Supplementary Material

Deletion of exon 4 in *LAMA2* is the most frequent mutation in Chinese patients with laminin α 2-related muscular dystrophy

Lin Ge^{1,8}, Aijie Liu^{1,8}, Kai Gao^{1,8}, Renqian Du², Juan Ding^{1,8}, Bing Mao³, Ying Hua⁴, Xiaoli Zhang⁵, Dandan Tan^{1,8}, Haipo Yang^{1,8}, Xiaona Fu^{1,8}, Yanbin Fan^{1,8}, Ling Zhang², Shujuan Song⁶, Jian Wu⁷, Feng Zhang², Yuwu Jiang^{1,8}, Xiru Wu^{1,8} & Hui Xiong^{1,8*}

¹Department of Pediatrics, Peking University First Hospital, Beijing 100034, China. ²Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China. ³Department of Neurology, Wuhan Children's Hospital, Wuhan, Hubei 430015, China. ⁴Department of Pediatrics, Wuxi Children's Hospital, Wuxi, Jiangsu 214023, China. ⁵Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China. ⁶Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China. ⁷MyGenostics, Inc., Beijing 101318, China. ⁸Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing 100034, China.

*Correspondence and requests for materials should be addressed to H.X. (Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, P. R. China. Tel: +86 10 83573238; Fax: +86 10 66530532; E-mail: xh_bjbj@163.com.)

Supplemental material

P1: LAMA2 Exon1 deletion

P3: LAMA2 Exon2-3 deletion

P4: LAMA2 Exon2-9 deletion

P6: LAMA2 Exon3-4 deletion

(continuing)

P9: LAMA2 Exon4 deletion

P10: LAMA2 Exon4 deletion

€	Q		6: 129142436-129692756, 5	 50 Кb		Scatter Plot 🔻	
3.4							
1 2							
0			Notes in the second	all the second second	وبيونكيني المعدي	<u>موکن میروان</u>	W.R.
2			pull				
4.3			~				¥
	129.14 Mb	129.23 Mb	129.32 Mb	129.41 Mb	129.50 Mb	129.60 Mb	129.6

P11: LAMA2 Exon4 deletion

P15: LAMA2 Exon5 deletion

P17: LAMA2 Exon10-12 deletion

P21: LAMA2 Exon36-65 deletion

(continuing)

P22: LAMA2 Exon41-47 deletion

P23: LAMA2 Exon49 deletion

P26: LAMA2 Exon59-63 deletion

P29: No CNV detected

(end)

Figure S1. High-resolution aCGH results of 16 subjects with *LAMA2* MD.

The X-axis represents the chromosome location, while the Y-axis represents the normalized log2 Cy5(patient)/Cy3(healthy control) fluorescence intensity thresholds -1 (loss) and 1 (gain), respectively. Each point represents a oligonucleotide probe. Array CGH results revealed gains (in red) and/or losses (in green) of small chromosomal regions. Copy-number sizes were measured by the distance between the position of the first and last oligonucleotide probes included in the algorithmically determined region of aberration, respectively.

P18: LAMA2 Exon13-14 deletion

(end)

Figure S2. Next-generation sequencing results of 14 subjects with *LAMA2* MD. The X-axis represents each *LAMA2* exon location, while the Y-axis represents the normalized ratio of sample reads to reference reads. Variants of copy number were speculated using the read-depth method. In brief, the ratio of sample reads to reference reads from control sample was calculated. Horizontal lines at 0.75 or 1.25 were used to highlight the thresholds using to call CNVs. The deficiency of CNV was defined, when the ratio was less than 0.75, while the amplification was defined, when the ratio was more than 1.25. The CNVs of whole *LAMA2* gene and exon regions were calculated respectively.

Figure S3. Size of *LAMA2* intragenic CNVs. *LAMA2* intragenic CNVs are plotted in ascending size order. Most *LAMA2* CNVs are small (median size is 14.3 kb).

P1

```
Chr6:129187614 TTAAATTAAA TGCATGTATA GGAAATGTAA ACA
```

P2

Chr6:129185274 TCTTTGAGCT CCTAAAAAA GAGCCTCATG T	ITCTT
P2 TCTTTGAGCT CCTAAAAAAA GAGCCTCATG 1	 TCTT ATCATGGTGA AGCTCAGATG TGTCTTTGTA
Chr6:129210133	TCTT ATCATGGTGA AGCTCAGATG TGTCTTTGTA

P3

Chr6:129355400	атсто	GAGO	та	GTG	rag:	ГСАА	ст	ста	лт	тта	тт	АА												
P3	 ATCTO	 GAGC	 TA	 GGG	 TAG	 TCA/		CT/	 (AT	TTA	 TT	 'AAT	GT/		TG	лсg	AGT	тал	TGG	л т	GC	AGO	AC.	АС
Chr6:129402431											1 T	AAT	GT/	1.1.1	TG	ACG	AGI	TA/	TGG.	 A 1	GC.	AGO	AC.	

P4

Chr6:129221761	ТСТАЛСАТСА	TGGATTCCTG	АЛАСАБСА					
P4	IIIIIIIII TGTAAGATCA	TGGATTCCTG	AAACAGGAAT	CTAGAT	ссст	GAGGAATCGO	CACACTGTCT TO	CAC
Chr6:129488858			 T	 CTAGAT	 СССТ	 GAGGAATGGO	CACACTGACT T	

P5

Chr6:129354670	TTTTTATTT	ТТБААТТАТІ	АЛСТБСА	бас аа			
P5	TTTTTATTTT	TTGAATTAT	 AACTGCA	 GAC AAC	ттсаттсст	TTGGAGGAGG	AGAGGCGCTC TGA
Chr6:129548523					TTCATTCCT	TTGGAGGAGG	AGAGGCGCTC TGA

P6

Chr6:129379272	СА	GC	ст	C	CA	ст	с	ст	G	cc																															
	H.	ш	11			L L	L		I.	П																															
Chr6:129454979	11	11		1		н	I.	11		C	Т	CO	GΤ	Α	Α.	ΑA	LΤ.	A	CA	C/	C C	ΞA.	C/	\C	A	СA															
	11	н	Ш			H.	L			н													L																		
P6	CA	GC	CI	CC(СA	СТ	С	СТ	G	CC	Т	CO	ЗT	A	Α.	ΑA	١T	A	CA	CA	0	ΓA.	C/	١C	A	СA	C/	10	CT (СС	T(GТ	A	СТ	C	GТ	Α	ĀА	A	T/	۱C
																													L I			П	П		Ш		L	11	н		H.
Chr6:129379280																											С.	Λ. (СТ	CC	Т	G		H	I.	П	I.	Ш	Т	L	H.
																																			I.	П	L	H		L	H.
Chr6:129454975																															T	GT	A	CI	C	GI	A	A/	١A	T.	AC

P7~P14

Chr6:129414950	GGGATTTTTT	талдасасса	AGTTTGT	алс	АА			
		11111111111	1111111		11			
P14	GGGATTTTTT	TAAGACACCA	AGTTTGT	AAC	AAT	GCTGAAA	TGCACACTAA	GTACTCTGTG CTA
							1111111111	
Chr6:129420432				AAC	AAT	GCTGAAA	TGCACACTAA	GTACTCTGTG CTA

P15

Chr6:129423519	атсто	GCCC	AC	стте	GCC	тсс	слл	AGI	GCT	A G	GAT												
P15	ATCT			 CTTC	GCC	TCC		 AG1	GC1	II A G	 GAT	GA.	атса	т	TT/	AGA	GCC1	AC.	АЛ.	ATG	АТА	тсо	c
Chr6:129465235											 GAT	 GA	 ATCA			 AGA			 AA			TC	

P16

Chr6:129440069		ATAGCAGTAT AGCATACTGA AAGTTTTGTT
P16	CCTCAC GCATATCTTC GTATGACGGA TCACTCO	
Chr6:129478850	CCTCAC GCATATCTTC GTATGACGGA TCACTCC	 GGTA

P17

F1/	129488856			
Chr6:129488370 TATGTATACA TGTGC	C LIP2			
P17 TATGTATACA TGTGC	C	ATAAT ATATTAGTAT	CATAACACAT GTGTATA	ATA C
Chr6:129544038	L1P5	ATAAT ATATTAGTAT	CATAACACAT GTGTATA	AATA C

P18

Chr6:129566754	TGTTAGAATT TTTCAATGAA TGTTAATGGA TGA
P18 Chr6:129578227	TGTTAGAATT TTTCAATGAA TGTTAATGGA TGAGCAT TTGACTTAGT TGACAATTCT TTGATAGCT
P19	
Chr6:129612157	CACAA ΑΛCCGGCACA CAGTAAATCA ΤΤΑΑΑΤCA
P19	CACAA AACCGGCACA CAGTAAATCA TTAAATCAAACACC TTCTTCTAGT TCCATCATTT AAAAGC
Chr6:129613535	ΑΛΑCACC ΤΤΟΤΤΟΤΑGT ΤΟ ΑΤΑΤΤΤ ΑΛΑΛΘΟ

P20

Chr6:129658398	татаас	атсс	лаатс	AAGGG	AGGA	AGT/	CA									
	111111	TIT	1111													
P20	TATAAG	ATCC	АЛАТС	AAGGG	AGGA	AGT/	ICA	СТА	ТАА	TA.	AA .	AGC	TA	CA	GGA	GAT
								111	111		H.	111	Ш	H.	Ш	111
Chr6:129664812						AGT/	ACA	СТА	ТАА	TA	AA .	AGC	TA	CA	GGA	GAT

P22

Chr6:129833597

(End)

Figure S4. Junction fragment sequencing of LAMA2 intragenic CNVs. The "upstream" (above) and "downstream" (below) reference sequences are aligned with sequence obtained from breakpoint PCR product (middle). The microhomology at the junction sites was annotated with red color, FoSTeS/MMBIR sequences were annotated with purple color, single- or oligo-nucleotide changes near breakpoints were annotated with green color, and inserted sequences between breakpoints were highlighted in gray color. The genomic coordinates were annotated next to the reference sequences GRCh37/hg19.

Figure S5. The Repetitive-Element Distribution within LAMA2. Overall, 96 *Alu* and 83 L1 elements > 100bp in size are present throughout the *LAMA2* non-coding region, and these highly homologous repetitive elements might mediate NAHR in various combinations. Exon numbers are shown in squares. The asterisks represent the likely NAHR events mediated by these repetitive elements and observed in this study. These *Alu* and L1 elements do not demonstrate equal recombination ability, none of *Alu* elements contribute to any recombination in this study. L1P2 (chr6: 129488385-129494343) and L1P5 (chr6: 129543585-129549735) have contributed LINE-LINE recombination

Subject	PCR Product (kb)	Primer	PCR Primer Position (Chr6/GRCh37/hg19)	PCR Primer Sequence 5'-3'		
P1	~0.9	Forward	129187300-129187323	TAAGGGCACATAGTCTGTATCTCA		
		Reverse	129213316-129213339	TAGTCTCTTAGGGTCTCCTCAAAG		
P2	\sim 6.9	Forward	129179401-129179425	AGGTTCACTGCTACAGATTAGTCCA		
		Reverse	129211015-129211038	CGTGTCCAAATAAAATCCAAATAG		
Р3	~0.8	Forward	129354952-129354976	AGTCTATTTCTCTCCAACTGCCACC		
		Reverse	129402738-129402762	AATCTTTCTCAAATCTTCCAGCACA		
P4	~7.1	Forward	129220509-129220533	TGGCAGAGAACTAGAAGGGTATTTA		
		Reverse	129494620-129494644	TGGTGAAGAATGTAGGGATGATAGT		
P5	\sim 2.0	Forward	129354335-129354359	GCCCTGAGGAACGATAATAGTTACT		
		Reverse	129550068-129550092	CATAAGAGGAGCATCAGTCAATCAA		
P6	\sim 1.4	Forward	129378242-129378265	GCATTGAGGACTTAGTTTTGCTTT		
		Reverse	129455281-129455305	GTGAGACGGAACAATCAGTACACTT		
P7~14	\sim 1.4	Forward	129413934-129413958	CTTCCATAGAGAGTGACCTTCATTA		
		Reverse	129420804-129420828	TTTTCCCTAGAAGTGTTGAGAGATA		
P15	\sim 2.0	Forward	129422393-129422417	GAAAACCAGCAACAACTCTTATCTC		
		Reverse	129466069-129466092	TAGAAGGTAGACAGGAGGAAGCAC		
P16	\sim 5.0	Forward	129475774-129475797	CACTGCTGGTATAAACTGCGAGAC		
		Reverse	129441267-129441290	GGCTGGAATATCTTGAAATCTGCT		
P17	\sim 6.4	Forward	129488245-129488269	CCTATTTATCCCAGTCTTACTTCCA		
		Reverse	129549827-129549851	GAACAGGAGTCTTTAGAGTTTGGTT		
P18	\sim 2.5	Forward	129565243-129565267	CGACACCTACAACTCTGGTTCATTT		
		Reverse	129579148-129579172	GGACGGATGGGTAGATAGACAGATA		
P19	\sim 1.4	Forward	129611331-129611355	ACTCCAAGAAAAAGTGACTCCTAAA		
		Reverse	129614037-129614060	CCTGATTTACAGACACATCTTCCT		
P20	\sim 2.1	Forward	129657273-129657296	CTGTGGAAAAAATAAACAGTGCTC		
		Reverse	129665759-129665782	AACATTAGCCTGGGAAATCTTATC		
P22	\sim 0.9	Forward	129746435-129746459	TAGTCATCTCTGGTCATAGTCCCTC		
		Reverse	129779575-129779599	CATATTCTGGTGTGGCAGTAGTCTT		
P23~24	\sim 1.7	Forward	129777476-129777500	GAAGAACTGGGAGAAATGGAACTAT		
		Reverse	129783427-129783451	GCTATGTTGGTTTACTTTGGATTCA		
P25	\sim 2.6	Forward	129777654-129777678	CTCCTCCTGTTTATTTCATCTTTGT		

 Table S1: Primers used to characterize the LAMA2 CNVs

		Reverse	129815265-129815289	TGTAGTGACTGTGACCATCTTTGTT
P26~28	\sim 0.9	Forward	129815973-129815997	ТСАСССТСАТАТАССТБААААТСАТ
		Reverse	129834033-129834057	CTTCTAAGAGATGCCTAGCCTGTTA
P29	\sim 1.9	Forward	129832777-129832801	TGATACTCAGTTCAGTTGGTGTGGT
		Reverse	129834759-129834783	CATTAGTCAGTTTGGCAAGACATTC

Table S2. Quality control of next-generation sequencing results of 14 subjects with *LAMA2* MD.

	Initial				Average	Fraction of	Fraction of	Fraction of	
	bases	Base	Coverage	Effective	sequenci	target	target	target	
Sub	on	covered	of target	bases on	na depth	covered with	covered with	covered with	chip
iect	target	on target	region	target	on target	at least 4X	at least 10X	at least 20X	
P2	9351	9351	100.00%	8864214	947.94	100.00%	100.00%	100.00%	LAMA2 exon
P2	440494	431238	97.90%	176527125	400.75	96.47%	94.83%	92.51%	LAMA2
P5	9351	9351	100.00%	9444610	1010.01	100.00%	100.00%	100.00%	LAMA2 exon
P5	440494	430840	97.81%	189779201	430.83	96.25%	94.46%	92.11%	LAMA2
P17	9351	9351	100.00%	9256155	989.86	100.00%	100.00%	100.00%	LAMA2 exon
P17	440494	432194	98.12%	192712115	437.49	96.57%	95.32%	93.22%	LAMA2
P18	9351	9351	100.00%	9098833	973.03	100.00%	100.00%	100.00%	LAMA2_exon
P18	440494	429642	97.54%	177472354	402.89	95.84%	93.99%	91.33%	LAMA2
P20	9351	9351	100.00%	10343359	1106.12	100.00%	100.00%	100.00%	LAMA2_exon
P20	440494	430974	97.84%	212452691	482.31	96.37%	95.01%	92.83%	LAMA2
P21	9351	9351	100.00%	7251961	775.53	100.00%	100.00%	100.00%	LAMA2_exon
P21	440494	431634	97.99%	164570604	373.6	96.44%	94.96%	92.54%	LAMA2
P25	9351	9351	100.00%	10886809	1164.24	100.00%	100.00%	100.00%	LAMA2_exon
P25	440494	432057	98.08%	238270083	540.92	96.88%	95.91%	94.42%	LAMA2
P27	9351	9351	100.00%	8546247	913.94	100.00%	100.00%	100.00%	LAMA2_exon
P27	440494	431254	97.90%	173276987	393.37	96.40%	94.62%	92.35%	LAMA2
P28	9351	9351	100.00%	6981800	746.64	100.00%	100.00%	100.00%	LAMA2_exon
P28	440494	430297	97.69%	139077389	315.73	95.80%	93.76%	90.89%	LAMA2
P29	9351	9351	100.00%	9683154	1035.52	100.00%	100.00%	100.00%	LAMA2_exon
P29	440494	431123	97.87%	194115393	440.68	96.65%	95.21%	93.30%	LAMA2
P24	9351	9351	100.00%	9930144	1061.93	100.00%	100.00%	100.00%	LAMA2_exon
P24	440494	432005	98.07%	193655976	439.63	96.76%	95.36%	93.21%	LAMA2
P23	9351	9351	100.00%	11307700	1209.25	100.00%	100.00%	100.00%	LAMA2_exon
P23	440494	431853	98.04%	230970596	524.34	96.62%	95.39%	93.34%	LAMA2
P19	9351	9351	100.00%	8220763	879.13	100.00%	100.00%	100.00%	LAMA2_exon
P19	440494	429875	97.59%	160900770	365.27	95.89%	94.03%	91.13%	LAMA2
P16	9351	9351	100.00%	8843356	945.71	100.00%	100.00%	100.00%	LAMA2_exon
P16	440494	428891	97.37%	168930680	383.5	0.953	0.9316	0.9013	LAMA2