersed signals from the RRM domain of REF was observed in panel B indicative of an interaction with ksORF57 Δ 153.

Figure S6. REF^{1-155} interacts with ksORF57 Δ 153. Spectrum of free ¹⁵N labeled REF^{1-155} (grey) is overlaid with spectrum upon addition of equimolar unlabeled ksORF57 Δ 153 (red). The interaction induces significant peak broadening for residues in the folded RRM domain of REF, as well as minor signal shifts for its N-helix region caused by opening of REF conformation ⁴. (A) Full spectra, (B) zoom of central region. The green signal is negative contours in free REF¹⁻¹⁵⁵ spectra from Arginine in the buffer.

Figure S7. REF^{1-155} does not interact with ICP27 Δ 241. Addition of equimolar unlabeled ICP27 Δ 241 to ¹⁵N labeled REF^{1-155} did not induce significant signal perturbations. Spectra colored red for REF^{1-155} in isolation, and green for in the presence of ICP27 Δ 241.

Figure S8. REF¹⁻¹⁵⁵ interacts with ksORF57⁶⁸⁻¹⁷⁸. Addition of equimolar unlabeled ksORF57⁶⁸⁻¹⁷⁸ to ¹⁵N labeled REF¹⁻¹⁵⁵ resulted in signal perturbations within the dispersed RRM signals. Spectra colored red for REF¹⁻¹⁵⁵ in isolation, and blue for in the presence of ksORF57⁶⁸⁻¹⁷⁸.

Figure S9. Original uncropped images of Western blots shown in Fig.2.

Table S1. Sample details for NMR interaction experiments. Concentrations indicated for equimolar combinations of proteins, one exception marked * was REF Δ 53 + ksORF57 68-178 which were 125 μ M + 625 μ M respectively.

¹⁵ N labeled	Unlabeled binder	Concentration,	Spectrometer
		μM	(MHz)
ICP27 ¹⁻¹³⁸	UIF ^{NT}	40	600
ICP27 ¹⁰³⁻¹⁵⁵	UIF ^{NT}	70	800
	REF ¹⁻¹⁵⁵	40	800
	REF ¹⁻¹⁵⁵ & UIF ^{NT}	40	800
ksORF57 ⁶⁸⁻¹⁷⁸	UIF ^{NT}	50	800
	REF ¹⁻¹⁵⁵	50	800
	REF ¹⁻¹⁵⁵ & UIF ^{NT}	50	800
*REF∆53	ksORF57 68-178	125 + 625	600
REF ¹⁻¹⁵⁵	ksORF57 68-178	200	800
	ksORF57∆153	88	800
	ICP27∆241	90	800
REF-C	ksORF57∆153	50	800

Supplemental References

- 1. Yachdav, G. et al. PredictProtein--an open resource for online prediction of protein structural and functional features. *Nucleic Acids Res* **42**, W337-43 (2014).
- 2. Rost, B. & Sander, C. Improved prediction of protein secondary structure by use of sequence profiles and neural networks. *Proc Natl Acad Sci U S A* **90**, 7558-62 (1993).
- 3. Schlessinger, A., Punta, M., Yachdav, G., Kajan, L. & Rost, B. Improved disorder prediction by combination of orthogonal approaches. *PLoS One* **4**, e4433 (2009).
- 4. Golovanov, A.P., Hautbergue, G.M., Tintaru, A.M., Lian, L.Y. & Wilson, S.A. The solution structure of REF2-I reveals interdomain interactions and regions involved in binding mRNA export factors and RNA. *RNA* **12**, 1933-48 (2006).