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Abstract 

Motivation:  While exome and targeted next generation DNA sequencing are primarily used for 

detecting single nucleotide changes and small indels, detection of copy number variants (CNVs) 

can provide highly valuable additional information from the data. Although there are dozens of 

exome CNV detection methods available, these are often difficult to use and accuracy varies 

unpredictably between and within data sets. This problem is exacerbated by a lack of mature 

software supporting CNV simulation, evaluation and quality control for exome based methods. 

Results: We present Ximmer, a tool which supports an end to end process for evaluating, tuning 

and running exome CNV detection tools.  Ximmer includes a simulation framework, CNV 

detection analysis pipeline, and a visualisation and curation tool which together enable 

interactive exploration and quality control of CNV results. Using Ximmer, we comprehensively 

evaluate CNV detection on four data sets using four different detection methods. We show that 

application of Ximmer can improve accuracy and aid in quality control of CNV detection results. 

In addition, Ximmer can be used to run analyses and explore CNV results in exome data. 

Availability and Implementation: Ximmer is open source and freely available at 

http://ximmer.org (example results are viewable at http://example.ximmer.org). 

Background 

In recent years, high throughput sequencing (HTS) of DNA has become an essential tool in 

biomedical science with a vast range of applications spanning both clinical and research 

investigations. In clinical settings, whole exome sequencing (WES) and custom targeted gene 

panels are especially important and have enabled significant improvements in the rate of 

diagnosis for genetically heterogeneous disorders (Stark et al., 2016). WES has also had a 

profound impact on disease research, by allowing researchers to comprehensively search for 

protein altering genetic variation. As a result of these advances, the rate of discovery of new 

Mendelian disease genes has seen substantial improvements in recent years (X. Zhang 2014). 

 

While WES has proven highly effective, this success has been based predominantly on the 

detection of single nucleotide variants (SNVs) and small insertions and deletions (indels). Larger 

variants, such as copy number variants (CNVs), are not routinely ascertained from WES data. 

Nonetheless, CNVs are frequently disease causing, both as the primary genetic lesion for 

disorders such as α-thalassemia (Stankiewicz and Lupski 2010), Charcot-Marie-Tooth 
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neuropathy and Smith-Magenis-Syndrome, as well as a rare cause for a wide range of mendelian 

diseases. In particular, single copy deletions can be pathogenic for any disorder caused by 

haploinsufficiency. To detect CNVs, patients are often screened for CNVs using SNP or array-CGH 

microarrays prior to use of WES. However, affordable microarrays have limited resolution and 

add time, cost and complexity to the overall diagnostic workflow. There are consequently 

significant potential advantages if CNVs can be ascertained directly from WES.  

 

CNVs can be detected from three primary signals in HTS data. These are: anomalous mapping of 

paired end reads that span CNV breakpoints (PE signals), the splitting of individual reads by CNV 

breakpoints (SR signals), and fluctuation in the coverage of reads falling in the body of a CNV 

(the read depth, or RD signal). While all of these signals are effective in whole genome data, the 

breakpoints of CNVs usually fall between the regions targeted by WES. Therefore only the RD 

signal is reliably observable in WES data. The RD signal has been shown to be informative due to 

a strong correlation of copy number with read coverage depth (Sathirapongsasuti et al., 2011). 

However, detection of CNVs is confounded by a range of other factors that also influence read 

coverage depth. Therefore, these factors must be corrected, and failure to do so can result in 

significantly degraded accuracy. 

 

Numerous methods have been developed to detect CNVs based on the RD signal. Examples 

include ExomeDepth (Plagnol et al., 2012), ExomeCopy (Love et al., 2011), XHMM (Fromer et al., 

2012), cn.MOPS (Klambauer et al., 2012), ExomeCNV (Sathirapongsasuti et al., 2011), 

CoNVEX(Amarasinghe et al., 2013), EXCAVATOR (Magi et al., 2013), CoNIFER (Krumm et al., 

2012), CANOES (Backenroth et al., 2014), CODEX (Jiang et al., 2015), and many others. The 

authors of these tools have often cited high sensitivity and specificity for their methods. 

However, independent comparisons frequently fail to replicate their findings. For example, Guo 

et al. reported ExomeDepth having sensitivity of only 19% (Guo et al., 2013), while Ligt et al. 

observed a sensitivity of 35% (de Ligt et al., 2013). In the same studies, sensitivity of CoNIFER 

was cited as 3% and 29% respectively, compared to the original evaluation estimate of 76%.  In 

some contexts, high accuracy is reported. For example, Jo et al (Jo et al., 2016), Ellingford et al 

(Ellingford et al., 2017) and Feng et al (Feng et al., 2014) all cited 100% sensitivity and high 

specificity for detection of larger CNVs encountered clinically, in each case using high coverage 

data. However, the circumstances in which high accuracy can be achieved are currently not well 

understood. 

 

Recent studies have compared performance across multiple data sets (Hong et al., 2016; Tan et 

al., 2014; Zare et al., 2017), highlighting the problem of variability in the performance of CNV 
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calling as well as high false positive rates (Samarakoon et al., 2016). Some of the performance 

variability observed in these studies may be due to differences between the data sets and 

sequencing design such as the number of samples, read length, insert size, and mean read depth. 

Also of critical importance is the size and type of CNVs assessed. However, even when these 

known technical factors are controlled, significant variability is often still observed between data 

sets. 

 

In this work we present Ximmer, a software tool that improves CNV calling reliability by 

enabling users of CNV detection tools to efficiently assess and tune performance. Ximmer 

contains three parts: a simulation method, an analysis pipeline, and a graphical report. First, 

Ximmer simulates synthetic single copy deletions in existing WES data. Then, the analysis 

pipeline automates detection of the deletions with up to 5 commonly used CNV detection 

methods. Finally, the graphical report shows the combined CNV calling results, including a suite 

of plots that give insight into the accuracy achieved and strategies for improving performance. 

 

In this article we explain the implementation details of Ximmer, and demonstrate how using 

Ximmer improves CNV detection accuracy. We show results from four CNV callers on four 

datasets representing different exome capture kits and different sequencing depths. Our results 

concur with previous studies, finding that CNV detection performance is highly variable both 

within and between data sets. However, we show that using Ximmer to gain insight into the 

variability enables optimisation of the CNV calling, and improves detection of real CNVs. Ximmer 

offers an integrated framework that is easy to use and freely accessible, from http://ximmer.org. 

An example of Ximmer output is available at http://example.ximmer.org. 
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Methods 

The Ximmer process consists of a series of steps designed to optimise CNV detection 

performance. The steps consist of: (i)  simulation of CNVs in the user’s data, (ii) execution of CNV 

callers to find both real and simulated CNVs, (iii) quality and accuracy assessment to discover 

optimal settings for CNV calling, and finally, (iv) filtering of results to produce a curated CNV list. 

This process can be time consuming if conducted manually, however Ximmer automates all of 

the steps needed. The high level process is depicted in Figure 1. 

 

 

Figure 1 The Ximmer Process - Ximmer consists of three high level steps. In the first step, simulated CNVs are added 
to a set of sequence alignments in BAM or CRAM format. This creates new BAM files containing simulated CNVs which 
are passed to the integrated analysis pipeline. The analysis pipeline runs up to 5 different CNV detection methods and 
collates the results into a graphical report which generates insight into the performance of the tools and possible 
avenues for improvement. Finally, when the analysis is optimised provides an interface to filter CNVs, review and 
interpret them using the built in CNV curation tool. 

 

Simulation 

Simulation is the first and most important element of the Ximmer method. By simulating CNVs in 

the user’s own data, Ximmer generates both a prediction of the CNV calling performance, and 

also insights regarding how to improve performance. To simulate CNVs, Ximmer takes 

advantage of the exclusive use of the RD signal by WES based CNV detection methods. 

Specifically, Ximmer removes reads that overlap selected target regions, such that the RD signal 

is reduced to match the predicted level associated with a single copy deletion. Ximmer focuses 
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on deletions because depleting reads is significantly simpler than realistically synthesising and 

adding new reads. While the approach is strictly limited to deletions, the inferences derived are 

still likely to apply to other CNV states, because in most CNV calling tools the same underlying 

statistical principles are applied regardless of the number of copies being searched for. 

The simulation process begins by randomly selecting the genomic region to become the deletion 

“target”. The reads mapping to these locations can then be depleted using two alternate 

methods, referred to as “Downsampling” and “X-Replacement”. The downsampling method 

randomly removes each read overlapping the deletion target with probability of 0.5, based on an 

assumption that the relationship between copy number and read depth is linear. By contrast, the 

X-Replacement method avoids this assumption. The X-Replacement method replaces reads 

mapping to X chromosome deletion target regions in a female sample with an adjusted number 

of reads from the same genomic regions in a male sample. This method exploits the true 

difference in copy number between male and female X chromosomes to avoid the assumption of 

linearity implied by downsampling. The X-Replacement method also ensures that other aspects 

of the reads are preserved in a realistic manner, such as the zygosity and phasing of overlapping 

SNVs and indels. Further details of the simulation implementation are provided in the 

supplementary methods (S-1). The result of the simulation step is a new set of alignments (BAM 

files) for the whole exome, but with deletions simulated in selected regions. 

CNV Analysis Pipeline 

The second step in the Ximmer process is to analyse the data containing simulated CNVs to 

produce CNV calls. Ximmer provides a built in analysis pipeline that automatically installs, 

configures and runs 5 commonly used CNV detection methods. These tools are: ExomeDepth, 

XHMM, cn.MOPS, CoNIFER and CODEX. The analysis pipeline is constructed using Bpipe 

(Sadedin et al., 2012), a framework for creating bioinformatic workflows. In addition to running 

the CNV detection tools, Ximmer performs any necessary pre-processing required by the tools 

and also post processes the results to merge and annotate the resulting CNV calls. Additional 

CNV callers can be added to Ximmer with only a small effort through the extensible Bpipe 

framework. 

The analysis produces a report in HTML format that contains a full summary of all the simulated 

deletions, along with a range of plots and tables to highlight CNV calling performance and 

potential quality issues. 
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Results Assessment 

Once CNV analysis has been performed, the next step in the method is to critically review the 

HTML report to assess performance of the CNV callers for detecting the simulated deletions, and 

to evaluate options for improving the results. 

Quality Assessment 

Three plots are of particular relevance in understanding potential quality issues. These are the 

Sample Counts, Genome Distribution and Quality Score Calibration plots.  

The Sample Counts plot (Figure 2A) shows the distribution of the number of CNV calls among 

the samples, separately for each CNV caller. In most studies we expect the number of CNV calls 

to be similar for each sample. If some samples contain a disproportionate fraction of the total 

CNV calls, it is likely that there is a problem with the sample quality. It may be desirable to either 

remove the samples from the CNV calling altogether, to adjust the caller settings to compensate, 

or to isolate poor quality samples from use in normalising other samples. 

The Genome Distribution plot (Figure 2B) divides the genome into 5 megabase bins and displays 

the number of CNVs overlapping each bin. Clicking on a particular region displays an enlarged 

plot encompassing that region for more detailed inspection. If particular regions contain very 

large numbers of CNV calls, it may be desirable to remove these from the target regions used for 

calling, as their presence may distort quality statistics and degrade overall calling accuracy. 

The Quality Score Calibration plot (Figure 2C) assists in interpreting the confidence measures 

(or quality scores) assigned to CNVs by the CNV callers. For each caller, Ximmer groups the 

whole CNV call set into approximately 5 quality score bins that collectively span the full range of 

values assigned by the caller. Ximmer then calculates the fraction of calls categorised as true 

positives in each bin as an estimate of the precision. The estimates are plotted as a line to 

illustrate the empirical relationship between precision and quality score for each CNV caller. 

When quality scores are well behaved it is expected that the precision should increase 

monotonically as quality score increases. Failure to observe this relationship suggests the caller 

may produce high confidence false positives, in which case filtering by quality score alone may 

be insufficient to reduce the false positive rate. As with the Sample Counts plot, it may be 

appropriate to review normalisation settings for methods if quality scores assigned by tools are 

not well behaved. 

Accuracy Assessment 

After reviewing the quality assessment the next step in the Ximmer process is to review the 

accuracy estimate. This is presented using a plot designed to mimic a traditional “Receiver 
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Operator Characteristic” curve, but displayed using absolute measures to better accommodate 

the unknown positions of true negatives in CNV calling. Instead, the ROC-style plots show how 

the detection of simulated true positives (Y-axis) changes with the number of detections not part 

of the simulation (false positives, X-axis) as results are progressively filtered to lower 

significance levels. It should be noted that false positives are defined as regions that are not 

simulated to be deletions but they could actually be true positives from the sample itself. Unlike 

comparisons of absolute sensitivity and precision, this method primarily compares the ranking 

of true and false positives, and thus takes into account the utility of confidence measures output 

by tools for filtering the results. For the CNV calling tools included in Ximmer, the confidence 

measure used for ranking results was chosen in each case by consulting the documentation or by 

discussion with the tool author (Supplementary Methods, Table S1).  

The initial display of the ROC-style curve shows the accuracy for the whole set of simulated 

deletions. As a first step this can suggest an appropriate level at which to filter results so that the 

optimal level of sensitivity and specificity is achieved. However, the plot can be interactively 

adjusted, to show performance of a subset of CNVs within specific size ranges.  

CNV Discovery 

Once the performance of the CNV callers is well understood, the final step in the Ximmer process 

is to filter the CNV calls according to the decided quality filtering thresholds. The remaining 

CNVs may then be manually reviewed in Ximmer’s CNV curation interface. The interface 

includes a range of annotations to support interpretation of the likelihood that a CNV is real, and 

whether the CNV is potentially of functional interest. The annotations include overlapping genes, 

population frequency of relevant CNVs from the Database of Genomic Variants (DGV (Zhang et 

al., 2006)), overlapping single nucleotide variants (SNVs) or indels, and a pictorial diagram of 

the read depth deviation over the CNV region. 

If desired, the discovery of real CNVs can be from the same analysis result set containing 

simulated CNVs. This approach relies on an assumption that simulated and real CNVs of interest 

are unlikely to overlap. Alternatively, Ximmer can be re-executed on the original raw data with 

simulation disabled to derive a stand-alone result set. 
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Figure 2 Screen shots of Ximmer Quality and Accuracy Plots.  A. Sample counts plot, showing the number of CNV calls 
for each sample, by each CNV caller. B. Genome distribution plot, showing frequency of CNV calls along the genome. C. 
Quality score calibration plot, showing relationship of empirical precision to quality score. 
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Data Sets 

To demonstrate the application of Ximmer, we applied it to four data sets representing different 

Illumina sequencing platforms, exome captures, read configurations and sequencing depths 

(Table 1). 

 

Table 1 Data sets analysed with Ximmer 

Capture Samples Capture Size (Mb) Read Length 

Mean 

Read 

Depth 

SureSelect v5 16 Male, 

14 Female 

51.2 Mb 2 x 100 30 

Nextera 1.2 24 Female, 

28 Male 

45.3Mb 2 x 100 120 

Nimblegen v2 19 Female, 

19 Male 

47Mb 2 x 75 60 

TruSeq / Custom 

Broad Capture 

19 Female 

16 Male 

37.5Mb 2 x 150 90 

 

The SureSelect data set was produced as part of an unrelated research program, the Nextera 

data was created as part of the Melbourne Genomics Health Alliance demonstration project 

(https://www.melbournegenomics.org.au/) and the TruSeq data was created by the Broad 

Institute, Center for Mendelian Genomics. The NimbleGen data set was downloaded from the 

Sequence Read Archive (SRA) from a previous study as part of the Simons Foundation Research 

Autism Initiative (Sanders et al., 2012). 

The SureSelect, Nextera and Nimblegen data sets were analysed in house to produce alignment 

files in BAM format using Cpipe (Sadedin et al. 2015). The TruSeq data set was produced and 

analysed at the Broad Institute using the institute’s standard analysis pipeline, also based on 

GATK. 

Results 

Ximmer Simulations 

In order to demonstrate Ximmer we applied it to four different exome datasets with a variety of 

different properties (Table 2). We configured Ximmer to simulate between 2 and 10 deletions 
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per sample using the X-replacement method in each of the four datasets. As the X-replacement 

method was employed, deletions were simulated only in the X chromosome of female samples 

from each respective data set. The number of simulated CNVs ranged from 72 - 144 for each 

dataset (see supplementary material). The simulated deletions spanned between 100bp and 

6.9kbp of targeted bases, equating to genomic spans of between 471bp and 4.3Mbp. 

Comparison of CNV Detection Methods with Default Settings 

First we used Ximmer to compare the accuracy of the four different CNV detection methods.  

Parameters for each tool were set to their defaults, except for cases where the tool setting was 

clearly misaligned to the simulated data. Specifically, the cn.MOPs minimum CNV width was 

lowered to 1, and XHMM mean number of targets were lowered to 3 to better match the 

generally smaller size of deletions included in the simulation. 

In the Nimblegen data set, we observe that there were significant differences between the 

performance of the different CNV callers (Figure 3). ExomeDepth achieved substantially better 

absolute sensitivity than any other tool, finding 88% of all the simulated deletions compared to 

XHMM finding 57%. However, the precision of ExomeDepth was poor (54%) compared to 

XHMM (93%). A substantial difference in precision persisted even when ExomeDepth results 

were filtered to equivalent sensitivity as XHMM. Therefore in this case the optimal caller is a 

trade off between sensitivity and specificity. Both cn.MOPs and Conifer performed poorly in 

terms of sensitivity, each finding less than 30% of simulated deletions. cn.MOPs has very poor 

precision in this data set (0.5%), and appears to output many very high confidence calls that are 

ranked higher than the true positives it detects. 
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Figure 3: Performance of CNV callers on Nimblegen data with default settings. Performance differs greatly 
between callers. ExomeDepth has significantly higher sensitivity than any other caller, while Conifer and 
XHMM  have significantly better precision. 

Comparison between Data Sets 

We next compared Ximmer results using the four CNV callers with default settings on all four 

data sets. Our results (Figure 4) show that individual methods have marked differences in 

performance on different data sets. For example, all callers exhibited a low false positive rate 

when applied to the SureSelect data (fewer than 10 false positive calls for any caller), but 

showed much higher false positive rates on Nextera data (ExomeDepth and cn.MOPs both having 

more than 200 false positive calls). cn.MOPs performed poorly on the SureSelect, Nimblegen and 

Nextera data, detecting very few true and many false CNVs. However cn.MOPs is arguably the 

best caller for the TruSeq data, having a lower false positive rate than ExomeDepth and Conifer, 

but higher sensitivity than XHMM.  These differences suggest that some data sets are better 

suited to the algorithms or default settings of particular calling methods. 

Despite the differences, some aspects of individual caller performance were consistent across all 

datasets: XHMM consistently achieved the lowest false positive rate for a given sensitivity, and 

conversely ExomeDepth consistently achieved higher total sensitivity than any other caller. 
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In some respects differences between datasets are consistent between callers. With SureSelect 

data (30x mean coverage), no caller could achieve more than 60% sensitivity. However with 

TruSeq data (90x mean coverage), all callers found more than 60% of the simulated deletions, 

and ExomeDepth found nearly all deletions (96%).  

 

Figure 4 ROC-style Curve with Default Parameters - Count of true positives vs false positives as ranked results are filtered 
by varying quality score threshold, when the four CNV calling methods are executed on four different data sets with their 
default parameters. Performance is highly variable both between different methods on the same data set, and between 
the same method on different data sets 

It is likely that homogeneity of the data is an important factor in determining these 

characteristics: data sets having very low inter-sample variation with few significant batch 

effects may work well with callers that apply relatively little normalisation or are flexible in their 

normalisation approach. 

Overall our results suggest that each data set has individual characteristics that affect the 

performance of each CNV caller differently. Consequently, there is no single best CNV detection 

tool for all data sets. Depending on the priorities of the investigation, and the particular data set 
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in question, a different tool or combination of tools may be more appropriate. Therefore users 

should assess their own data and choose CNV detection methods using Ximmer. 

CNV Calling performance can be improved with parameter optimisation 

We next configured Ximmer to re-analyse the Nimblegen data while varying several configurable 

parameters of each CNV caller. The parameters varied were chosen by reviewing the 

documentation and experimenting to find those having the largest direct effect on sensitivity 

(Table S2). 

We found that adjusting two parameters (the exome-wide CNV rate to 10-4 and the 

normalisation factor to 0.2), increased XHMM sensitivity (Figure 5A) by 21% (67% to 88%) with 

an acceptable loss of precision (81% to 55%). Similarly, we evaluated alternative values for the 

SVD number and calling threshold for Conifer (Figure 5C), and found that, by adjusting the 

calling threshold parameter from 1.5 down to 1.25, sensitivity could be improved from 25% to 

40% with only a small sacrifice in precision. cn.MOPs adjustments were able to improve 

sensitivity from 19% to 36% by adjusting the prior impact parameter from 5 to 2, and the calling 

threshold upwards from -0.8 to -0.4. Although we tried varying two parameters (transition 

probability and expected CNV length), ExomeDepth appeared to have nearly optimal parameters 

as its defaults for this data set.  

This analysis demonstrates that tuning parameter settings should be considered an important 

element of usage of CNV detection tools, and can lead to significantly improved accuracy. Many 

previous comparison studies (Hong et al., 2016; Tan et al., 2014) have been evaluated without 

rigorous optimisation of parameters. Our results suggest that the discrepancies in the results 

from these studies may have been reduced if calling parameters were optimised. 
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Figure 5 Results of adjusting CNV calling parameters on ROC-style curves. XHMM, Conifer and cn.MOPs all 
have configurations where sensitivity or precision can be substantially improved: reducing Conifer calling 
threshold to 1.25 increases sensitivity from 25% to 40%; increasing the exome-wide CNV rate to 10-4 and 
reducing the normalisation factor from 0.7 to 0.2 increases XHMM sensitivity from 67% to 88%; Reducing the 
cn.MOPs prior impact factor to 2 and raising the calling threshold to -0.4 allowed sensitivity to nearly double 
(from 24% to 36%), however these settings caused a substantial reduction in precision. 

Optimisation of Parameters across Data Sets 

We applied the optimised settings derived from simulation performance on Nimblegen data to 

the analysis of the other three data sets. However, we observed that these settings are not 

optimal for every other data set. For example, on the SureSelect and TruSeq data (Figure 6A, 6B), 

XHMM achieves both high sensitivity (85%) and precision (80%) with the default settings, but 

produces no calls at all with the optimised settings. The optimisations increase sensitivity in 

cn.MOPs, however, the marginal increase (69% to 77%) is much less significant than for 

Nimblegen data, and causes a substantially higher number of false positive calls. Similarly 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Conifer also shows a much smaller proportional increase in sensitivity (64% to 73%) and 

experiences a significant fall in precision (75% to 59%). 

We conclude that optimisation needs to be performed on each data set or data type separately. 

Ximmer supports this process efficiently and easily through modifying simple configuration 

settings. 

 

Figure 6 Performance of other data sets (A: SureSelect, B: TruSeq, C: Nextera) when analysed using parameters 
optimal for Nimblegen data (opt), compared to default settings (default). Nimblegen-optimised parameters are 
frequently unsuitable on other datasets. XHMM is severely compromised by the Nimblegen settings on all datasets: 
SureSelect and TruSeq data, produce no XHMM CNV calls, while both sensitivity and precision are poorer in 
Nextera data. Conifer and cn.MOPs both gain in sensitivity, but by a much smaller proportion and with a larger 
inflation of false positive calls than with Nimblegen data. 

Application of Ximmer to a set of Validated CNVs 

We extracted a set of validated CNVs for the samples that were captured in the Nimblegen data 

set from a previous study by N. Krumm et al. (2015). After filtering to include only CNVs 

overlapping autosomal target regions of the exome capture, 25 validated CNVs remained. We 

then tested detection of these CNVs from the exome data, first using default parameters as 

described above for each of the four CNV callers. With the exception of XHMM, the sensitivity 

estimated by Ximmer using simulation approximately reflected the sensitivity observed on the 

validated CNVs (Table 2). In the case of XHMM we suspect that differences in the composition of 

the CNV sizes between the simulation and the validated CNV set may partially account for the 

discrepancy. Precision is harder to evaluate as predictions of CNVs in regions not in our 

validated set could be true deletions. However, the number of total detections varied greatly 

between callers (Conifer and XHMM having fewer than 12, compared to ExomeDepth and 

cn.MOPS having more than 200), as predicted by Ximmer. 
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Table 2 Estimated, actual and improved sensitivity for validated CNVs from Krumm et al. (2015). The predicted 
sensitivities reflect the actual sensitivity well for all callers exception XHMM. 

Caller Predicted 

Sensitivity 

Actual 

Sensitivity 

Improved 

Sensitivity 

ExomeDepth 88% 90% 90% (0%) 

XHMM 82% 48% 76% (+28%) 

Conifer 57% 40% 48% (+8%) 

cn.MOPS 24% 16% 12% (-3%) 

 

We next applied the optimised settings identified previously through simulation to improve 

sensitivity for ExomeDepth, XHMM and Conifer. Due to the poor precision observed with the 

default settings for cn.MOPS, we chose to improve precision rather than sensitivity. By reviewing 

the sample counts plot, we identified that a significant fraction of the putative false positive calls 

were concentrated in just 3 out of 20 samples (Supplementary Figure S7). Therefore we 

excluded these samples from the analysis for cn.MOPS. 

 

Figure 7 Comparison before and after applying adjusted parameters to improve performance. XHMM and 
Conifer sensitivity are substantially improved (+28%, +8%) with minimal loss of precision, while no 
improvement was possible for ExomeDepth. cn.MOPS precision was substantially improved by excluding 
poor quality samples identified by Ximmer’s sample counts plot 
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The results after incorporating parameter adjustments suggested by Ximmer show substantially 

improved performance of several methods (Figure 7). For example, sensitivity was improved in 

XHMM (+28%) and Conifer (+8%). Conversely, removing the three poor quality samples from 

cn.MOPs slightly lowered sensitivity, but removed 90% (856) of the false positive CNV calls. 

Conclusion 

While there is great utility in detecting CNVs from WES data, adoption of CNV detection methods 

in practice has met with significant challenges. These are primarily centred around highly 

unpredictable performance and lack of reproducibility between data sets. We have addressed 

these challenges by creating Ximmer, a tool that facilitates efficiently assessing and improving 

the accuracy of WES-based CNV detection methods. Our comparison of four different data sets 

analysed by four different CNV calling methods represents one of the most comprehensive 

evaluations to date. Our results show, consistent with previous studies, that there is significant 

variability in performance of CNV detection between tools and between data sets. We conclude 

that to effectively use these methods, attention must be applied to understand and optimise 

their behavior on each individual data set. Ximmer can be used to automate these procedures, 

avoiding a significant burden. In addition, we have demonstrated that Ximmer can produce 

valuable insights into the quality of data sets for CNV calling and the behavior of CNV detection 

tools. As the first tool offering combined simulation, evaluation, tuning and interpretation of 

results from CNV detection methods, we believe Ximmer will assist increasing practical adoption 

of CNV detection methods for exome data. Ximmer is open source and available at 

http://ximmer.org. An example Ximmer report can be viewed online at 

http://example.ximmer.org. 
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