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SUMMARY
Reproducibility in molecular and cellular studies is fundamental to scientific discovery. To establish the reproducibility of a well-defined

long-term neuronal differentiation protocol, we repeated the cellular and molecular comparison of the same two iPSC lines across

five distinct laboratories. Despite uncovering acceptable variability within individual laboratories, we detect poor cross-site reproduc-

ibility of the differential gene expression signature between these two lines. Factor analysis identifies the laboratory as the largest source

of variation along with several variation-inflating confounders such as passaging effects and progenitor storage. Single-cell transcrip-

tomics shows substantial cellular heterogeneity underlying inter-laboratory variability and being responsible for biases in differential

gene expression inference. Factor analysis-based normalization of the combined dataset can remove the nuisance technical effects,

enabling the execution of robust hypothesis-generating studies. Our study shows that multi-center collaborations can expose

systematic biases and identify critical factors to be standardized when publishing novel protocols, contributing to increased cross-

site reproducibility.
INTRODUCTION

Reproducibility is a cornerstone of science. Yet, in recent

years, a number of publications highlighted serious issues

regarding this fundamental principle of scientific

approach, to the extent that the expression ‘‘reproduc-

ibility crisis’’ was coined (Munafò et al., 2017; Baker,

2016). The more complex experimental procedures are,

and the longer they are applied, the higher the possibility

of introducing variability and noise during a research

study. This is particularly critical for human induced

pluripotent stem cells (iPSCs), which need to be differenti-

ated using lengthy complex procedures in order to be used

as novel in vitromodels in basic science and drug discovery

(Avior et al., 2016), but this increases the variability, such as

well-to-well differences in cell density and cellular hetero-
Stem Cell R
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geneity. Protocols for efficient generation of specific

neuronal subtypes mimic human development both in

the appearance of successive phenotypes, and also in dura-

tion, potentially taking more than 100 days in vitro (Shi

et al., 2012a). Reproducibility is especially critical when

comparing iPSC-derived cells from multiple donors to

discover cellular disease phenotypes and their underlying

pathways using unbiased omics experiments. While the

reproducibility of transcriptomic (Li et al., 2014) and prote-

omic (Kim et al., 2007) approaches have been well estab-

lished for simple cellular systems, no systematic studies

have been performed to assess the cross-site reproducibility

of these readouts after a long-term iPSC differentiation pro-

tocol, such as the derivation of human cortical neurons.

The goal of our study was to identify the extent of vari-

ability in an iPSC experiment conducted by multiple
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groups of the IMI StemBANCC (Innovative Medicines

Initiative, Stem cells for biological assays of novel drugs

and predictive toxicology) initiative, which aims to

generate and interrogate a large collection of stem cell

models for disease modeling and therapeutic research. For

multi-site comparative studies, large public-private part-

nerships offer a unique framework due to the participation

of both academic and industry organizations with strong

scientific background in iPSC biology, representing a

‘‘best case scenario’’ to assess cross-site reproducibility.

Our cross-site analysis utilized a previously published

neuronal differentiation protocol (Shi et al., 2012b). In

this study we set out to assess the inter- and intra-labora-

tory reproducibility of transcriptomic and proteomic read-

outs using two iPSC lines and standard laboratory practices

adhered to by all participating laboratories. The differenti-

ation protocol nevertheless enables individual laboratories

to apply their laboratory-specific approaches simulating

the reproduction of a publishedmethod. The key questions

in this studywere firstlywhether a laboratorywould be able

to separate the two iPSC lines at the molecular level, and

secondly whether the identified molecular differences be-

tween the two lines were consistent between laboratories.

Three academic and two industrial organizations partici-

pated in the study to simulate this real-life reproducibility

scenario. In addition to bulk omics analyses and single-

cell (SC) RNA sequencing (RNA-seq) to assess cellular

heterogeneity, the reproducibility of a known cellular

phenotype arising from a specific mutation in one of the

iPSC lines has also been evaluated.

To our knowledge, this study represents the first compre-

hensive experiment to assess the intra- and inter-labora-

tory reproducibility of multiple readouts measured in an

iPSC-derived in vitro model system containing differenti-

ated human neurons. Despite acceptable intra-laboratory

reproducibility of omics readouts and surprisingly good

cross-site reproducibility of a previously identified cellular

phenotype, omics datasets from different sites have large

variation that masks specific differences, rendering it

impossible to distinguish these two lines from each other

in a combined dataset. SC analyses demonstrate that cell-

type heterogeneity is an important confounder in these

comparisons, with variation undermining the detection

of differentially expressed (DE) genes, proteins, and path-

ways. However, we show that there are identifiable sources

of variation that investigators can control and thereby in-

crease biological signals in iPSC-based molecular studies.

Besides strongly recommending to disclose these identified

variation-inflating confounders in published iPSC differen-

tiation protocols, our study also shows that collaborative

approaches with larger sample numbers in cross-laboratory

studies are valuable to detect and remove unwanted varia-

tion (Freytag et al., 2015).
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RESULTS

Experimental Design

Five laboratories (referred as A, B, C, D, and E) received the

same two fibroblast-derived human iPSC lines. One line

was derived from a healthy control individual while

the second one originated from a patient with familial

Alzheimer’s disease carrying a presenilin 1 (PS1) mutation.

Note that our study was not designed to examine the

effects of this mutation per se but instead focusses on the

reproducibility of the comparison of these two lines (see

Discussion). All laboratories followed the same standard

operating protocol (SOP) (see Supplemental Experimental

Procedures) to differentiate the cultures into cortical

projection neurons in three independent inductions (repli-

cates) (Figure 1). Laboratory-specific variations and obser-

vations were recorded (see below and Table S1). Total

RNA and cell lysates were collected at two time points dur-

ing differentiation, specifically, after 25 and 55 days from

the final plating (FP), respectively (representing �50 and

�80 days in vitro differentiation from the iPSC state), and

sent to central locations for RNA-seq and proteomic ana-

lyses (Figure 1A).
Molecular Profiles Show Strong Similarity within

Laboratories and Clearly Separate by Cell Line

Genotype

To assess the reproducibility of transcriptomic readouts we

first examinedwhether each laboratory was able to demon-

strate a clear segregation between the two iPSC lines at a

molecular level. Detection of differential molecular profiles

between the two lines might be expected due to their

differing genetic and epigenetic backgrounds. It is impor-

tant for molecular studies of iPSC-based models that geno-

typic differences between lines are identifiable.

Applying RNA-seq, the expression of variable numbers of

protein-coding genes across different samples were de-

tected (with at least one count), with about 70% (13,373)

of the 19,086 protein-coding genes expressed across all 57

samples. In further analyses we considered only this set

of 13,373 commonly expressed genes. Principal-compo-

nent analysis (PCA) on the transcriptomic profiles from

individual sites illustrated clear separation between the

samples from the two cell lines in all five laboratories at

both early and late time points (Figure 2A), indicating

that genetic background or genotype is a clear source of

variation within laboratories. Each laboratory performed

three independent cortical differentiations, and the consis-

tency within each laboratory is evident by the greater sim-

ilarity in gene expression profiles of the three replicates of

the same genotype compared with the gene expression

profiles between genotypes (Figure 2A). The Euclidean



Figure 1. Experimental Outline of the Study
(A) iPSC lines from two genotypes were differentiated at five different sites with three individual inductions at each site. The given samples
were taken at FP (final plating) + 25 days and FP + 55 days.
(B) Representative iPSC-induced cortical neurons at FP + 10 days in culture, immunolabeled with Tuj-1 (green) and DAPI (blue) derived
from SBAD3 and AD SB808 cell lines. Neurons grown in two different laboratories are shown (sites D and B). Scale bars, 50 mm (site D),
100 mm (site B).
(C) Cortical neuronal inductions from CTR and PS1 cells 10–20 days after FP, showing presence of neuron-specific bIII-tubulin (green) for
sites B, C, D, and E or MAP2 (green) for site A and nuclear marker DAPI (blue). Scale bars, 100 mm (site A); 100 mm (site B); 100 mm (site C);
50 mm (site D); 100 mm (site E).
(D) Heatmaps of gene expression (log10[fragments per kilobase of transcript per million mapped reads]) at the two time points (FP + 25
left and FP + 55 right) of cortical neuron markers, hindbrain markers, and pluripotency markers for 57 StemBANCC samples confirm the
presence of expected neuronal markers and the absence of all but SOX2 non-neuronal markers.
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Figure 2. Detection of Laboratory as One Source of Unwanted Variability
(A) Individual laboratory experiments separate by cell line. PCAplotswithin laboratory (sites A–E)on13,373genes expressed across all samples
(normalized gene counts were used) show clear separation between the samples from the two cell lines at both early and late time points.
(B) Degree of variability between replicates within the same laboratory. Boxplots showing the coefficients of variation calculated between
gene expression values across replicates within each laboratory, cell line, and time point. Box-and-whisker graphs represent distributions,
where the span of the box is the interquartile range (IQR) and includes the median (bold line). The ends of the upper and lower whiskers
represent the data point with the maximum distance from the third and first quartiles, respectively, but no further than 1.5 3 IQR. Data
beyond the end of the whiskers are outliers.
(C) Samples cluster by laboratory in a combined PCA. First two principal components from a PCA on gene expression of 13,373 protein-
coding genes that are expressed in all samples clearly cluster samples based on laboratory of origin.
(D) Laboratory and cell count are major confounders in protein-based PCA. First two principal components from a PCA on 1,034 proteins
expressed across all samples; color coding according to laboratory; shapes correspond to cell line and sizes to averaged cell count.
See also Figure S1.
distances calculated between the gene expression profiles

of each sample show that, within each laboratory, the

expression profiles derived from replicates of the same

line are significantly closer to each other than those be-

tween replicates of different lines for four out of five labora-

tories (Figure S1A).

The power to identify DE genes is strongly dependent on

the experimental variance. A measure of this variance, the

coefficient of variation (CV) of the transcriptomic dataset

varied between laboratories. While the CV showed no clear

genotype or maturation time trends (Figure 2B), the

differing CV for each laboratory resulted in a large differ-
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ence in the number of DE genes between genotypes

controlling for time point variation (Figure S1B). Unsur-

prisingly, the highest number of DE genes was found in lab-

oratory D, which shows the lowest degree of dispersion

between replicates.

Cross-Site Comparison of Molecular Profiles Show

Poor Reproducibility

Having demonstrated that each laboratory exhibited a

clear segregation based on gene expression profiles, we

asked whether the molecular differences were consistent

between laboratories. Despite the use of a detailed SOP, in



a combined dataset containing data from all five partners,

we found the laboratory was the dominant source of varia-

tion, masking any genotypic effects (Figure 2C). Impor-

tantly, only 15 DE genes are found in common between

all laboratories indicating a remarkably low degree of

cross-laboratory reproducibility (Figure S1B). The low num-

ber of overlapping genes may be a consequence of three

laboratories (A, B, and E) detecting only a small number

of DE genes. Certainly, sites C and D, which had the lowest

CV and the highest number of DE genes, showed

about �50% overlap. At the pathway level, the similarity

in enriched gene ontology (GO) terms for these five lists

of DE genes is highly variable with semantic similarity

comparison values ranging from 0.36 to 0.64 (Figure S1B).

In summary, despite extensive efforts to replicate the same

experiment, we observe significant variation that would

confound any inter-laboratory comparison.

The PCA plot (Figure 2C) and the heatmap of Spearman’s

correlations (Figure S1C) revealed three potential outliers

(SB808 line, laboratory C, here specific issues with detach-

ment of cellmonolayerwere observed, see Table S1 onmeta-

data). Nevertheless, in general, recorded variation in exper-

imental procedures noted by individual laboratories did not

explain the detected cross-laboratory sample variability

(Figure S1C). The above observations suggest that much of

the inter-laboratory variation arises from additional con-

founders that increase the within-laboratory variance.

To investigate whether cross-site variability in gene

expression was also present at the proteomic level, lysates

from replicate wells of the same 57 samples were pooled

and analyzed (see Experimental Procedures). Similarly to

the transcriptomic samples, the low number of overlap-

ping proteins detected across all samples (only 10% of

the 10,483 proteins observed in at least one sample) indi-

cated that the abundance of various proteins is highly var-

iable. For further analyses, we retained only those 1,037

proteins that were observed in all samples. As observed

for the transcriptomics data, PCA and heatmap of Spear-

man’s rank correlations of protein abundances did not

show clustering of samples by genotype (Figures 2D and

S1D). We noticed that, despite normalizing for total pro-

tein, the first principal component clearly captures a strong

cell-number-related effect in addition to a laboratory-

dependent effect. Taken together, the transcriptomic and

proteomic profiles demonstrated a strong inter-laboratory

variation that masks variation due to the genetic back-

ground of each iPSC line.

Factor Analysis Reveals the Transcriptional Axis of

Maturation in iPSC-Derived Neurons and Confirms

Robust Cortical Neuronal Differentiation

It is evident that cross-site comparisons can be significantly

hampered by site-specific confounders, but collaborative
studies that generate a large number of samples can have

the power to identify nuisance technical effects. We

applied a factor analysis-based method called remove un-

wanted variation (RUV) (Risso et al., 2014). This method

can capture nuisance technical effects and RUV in the

form of factors, while retaining variation associated with

the biological covariate of interest. To demonstrate the util-

ity of factor analysis in revealing biological signals, we first

used the approach to determine the transcriptional deter-

minants of in vitro neuronal maturation, exploiting the

two time points, FP + 25 and FP + 55, in our samples.

Consistent with the reported fetal nature of neurons

derived from pluripotent stem cells (Handel et al., 2016),

hierarchical clustering of the bulk transcriptomic profiles

of 57 samples demonstrated their overall similarity to fetal

postmortem brain samples from the BrainSpan Atlas of the

DevelopingHumanBrain (Sunkin et al., 2013) (Figure S2A).

We performed normalization using RUVon samples from a

single line (see Supplemental Experimental Procedures) to

expose a clear time point variation that was not masked

by any cell line-dependent effect on maturation.

PCA of the RUV-normalized gene expression profiles

showed clustering of samples by time points (Figure 3A).

BrainSpan samples projected onto the PCA coordinates of

normalized iPSC neuron-maturity expression profiles reca-

pitulated the direction of human neuronal maturation

(Figure 3A) better than those projected onto PCA coordi-

nates of non-normalized gene expression levels (Fig-

ure S2B). Accordingly, the post-RUV expression signature

clearly separated the early and late stages of differentiation

in BrainSpan fetal samples, and is in line with the observed

direction ofmaturation in our samples. To confirm aneuro-

developmental role for genes whose expression varies in

this component space, we selected those genes that maxi-

mally contributed in either direction to the identified tran-

scriptional axis of maturation (principal component one)

with a gene loading on this axis greater/less than ±0.01.

To validate the biological role in neuronal maturation of

the contributing genes, we used the CORTECON dataset

(van de Leemput et al., 2014), which identified gene clus-

ters representative of changes in temporal gene expression

of in vitro cerebral cortex development fromhuman embry-

onic stem cells.We observed that the genes characteristic to

the less mature stage in STEMBANCC samples (with posi-

tive scores on PC1)were enriched inCORTECONgene clus-

ter specific to the early developmental stages, namely the

‘‘cortical specification’’ cluster and that are active from

days 10 to 20 after differentiation (van de Leemput et al.,

2014). The set of genes representing the more mature stage

(with negative scores on PC1) was instead significantly en-

riched in the ‘‘upper layer generation’’ cluster with an

expression peak from day 60, as expected (Figure 3B).

This analysis also confirmed that the laboratories were
Stem Cell Reports j Vol. 11 j 897–911 j October 9, 2018 901



Figure 3. RUV-Corrected Gene Expression
Reveals Differences of Maturation in Data
(A) Identification of a transcriptional axis of
neuron maturation. BrainSpan samples are
projected on the principal components
calculated on the gene expression data in the
present study, after RUV correction. It can be
seen that the principal components of gene
expression separate both STEMBANCC and
BrainSpan samples based on developmental
stages.
(B) Genes contributing to the identified
transcriptional axis of neuron maturation are

consistent with external data. The bar plot shows the percentages of time point-specific genes (selected based on gene loadings from PCA
of the samples after RUV correction) falling into each CORTECON gene cluster representative of neuron developmental stages: 25-day-
specific genes are enriched in pluripotency (PP), neuron development (ND), and cortical specification (CS) clusters; 55-day-specific genes
are enriched in deep layer neuron generation (DL) and upper layer neuron generation (UL) clusters.
See also Figure S2.
successful with their differentiation protocol in producing

cells with cortical specification at the early stage and upper

layer cortical neurons as expected with this protocol at the

later stages.

Factor Analyses Reveal Genotype-Related Differential

Molecular Expression

To examine the sources of experimental variation, we

applied RUV across all samples, retaining both cell line

and time point variations. After RUV correction of gene

counts on the first five estimated factors of variation, sam-

ples in the combined dataset cluster clearly by cell line and

by time point (Figure 4A). Consequently, the number of DE

genes detected between the 2 iPSC lines across all samples

combined increased (from 1,873 before RUV correction to

3,051 after RUV correction) and between time points

(from 2,186 before RUV correction to 3,868 after RUV

correction) across all samples (see Table S2 for a complete

list of DE genes). Examining a set of neuron-specific stage

markers that are expected to be expressed in the differenti-

ating samples (see Supplemental Experimental Proced-

ures), the large distributional differences that were evident

between samples in the non-normalized data (Figure 4C,

top) were reduced upon removal of the identified variance

factors (Figure 4C, bottom).

Similar to the transcriptomic analysis, when RUV correc-

tion was applied to protein abundances (available for

FP + 55 time point only), good separation between the

two iPSC lines was observed. After this normalization, a

combined PCA shows that both transcriptomic and prote-

omic samples cluster together by iPSC line, indicative of a

correlation between the two data types (Figure 4B). This is

further supported by the increase in the number of differ-

ential abundant (DA) proteins (0 before RUV correction,

205 after RUV correction) and consequently in the percent-
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age of overlapping DE genes and DA proteins between lab-

oratories after RUV correction (0% before RUV correction,

14% after RUV correction).

To study further the effect of RUV on the reproducibility

across laboratories, we measured the extent of homogene-

ity between laboratories in evaluating the same biological

effect (see Supplemental Experimental Procedures). The

number of genes showing high heterogeneity across all

samples (I2 R 75%) decreased as a function of the number

of RUV factors that are regressed out from the data (from

6,443 genes before RUV correction to 584 genes after

RUV correction on 20 factors, Figure 5A, top). In addition,

an increase in overlapping DE genes between cell lines

across laboratories was also observed (from 15 before RUV

to 243 after RUV correction on 20 factors, Figure 5A, mid-

dle; Table S3). The post-RUV PCA plots for each laboratory

clearly reveal that the segregation by both time point and

genotype is more evident than pre-RUV (Figure 5B). The

I2 measure and variance analysis at the gene expression

level before RUV and after RUV (Figures 5A, top and S3)

confirm that the laboratory-dependent source of variation

was properly removed from the data to expose the varia-

tion of interest. Thus, given sufficient power, technical

variability, including hidden laboratory-dependent varia-

tion, can be corrected and enables detection of the biolog-

ical signal.

Identification of Experimental Variables Inflating

Gene Expression Variance

We next examined the known and investigator-recorded

covariates that correlated with the RUV factors. As ex-

pected, the variable ‘‘SITE’’ explained 60%, 40%, 38%,

and 39% of the variance in factors 1, 2, 3, and 4, respec-

tively (Figure 5C). The second most contributing source

of variation captured by RUV was attributable to starting



Figure 4. Impact of Unwanted Variance Removal by RUV Correction
(A) RUV separates sample gene expression profiles by cell line and time point. First two principal components from a PCA on gene
expression over all samples after RUV correction.
(B) RUV separates sample gene expression and protein abundance profiles by cell line. First two principal components from a ‘‘second’’ PCA
on both pooled gene and protein expression adjusted for PC1 of ‘‘first’’ PCA. This first PC1 captures the differences between protein and gene
expression, therefore adjustment makes the two datasets more comparable. Gene expression values and protein abundances are RUV
corrected separately on the two datasets for FP + 55 time point.
(C) RUV normalizes the expression of marker genes expected to be similarly expressed across all samples. Gene expression on log scale of
gene markers of three neuron-specific stages before (top row) and after RUV correction (bottom row). Box-and-whisker graphs represent
distributions, where the span of the box is the interquartile range (IQR) and includes the median (bold line). The ends of the upper and
lower whiskers represent the data point with the maximum distance from the third and first quartiles, respectively, but no further than
1.5 3 IQR. Data beyond the end of the whiskers are outliers.
the experiment on different days for technical replicates

(15%, 22%, 20%, and 38% of the variance in factor 1, 3,

7, and 13, respectively; Figure 5C). In general, the propor-

tions of variance in RUV factors that could be explained

by the remaining candidate confounders were moderate

to low. Among these, 18% and 15% of variance in factors

2 and 3, respectively, were explained by differences in cell

counts.
As SITE was the strongest cause of variability, we attemp-

ted to correlate SITE-specific variation in RUV factors to

particular experimental effects by fitting linear models re-

gressing site-specific RUV means outputted from the vari-

ance component analysis on each site-specific metadata

variable in turn. Several covariates, namely iPSC passage

number before differentiation and the number of passages

before FP,media volume changes, feeding at weekends, and
Stem Cell Reports j Vol. 11 j 897–911 j October 9, 2018 903



(legend on next page)

904 Stem Cell Reports j Vol. 11 j 897–911 j October 9, 2018



use of frozen neural progenitor cells, were highly correlated

with several factors (Figure 5D).

We also examined the variation underlying expression at

the gene-specific level by fitting a regression model

(MCMCglmm) (Hadfield, 2010) between gene counts and

the known covariates. The analysis enabled the identifica-

tion of genes that may underlie the covariate. The top

100 genes related to ‘‘DETACHMENT’’ were enriched in

GO terms related to regulation of cell cycle, apoptosis,

and DNA metabolism, while those similarly associated

with ‘‘CELL_COUNT’’ are enriched in cellular respiration

and lipid metabolism pathways, and those genes related

to ‘‘TIME_POINT’’ were involved mainly in neuron differ-

entiation processes (complete lists of GO terms in Table S4).

Cell Type Heterogeneity Is a Major Source of Inter-

laboratory Variation

Cellular heterogeneity can be a major confounder in tissue

and cell culture comparison (Sandor et al., 2017), and could

represent an important source of inflated variance within

and between laboratories. To investigate variation in the

cellular composition of our iPSC-derived cell populations,

we generated the individual transcriptional profiles of

1,440 fluorescence-activated cell sorting (FACS)-sorted

iPSC-derived cortical neurons produced by two of five

participant laboratories (sites D and E for each of the two

cells lines at the FP + 55 time point; see Experimental

Procedures). After discarding low-quality cell libraries (see

Supplemental Experimental Procedures), 771 SC transcrip-

tomes were available for subsequent analysis.

Using unsupervised hierarchical clustering on the

expression profiles we identified four and five subpopula-

tions of cells within the SB808 and SBAD3 cell populations,

respectively (see Supplemental Experimental Procedures,

Figures 6A and S5A). The cortical differentiation protocol

we used has been extensively validated and efficiently pro-

duces high yields of cortical excitatory neurons as well as

astrocytes. We assessed the presence of neuron-, glial-,

and other cell-type-specific markers within each subpopu-
Figure 5. Analyses of Factors Explaining the Unwanted Variance
(A) Increased reproducibility of gene expression difference between
showing high heterogeneity across sites before and after RUV based on
I2 threshold (Het_I2_75) (Top). Overlap of DE genes between cell lin
factors (Venn diagrams, bottom).
(B) Separation between the lines in singular value decomposition plo
covariates of interest before and after RUV.
(C) ‘‘Laboratory’’ is a major confounder corrected by RUV. Each bar sum
W_20) and explained by known potential confounders.
(D) Laboratory variance is correlated to several experimental variat
laboratory-specific RUV factors and known laboratory-specific potentia
in Supplemental Experimental Procedures section and in Figure S4B.
See also Figures S3 and S4.
lation (see Supplemental Experimental Procedures). For

each line, we found that the largest cell subpopulation

was uniquely and significantly enriched in neuron-specific

markers (Figures 6A and S5A). The second largest subpopu-

lation was also enriched for a distinct set of neuron-specific

markers (cluster 2 for SB808 and SBAD3) (Figures 6A and

S5A). Other subpopulations were enriched in astrocyte

markers (e.g., clusters 3 and 4 for SB808 and cluster 4 for

SBAD3) (Figure S5).

While Shi et al. (2012b), who described the protocol,

observed astrocytes forming after day 45, we found here

(1) that glial cells represented a large proportion (20.8%),

(2) that the fraction of glial cells varied from site to site

(15% site D versus 21% site E), and (3) that the fraction

of glial cells was higher in the SB808 line than in the

SBAD3 line (29% SB808 versus 12% SBAD3).

Cellular Subpopulations Can Show Opposing

Differential Gene Expression and Introduce

Considerable Bias in Comparative Studies

The SC analysis revealed cell culture subpopulations of

differing proportions between two sites (Figure S5A) that

could affect the differential gene expression analysis. Inter-

estingly we found that subpopulations 2, 3, and 4 also

expressed a small number of genes representing oligoden-

drocyte or microglia markers (Figure 6A). The expression

of genetic markers of other cell types not intended to be

induced by our differentiation may represent either a

genuine developmental feature of these cells or an artifact

of in vitro differentiation, where the epigenetic silencing

of other cell type-specific genes is not fully effective––in

either case the heterogeneity could significantly bias differ-

ential gene expression between lines and between sites.

After discounting technical artifacts (e.g., plate effects),

we found that the DE genes and pathways varied signifi-

cantly between iPSC-derived subpopulations. Most

notably we observed that gene expression differences

between the two lines were negatively correlated between

subpopulations 1 and 6, and thus directly obscure the
and Laboratory Heterogeneity
lines across laboratories after RUV correction. Number of genes
5% false discovery rate (FDR) threshold (Het_FDR_05) and on 75%
es across sites before and after removal of 5, 10, 15, and 20 RUV

ts helps explain the different number of DE genes between the two

marizes the proportions of variance captured by RUV factors (W_1 to

ions. The matrix shows the linear correlations between means of
l confounders plus neuron-astrocyte axis scores (NA_PC1) described
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detection of DE genes (Figure S5D). To evaluate how the re-

sults of DE analyses can be biased by the observed cell het-

erogeneity, we randomly sampled populations of 100 cells

from each line and observed the stability of DE genes and

pathways. Of 192 originally observed DE genes, only

10 genes (5%) that were associated with a very low p value

(<10�20) were consistently reported with a false-negative

rate <5% (Figure S5B). This clearly demonstrated that cell

heterogeneity can yield a major bias in the comparison of

gene expression profiles between iPSC-derived cells and

that only the most significant DE genes are detectable

through the heterogeneity. Indeed, upregulated and down-

regulated DE genes for each laboratory in the bulk tran-

scriptomic studywere significantly overrepresented among

specific subpopulations of the SC study (upregulated in

subpopulation numbers 1, 2, and 3, and downregulated

in subpopulation numbers 1, 4, and 6, respectively, hyper-

geometric test; Tables S2 and S3; Figure S5C).

Cellular Composition Varies Both by Laboratory and

Cell Line upon Differentiation

Given the results obtained at the SC level, we askedwhether

the observed heterogeneity in cell identity (neuronal and

non-neuronal populations) could explain the variance in

the bulk transcriptomic data due to the test site. For this,

we used available RNA-seq data from purified human brain

cell types to identify gene expression variation associated

with cell type and extended the list of marker genes em-

ployed in the SC analyses (see Experimental Procedures).

Examining the variation between genotypes across all sites,

we found that the SBAD3 upregulated genes were enriched

in neuronalmarkers (p = 2.63 10�18, after RUV correction),

while the SB808 upregulated genes were enriched in non-

neuronal markers (p = 3.2 3 10�11 for astrocytes after RUV

correction). Furthermore, a clear separation by genotype

on principal components reflecting the above-mentioned
Figure 6. Distinct Cellular Populations Are Identified within the
ferences in the Bulk Transcriptomic Comparisons
(A) Cellular heterogeneity in individual cells across cell lines and lab
distinct cellular populations in SB808 and SBAD3 lines in two labora
genes (see Supplemental Experimental Procedures).
(B) A neuron-astrocyte axis of gene expression variation illustrates c
oratories. The projection of before (top) and after (bottom) RUV c
neuronal-glia gene expression identity axis (top) shows that glia-neu
(C) Increase of neuron- and astrocyte-specific protein abundances at
Protein Atlas neuron-specific (top) and glia-specific (bottom) protein
(top). A significant increase of SYP is observed from FP + 25 to FP + 55
at different time points (bottom). A significant increase of FABP7 and
specifically shows an increase in all SB808 lines compared with SBAD
distributions, where the span of the box is the interquartile range (IQ
lower whiskers represent the data point with the maximum distance
1.5 3 IQR. Data beyond the end of the whiskers are outliers.
See also Figure S5.
similarity of SBAD3 lines to neurons and of SB808 lines to

non-neuronal cells was evident when the samples were pro-

jected on the PCA coordinates of the human brain cell types

both before and after RUV correction (Figure 6B). However,

before RUV correction, there is significant systematic varia-

tion evident in the neuronal/non-neuronal composition in

the lines cultured by different laboratories following the

same protocol. Indeed, the neuronal/non-neuronal compo-

sition of the lines cultured by each laboratory is well-corre-

lated with the ‘‘laboratory’’ contribution to RUV factors 1,

8, and several other factors (Figure 5D). Thus, the predisposi-

tion of each line toward generating cell populations with

distinct proportions of neurons and non-neuronal cells is

an important driver of gene expression differences between

the two cell lines at the bulk transcriptome level. This is also

reflected at the protein level, whereby glial marker proteins

(FABP7 and GFAP) showed increased abundance at the

FP + 55 time point and that GFAP is more abundant in

SB808 samples than in SBAD3 samples for all laboratories

(Figure 6C). Interestingly, variation in neuronal/non-

neuronal composition of the two lines did not increase

from the early to the later time point when we

explainedRUVfactors throughknowncovariates (Figure5C)

and compared Euclidean distances between time points

(Figure S1A).
DISCUSSION

In this study we examined the reproducibility of a long-

term neuronal differentiation protocol undertaken in five

laboratories. Further, we also intended to identify ‘‘hidden’’

factors important to a robust method and quantify the

extent to which they contribute to experimental variation

in molecular data. We therefore focused on repeated differ-

entiations of two lines with different genetic backgrounds
iPSC-Derived Neuronal Populations That Potentially Drive Dif-

oratories. The heatmap of single-cell transcription data reveals six
tories according to their expression of a set of cell identity marker

ell type is a major contributor to cell line variation across all lab-
orrection bulk transcriptomic expression patterns (FP + 55) onto
ronal identity contributes to the expression variation (bottom).
later time points in all laboratories. Protein abundance of Human
s. Protein abundances of a neuron marker at different time points
time point (p < 0.05). Protein abundances of two astrocyte markers
GFAP is observed from FP + 25 to FP + 55 time points (p < 0.05). GFAP
3 lines within each laboratory. Box-and-whisker graphs represent
R) and includes the median (bold line). The ends of the upper and
from the third and first quartiles, respectively, but no further than
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to assess whether it was possible to consistently distinguish

two iPSC lines after neuronal differentiation, using molec-

ular readouts. In our multi-center experiment, we deliber-

ately chose not to investigate multiple disease and control

donor lines in order to focus on reproducibility rather than

identifying novel disease phenotypes. With a detailed and

shared protocol applied across all partner laboratories, we

controlled variability in the differentiation process to the

extent it is usually disclosed in published protocols, while

expecting variation between the cell lines due to their

differing genotypes (the sum of all other potential ge-

netic/epigenetic differences between the two lines), as

well as originating from specific laboratory practices not

harmonized across test sites.

Our approach found (1) that genotype-driven gene

expression variation is detectable by a laboratory in partic-

ular when within-laboratory consistency is high; (2) that

genotypic effects are masked in aggregated molecular data

frommultiple laboratories due to site-specific confounders;

(3) that cell-type compositional heterogeneity varied both

by laboratory and by cell line, and contributed significantly

to themasking of genotypic effects inmulti-site studies; (4)

that prolonged cell culture after FP did not significantly

increase inter-laboratory variance and that much of the

cell-type compositional heterogeneity was likely deter-

mined during neural patterning and shortly after FP; and

(5) that normalization methods were able to remove

nuisance site-specific effects to reveal biological signals

including genotypic effects. Our study therefore under-

scores the importance of recognizing, recording and report-

ing experimental variables, and, where possible, using

appropriate statistical methods to remove unwanted vari-

ability, in order to generate more reproducible molecular

studies based on differential gene and protein expression

phenotypes.

The application of in vitro human disease models using

iPSC lines is a potentially transformative approach for un-

derstanding disease mechanisms, novel target discovery,

and personalized medicine. Unsurprisingly, the majority

of efforts have been on monogenic forms of disease where

there are strong genotype-phenotype relationships due to

large effect sizes of the gene mutation. The expectation

for such disorders is that, at a cellular level, highly pene-

trant mutations would cause easily detectable in vitro mo-

lecular and cellular phenotypes. Although not the focus

of our study, when we examined the biochemical pheno-

type in line SB808, which carried a familial Alzheimer’s

disease mutation in the PS1 gene, we did indeed detect a

highly robust change in specific b-amyloid peptide ratios

(Szaruga et al., 2015) when compared with the iPSC line

without the PS1 mutation (Figure S6). This strong cross-

site reproducibility has likely been observed because (1)

the altered production of b-amyloid peptides is proximal
908 Stem Cell Reports j Vol. 11 j 897–911 j October 9, 2018
to the PS1 mutation, and (2) is due to the robustness of

the ratio-based readout.

The molecular analysis by contrast showed very little

overlap between sites despite the detailed, shared protocol,

and attempts to minimize technical variability, including

processing and analyzing omics samples at the same labo-

ratories, enabling us to focus on the differentiation pro-

cess-related confounders. Within a laboratory, there was

much less variance, and gene expression profiles of the

two lines clearly segregated even before RUV analysis.

Two sites, C and D, showing low levels of dispersion be-

tween replicates, produced a large number of genes that

were significantly differentially expressed. When consid-

ering all 5 sites, only 15 genes were consistently different

between the two cell lines prior to normalization,

compared with over 200 genes mutually detected after fac-

tor analysis-based removal of the unwanted variation. The

pre-RUVoverlap of the DE genes of sites C and D was quite

high, but much of this overlap may have been artifactual,

since for site C the number of DE genes fell from 7,524 to

3,354 after removing 5 factors, and to 1,480 genes after

removing 20 factors. This suggests that a laboratory could

generate ‘‘private’’ gene expression lists with high confi-

dence based upon highly significant p values as in our

study, but, unless sources of variance are explored, it is

difficult to knowwhether suchDE lists are biologically rele-

vant. This is important because molecular studies by indi-

vidual laboratories are often used to generate hypotheses

for further investigations, and therefore our study raises

significant concerns that many of the detected DE genes

can be an artifactual.

Addressing this concern, our work found that, despite the

numerous sources of potential confounders, it is possible to

detect consistently replicated signals if there is a sufficient

number of samples to power an appropriate statistical

approach and due consideration is given to complexity of

iPSC-differentiated cell cultures. The presence of multiple

cellular subpopulations differing between two labs was

confirmed by the SC transcriptome study. Strikingly, we

observed that differential gene expressionpatterns between

the two cell lines in one cellular subpopulations can have

the opposite pattern in another subpopulation. We found

that, in a simulated heterogeneous bulk transcriptome

based on our SC data, only the most significant and stron-

gest gene expression (p < 10�20) differences between the

two cell lines were detectable. The differing propensity in

cellular fates of the two iPSC lines produced by our stan-

dardized differentiation protocols was evident in the bulk

transcriptome data both before and after removing

unwanted variation, demonstrating systematic variation

in culture cellular composition associated with both geno-

type and laboratory. More rigorous quality control of

cellular composition upon differentiation at a series of



intermediary time points may help improve the consis-

tency of results between laboratories. However, we also

found that different subpopulations within a culture can

be characterized by aberrant expression of cell identity

markers from cell types that are not present in the culture

such asmicroglia or oligodendrocytes. Immunohistochem-

istry or functional studies such as calcium imaging or elec-

trophysiology may not reveal these cell subpopulations.

These cells may therefore represent a potentially important

cause of variance thatwill be hidden to quality controlmea-

sures unless these include SCprofiling.Altogether our study

shows that cellular heterogeneity can introduce significant

bias in differential gene expression experiments and likely

represents themajor contributor to inflatingwithin-labora-

tory variance and to inter-laboratory variability.

One of the important aspects of our study was to identify

those factors which are correlated to the RUV factors,

potentially explaining the increased cross-site variability.

Not surprisingly, our computational analysis indicated

that SITE (i.e., laboratory) is the most influential source of

variation (explaining between 40% and 60% of the vari-

ance in the first 4 RUV factors), followed by the practice

of starting the differentiation of progenitors on different

days as opposed to plating on the sameday. To further iden-

tify the sources of inter-laboratory variability, we correlated

site-specific variation in RUV factors to experimental

practices known to be different for the various test sites.

This analysis allowed us to pinpoint experimental variables

which were highly correlated to several RUV factors, and

potentially hampered cross-site reproducibility. Among

these were a number of factors, some of which are often

not disclosed in published differentiation protocols, such

as iPSC passage number before differentiation, the number

of passages before FP, media volume changes, feeding at

weekends, and use of frozen neural progenitor cells.

Many of these factors likely alter the epigenetic and cellular

programs that determine progenitor cell fate choices,

including neuronal-glial balance to thereby contribute to

the heterogeneity and variance. Based on our study we

strongly suggest that these should be a standard part of

every published differentiation protocol to increase the

chance of robust reproducibility of iPSC-based studies.

Reproducibility in biomedical science is a major cause of

concern and has impacted the pharmaceutical industry,

where study reproducibility is a pre-requisite for target dis-

covery, assay development, and a successful drug discovery

program. The potentially underlying causes for the lack

of reproducibility have been extensively scrutinized and

attributed to factors such as poor study design and inappro-

priate statistical methods, as well as the culture of grant

funding and publication biases. Moreover, as our paper

illustrates, an individual laboratory conducting hypotheses

generating molecular studies, without external reference,
or further validation studies cannot know whether their

significant differential gene findings are due to a systematic

bias in their laboratory or arising from the biological condi-

tion under study. It is therefore critical that any potential

hypotheses are validated including through the use of liter-

ature evidence and increasingly available complementary

datasets such as human brain tissue and animal model

studies. Collaborative approaches, especially large public-

private partnerships involving multiple test centers,

if carefully designed, offer a powerful solution to per-

forming studies which yield reproducible mechanistic

insights. These multi-center experiments also reveal

important learnings for the individual laboratories by

identifying experimental practices to be disclosed when

publishing iPSC differentiation protocols to increase their

reproducibility.

In our paper, we have shown that, while cellular hetero-

geneity of the iPSC cultures differentiated at various labora-

tories arising from site-specific practices as well as other

cryptic factors can mask almost all biological effects, these

confounders can be identified and overcome. The compu-

tational biology approaches employed here revealed and

removed the site-specific biases, enabled access to the un-

derlying biology, and identified publication best practices.
EXPERIMENTAL PROCEDURES

See further details in the Supplemental Experimental Procedures.

Generation and Maintenance of STEMBANCC iPSC

Lines
The human iPSC lines SBAD3-1 and SB808-03-04 (the latter

carried the Alzheimer’s disease-related PS1 intron 4 mutation)

were derived from human skin biopsy fibroblasts following

signed informed consent, with approval from the UK NHS

Research Ethics Committee (REC: 13/SC/0179) and were derived

as part of the IMI-EU sponsored StemBANCC consortium. iPSC

generation was performed using the CytoTune-iPS 2.0 Sendai

Reprogramming Kit (A16517) from Thermo Fisher Scientific

(Waltham, MA).

Bulk Transcriptomic Experiment
For transcriptomic analyses, 12 samples were generated in each

laboratory: 3 replicates of the SBAD3 cell line and 3 replicates of

the SB808 cell line at each of the 2 time points (Figure 1A). Two

samples were excluded from analysis due to problems during the

differentiation process and another one because of a contamina-

tion issue during RNA-seq, leading to a total of 57 samples being

available for transcriptomic analysis.

SC RNA-Seq Experiment

SC Isolation

SC suspensions were generated using Accutase dissociation fol-

lowed by SCfiltration of iPSC-derived cortical neurons. The success
Stem Cell Reports j Vol. 11 j 897–911 j October 9, 2018 909



of the suspension was manually confirmed on a hemocytometer.

The SC suspension was sorted into a 96-well PCR plate containing

a lysis mix. Sorting gates were set to include only live (DAPI-nega-

tive) single cells. Stream alignment and sort efficiency was checked

using Accudrop beads (Becton Dickinson).

SC RNA-Seq Library Preparation and Sequencing

Single iPSC-derived cortical neurons were isolated by FACS onto

96-well plates in 2 mL lysis buffer (Trombetta et al., 2014). Each

plate included 4 bulks, each obtained by extracting total RNA

from 4,000 cells using RNeasy Micro Kit (QIAGEN) and using

1/14th of the extracted RNA solution. Libraries were prepared

following the Smart-Seq2 protocol described by Picelli et al.

(2013) and Trombetta et al. (2014). Each sample was spiked with

the equivalent of 1 mL of 1:10,000,000 dilution of the ERCC RNA

Spike-In Mix 1 (Thermo Fisher Scientific). Libraries were pooled

in 288- or 384-plexes and each pool sequenced on 1 lane of HiSeq

4000 at 75 bp paired end.

Proteomics

Proteomic Sample Processing, Measurement, and Data

Analysis
Cells from three wells were detached in ice-cold PBS, pooled, and

snap frozen for proteomics analysis. Prior to digestion, cell pellets

were dissolved in lysis buffer, and obtained lysates were pooled

from triplicate wells, replicated to increase the number of detect-

able proteins leading to a total of 20 samples for subsequent

analysis, and spun at 1,0003 g. Sampleswere subject to in-solution

proteolytic tryptic digestion and analyzed using 2D-LC-MS.

Proteins were identified using Waters ProteinLynx Global server

v.3.0.1 and Progenesis Bioinformatic software (non-linear dy-

namics) as described previously (Heywood et al., 2015).

ACCESSION NUMBERS

The accession number for the transcriptomic data reported in this

paper is GEO: GSE118735.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, six figures, and six tables and can be found with this

article online at https://doi.org/10.1016/j.stemcr.2018.08.013.
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Munafò, R., Nosek, B., Bishop, D., Button, K., Chambers, C., Percie

du Sert, N., Simonsohn, U.,Wagenmakers, E., Ware, J., and Ioanni-

dis, J. (2017). A manifesto for reproducible science. Nat. Hum. Be-

hav. 1, 0021.
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Supplemental Figures 

 

 

Figure S1, related to Figure 2. Variation in omics readouts reproducibility within and between 
laboratories.  

A) Euclidean distances within cell line replicates and between all replicates of different cell lines. 
Euclidean distances are calculated between the gene expression profiles of each sample within each laboratory 
and between replicates of different lines in any laboratory by time point (FP+25 top, FP+55 bottom). Within 
each laboratory the expression profiles derived from replicates of the same line are significantly closer to each 
other than those between replicates of different lines for 4 out of 5 laboratories (** p-value<0.005, * p-
value<0.05). Box-and-whisker graphs represent distributions, where the span of the box is the interquartile 
range (IQR) and includes the median (bold line). The ends of the upper and lower whiskers represent the data 
point with the maximum distance from the third and first quartiles, respectively, but no further than 1.5 * IQR. 



Data beyond the end of the whiskers are outliers. B) Results of differential expression analysis between 
genotype within each laboratory. Large difference between laboratories in the number of DE genes between 
genotypes controlling for time point variation before RUVs correction (top). Only 15 DE genes are found in 
common between all laboratories indicating a remarkably low degree of cross-laboratory reproducibility 
(bottom right). Semantic similarity scores between the top 40 enriched GO BP terms in DE genes between 
genotypes controlling for time point variation before RUVs correction within laboratory (bottom left). C) 
Heatmap of pair-wise Spearman’s rank based correlations of gene expression between all samples. 
Correlations are computed on 13,373 genes expressed across all samples (coloured based on all known 
covariates both biological and technical, see Methods). D) Heatmap of Spearman’s rank based correlations 
of protein abundances normalised for total protein amount. 1,037 proteins observed across all samples were 
used. As observed for the transcriptomics data, the heatmap did not show clustering of samples by genotype. 

 

 



 

Figure S2, related to Figure 3. Comparison of temporal gene expression profiles of StemBANCC samples 
with post-mortem brain samples from the BrainSpan Atlas of the Developing Human Brain.   

A) Hierarchical clustering of the 57 StemBANCC samples and post-mortem brain samples from the 
BrainSpan Atlas. StemBANCC samples cluster together with fetal post-mortem brain samples (BrainSpan fetal 
samples in green, BrainSpan postnatal samples in black, StemBANCC FP+25 samples in blue and StemBANCC 
FP+55 samples in red). B) PCA plot of StemBANCC samples from the SBAD3 line before RUVs correction 
and the BrainSpan Atlas. BrainSpan samples were projected on principal component axes of StemBANCC CTR 
samples before RUVs correction. The direction of human neuronal maturation was not recapitulated by non-
normalized gene expression profiles.



 

Figure S3, related to Figure 5. Variance component analysis of gene data before and after RUVs 
correction.  

Variance captured by first 8 principal components of gene counts before (A) and after RUVs correction on 5 
RUVs factors (B). Proportions of variance explained by known covariates (see Methods) for any principal 
component (top) and proportions of explained variance in gene expression data by any principal component 
(bottom) are reported. 



 

Figure S4, related to Figure 5. A neuronal maturation axis and a neuron-glia axis are derived from 
external gene expression data and used to explain laboratory variability in StemBANCC samples. A) 
Identification of a transcriptional axis of maturation.  

PCA plot of BrainSpan samples (A) on a set of 787 ‘cortical marker genes’ identified using GTEx data (see 
Methods) shows that BrainSpan data clearly cluster by sample age.  StemBANCC samples were projected 
(right) on the transcriptional maturation axis (first component) identified in PCA plot (left). Except for the three 
FP+55 SB808 outlier samples from laboratory C that cluster with the FP+25 samples, the identified 
transcriptional maturation axis clearly separates samples by time point. The position of StemBANCC samples 
projected along this axis was used as covariate named ‘MATURITY’ in subsequent variance component 
analysis (see Methods). B) Identification of extended lists of cell-type specific genes. PCA plot (left) of 
RNAseq data from purified human brain cell types including neurons, astrocytes, oligodendrocytes and 
endothelial cells (Zhang et al., 2016). Extended lists of astrocyte, endothelial and neuron markers are identified 
based on the gene loadings (right) on first and second principal components from PCA plot (left). Reported in 
bold are mouse cell type specific markers identified as described in Methods (Single Cells section) and the 
colour code is the same for both figures.  

 



 

 

Figure S5, related to Figure 6. Identification of subpopulation in Single Cell data.  

A) Cell identity of cell sub-populations in the SB808 (left) and SBAD3 line (right).  To classify which brain 
cell type is resembled by the different subpopulations, we used a transcriptional purified cell mouse cortex 
catalogue, containing data for neurons, astrocytes, microglia, endothelial cells, pericytes, and various maturation 
states of oligodendrocytes (Zhang et al., 2014). From mouse gene expression values, we ranked the genes 
according to their fold change in each cell type. To evaluate the specificity of each population for a specific cell 
type, we compared the sum of expression values for top50 of cell specific marker gene with those of random 
sampling of 50 genes. In this figure, we report the log10 of the empiric p-value associated with an enrichment in 
markers genes of different cell type in the mouse cortex, in the cell sub-populations of the SB808 and SBAD3 



line. B) Proportion of false negative in term of DE genes due to the cell heterogeneity. We randomly 
sampled populations of 100 cells from each line to simulated conditions of cell heterogeneity and performed 
differential expression analyses for each simulation. By considering 396 SB808 cells and 375 SBAD3 cells, we 
identified 192 DE genes between SB808 vs SBAD3 line with FDR adjusted p-value less than 1%. We then 
randomly sampled 100 cells from each line to simulated conditions of cell heterogeneity and performed 
differential expression analyses for each simulation.  This graph represents for each 192 DE genes the fraction 
of simulations where a positive DE gene is not detected as DE gene (y-axis) according the log10 of p-value 
associated with differential expression level between SB808 vs SBAD3. We found 10/192 DE genes with 
proportion of false negative less than 5% that means the cell heterogeneity will affect the sensitivity to detect 
DE of 80% of positive DE genes. C) Overlap between the differentially regulated genes in the single cell 
SB808-vs- SBAD3 subpopulations with the Bulk DE genes. Down-regulated genes (top) and up-regulated 
genes (bottom) Red star indicates significance. D) Differentially-expressed genes and pathways between 
genotypes vary between iPSC sub-populations. By considering the SB808and SBAD3 cell populations 
together, we identified six subpopulations of cells by using unsupervised hierarchical clustering approach on the 
expression profiles. We detected genes DE between SB808 and SBAD3 line within each subpopulation, 
excepted for the cluster 5 that did not included no SBAD3 cells. Correlation of the log fold-change of the 
differentially-expressed genes between subpopulations (top-left). For five sets of DE between SB808 and 
SBAD3 line in each subpopulation (row), we compared their fold-change in four others populations (column) 
by using a correlation test based on their fold change in both subpopulation. The value in each cell corresponds 
to Pearson correlation coefficient between fold-change estimation of set of genes in two subpopulations. The 
single and double stars indicate when the p-value and q-value are less than 5% respectively. Overlap between 
down (top-right) and up (bottom-left) regulated DE genes (SB808 vs SBAD3) between different 
subpopulations. For each sub-population, we identified down (lower expression level in SB808 than SBAD3 
line) and up (higher expression level in SB808 than SBAD3 line) DE genes. We examined what is fraction  
(number in each cell) of these down/up (row) DE was detected in others sub-populations (column). The right 
number associated with each subpopulation gives the number of down and up regulated detected in a given 
subpopulation.  We did not find up-regulated genes in C6. There is little overlap in the GO Biological 
Processes associated with differential expressed genes between the two cells in each iPSC sub-populations 
(bottom-right). We identified the top10 of Biological Process Gene Ontology pathway associated with DE 
genes of each iPSC subpopulation. For each topGO pathwa, we examined if they were also enriched in DE in 
others sub-population.  The heatmap plot represents the -log10 of p-value associated with enrichment analyses 
by considering DE in each of five sub-population for these different topGO pathwayset. E) Principal 
component analysis on normalized expression matrix (771 SC libraries x 12835 genes). 

 

 

 

 

 



 

Figure S6, related to Figure 1: Robust reproducibility of a published disease phenotype in neuronally 
differentiated iPSC-based model system in multiple laboratories  

A) Compared to SBAD3, SB808 neurons display a decreased β-amyloid 40/42 ratio at both time points across 
all test centers. B) Hierarchical clustering based on the normalized proportion of each measured β-amyloid 
species in the supernatants of cortical iPSC-derived neurons. With very few outliers, samples from multiple test 
centers cluster by cell line rather than test center, indicating the robust reproducibility of this particular disease 
signal (Duff et al., 1996; Sproul et al., 2014). 

 
 

 

 

 

 

 

 

 

 
 

 



 

Supplemental Methods 

 

Generation and maintenance of STEMBANCC iPSC lines 

Fibroblasts were transduced with the reprogramming vectors KOS (a polycistronic vector encoding KLF4, OCT4, 

SOX2), hc-Myc and hKlf4 following manufacturer’s instructions. One week after transduction, fibroblasts were 

disaggregated and plated onto feeder layers of mitotically inactivated mouse embryonic fibroblasts in hESC 

culture medium (KO-DMEM, 20% Knockout™ Serum Replacement, 0.1 mM nonessential amino acids, 2 mM 

L-glutamine, 100 units/mL penicillin and 8ng/mL human recombinant bFGF, all from Thermo Fisher Scientific) 

at a density of 8,000 cells per well of a six well plate. The cultures undergoing reprogramming were maintained 

at 37oC and 5% CO2 in hESC medium for 2-3 weeks or until colonies with typical hESC morphology appeared. 

Individual colonies were mechanically dissected and plated onto fresh feeder plates for up to 8 passages before 

being adapted to feeder free conditions which involved plating on Matrigel-coated plates (Corning, NY) with 

mTeSR1 media (Stem Cell Technologies, Vancouver, British Columbia, Canada) which was also the medium 

used in further experiments. A detailed quality control analysis has undertaken in the lines used in the study, 

which included G-banding, SNP-array-based karyotyping and whole exome sequencing. Mycoplasma testing is 

routinely performed at each of the participating sites, at the time when they received the cells from the central 

repository and after passaging. To differentiate iPSCs into cortical neurons, a detailed SOP (see Supplemental 

Methods) has been used by all 5 partners, based on  a previously published method (Shi et al., 2012b, 2012a) 

Briefly, confluent monolayer iPSCs were induced by dual-SMAD inhibition for 12 days followed by three weeks 

of progenitor expansion and differentiation. Independent inductions were seeded into 12-well culture dishes at a 

final plating density of 8.5 x 104 cells /cm2. Samples were collected at 25 and 55 days after final plating (FP+25, 

FP+55s), and the morphology of the iPSC-derived neurons at 10 days after final plating is depicted in Figure 1B. 

 

Assessment of β-amyloid species in culture supernatants 

48-hour conditioned media collected from triplicate wells was spun at 1000 x g to remove cellular debris and 

supernatant stored at -80 °C until use. Samples were assayed for soluble APPβ (MesoScale Diagnostics) and 

soluble β-amyloid-1-38, β-amyloid-1-40 and β-amyloid-1-42 by multiplexed immunoassay (MesoScale 

Diagnostics). 

 

 

Standard Operating Procedure for cortical differentiation of human IPS cells 

 

Readapted from Shi et al 2012a, 2012b. 

 

Product name  Supplier  Catalogue number  

BD Matrigel hESC-qualified Matrix BD Biosciences 354277 



mTESR 1 Stem Cell Technlgs 05850 

Geltrex (ready to use) Life Technologies A1569601 

Y-27632 Rock inhibitor Cell Guidance Systems  SM02-10 

Essential-8 Life Technologies A1517001 

Ultrapure 0.5M EDTA Life Technologies 15575020 

Laminin Sigma L2020 

DMEM:F12 +glutamax Life Technologies 31331 

Insulin (10mg/ml) Sigma I9278 

2-mercaptoethanol (50mM) Life Technologies 31350 

Non essential amino acids (100x) Life Technologies 11140 

Sodium Pyruvate (100mM) Sigma S8636 

Pens/Strep (10000 U/ul) Life Technologies 15140 

N2 Life Technologies 17502048 

B27 Life Technologies 17504044 

L-Glutamine (200mM) Life Technologies 25030024 

Neurobasal Life Technologies 12348 

SB431542 Tocris 1614 

Dorsomorphin Tocris 3093 

 

Neural Maintenance media (1L) 

500ml DMEM:F12 +glutamax 

0.25ml Insulin 

1ml 2-mercaptoethanol 

5ml Non essential amino acids 

5ml Sodium Pyruvate* 

2.5ml Pens/Strep 

5ml N2 

10ml B27 

5ml L-Glutamine* (or glutamax) 

500ml Neurobasal 



Store at 4°C and use within 3 weeks (*corrected from Shi et al) 

 

SB431542 

Supplied as a powder, 10mg, MWt (pure compound) = 384.39 

Resuspend to 10mM in DMSO, prepare 50ul aliquots and freeze at -20°C 

Use at 1:1000 (10uM) 

 

Dorsomorphin 

Supplied as a powder, 10mg, MWt (pure compound) = 472.41 

Resuspend to 10mM in DMSO, dilute 10mM stock to 1mM with ddH2O 

Prepare 50ul aliquots and freeze at -20°C 

use at 1:1000 (1uM) 

 

Neural induction media (10ml) 

10ml Neural maintenance media 

10ul SB431542 

10ul Dorsomorphin 

Store at 4°C and use within 5 days 

 

Procedure 

(Step numbers refer to steps in Shi et al 2012a) 

1.1 Steps 1-22: Routine maintenance of hIPSCs. Essential-8 media & geltrex can be substituted for 
mTESR & Matrigel if preferred. 

1.2 Step 23: Passage cells 2:1 in the presence of Rock Inhibitor. Starting material: 2 wells of a 6 
well plate hIPSCs in mTESR (or E8) at 70-90% confluency 

• Pre-coat 1 well of a 6 well plate with 1ml matrigel 
• Pre-warm 0.5mM EDTA to 37°C 
• Aspirate media from two nearly confluent wells of iPSc, wash each with 1ml each of PBS/well 

(room temp) 
• Aspirate PBS and add 1ml pre-warmed EDTA/well then immediately remove 
• Add 1ml EDTA, incubate 37 ̊C 4 – 6 min 
• Remove matrigel from coated well (NB don’t allow to dry) 
• Check cells have start to detach from each other but not from the plastic 
• Carefully aspirate EDTA and flush the loosened cells with 1ml mTeSR/10uM ROCKi, using a 

p1000 tip, moving around the well to ensure even flushing. Don’t pipette up and down multiple 
times, as this will result in the patches disintegrating too much.  

• Transfer all 1ml to the new coated well. Repeat with second well of iPSCs and transfer to the 
new well giving a total vol of 2ml. 



• Transfer carefully to incubator, swirling in figure-of-8 to ensure even dispersal of cells 
 

1.3 Step 24: Neural induction. (NOTE: inductions have been optimised in 35mm dish or single well 
of six-well plate). 24hrs after plating, check the cells have reached 100% confluence, wash the 
cells once with PBS and add 2ml of neural induction medium per well. This is day 0. If the cells 
are not 100% confluent continue to incubate in mTESR for 1 more day before switching to 
induction medium. Any gaps in the sheet of cells at this stage will contribute to non-specific 
differentiation. Refresh induction media daily. 

1.4 Steps 26-31: On day 12 after induction, the cells should have formed a dense neuro-epithelial 
sheet (may well appear ‘yellow’ and ‘lumpy’). Passage the cells with dispase as follows: 

• Pre-coat 2 wells of a 6 well plate with laminin (1ml per well, 10ug/ml laminin in PBS. Coat at 
37°C for 4hrs- overnight) 

• Add 200ul dispase stock directly to the 2ml media in the well of the 6-well plate. 
• Incubate at 37°C for 3 mins. NOTE: Dispase can be left on as long as 30 mins if sheet is not 

easy to detach 
• Remove cells, keeping sheet as intact as possible by pipetting carefully two or three times from 

the edge. Clumps should be clearly visible by eye. 
• Add 10 ml fresh neural induction medium to a 15ml tube and transfer the clumps into this tube. 

Allow the clumps to settle in the bottom, then discard the supernatant carefully. Repeat this 
wash. 

• Remove the laminin from the wells, gently resuspend the cells, again without breaking clumps 
up, in 4ml of neural induction medium and transfer 2ml to each of the two pre-coated laminin 
wells. 

• Incubate the cells overnight to allow the cells to reattach, and change the medium to neural 
maintenance medium +20ng/ml FGF2 the next day. If the clumps are not attached the following 
day, they can be transferred to a fresh laminin coated well. Media can now be refreshed at 48hr 
intervals. 

1.5 Step 34: After 4 days of FGF treatment, withdraw FGF. Cells can be split 1:2 with dispase 
when rosettes start to meet, or if neural crest cells begin to appear. Careful dispase passaging 
should leave non-specific cells attached, and lift off neural rosettes. 
Note: There is a possibility that control and disease-specific lines behave differently in terms of 
differentiation speed, so for the faster line less passages will be needed to reach a stage were 
the cells are ready for final plating (indicated by the appearance of a critical number of neurons). 
Careful observation of cell morphology (looking for the appearance of neurons) is crucial to 
determine how long the first period until final plating should last and this will be likely to be 
different for the two lines (also reflected by different numbers of dispase and accutase passages 
for the two lines). This also means that the final plating point (estimated to be D35 but maybe 
a lot less for a faster growing line) will be considered to be zero, D60 and D90 will be calculated 
from this time point (e.g +25 and +55 days after this time point). If you prefer to do the final 
plating at the same time for both lines, the faster growing line can be cryopreserved and thawed 
later on when the slower growing line is also ready for final plating. 
 

1.6 Step 42-49: Passaging to single cells. On day 25 after induction (±1 day), cells can be 
dissociated with accutase at a ratio of 1:1. 

• Precoat well with laminin as above. Remove the medium and wash cells once with 2ml PBS 
(MgCl2 and CaCl2 free)  

• Add 0.5ml Accutase per 35mm well. Incubate the cells in Accutase at 37°C for 5mins. 
• Pipette up and down to detach the cells and dilute into 10ml neural maintenance medium. 

Centrifuge cells at 400g for 5min, repeat the wash and spin, then resuspend in 2ml neural 
maintenance medium and transfer to laminin coated well. 

• Replace the media the day after plating, and every 48hrs subsequently. Cells can be expanded 
1:2 when the well reaches 90%-100% confluency (approx. every two to three days) 
 

1.7 Freezing/Thawing (optimum stage for freezing is between d28 and d31) 
• Following dissociation of the culture with Accutase as described, resuspend cortical stem cells 

in 1ml neural freezing medium (10% DMSO in neural maintenance media + 20 ng/ml FGF2) 
per 35mm dish of cells. 

• Aliquot 1 ml of the cell suspension into each cryovial.  



• Freeze in a CoolCell freezing container at − 80 °C overnight. Transfer the cryovials to liquid 
nitrogen for long-term storage.  

• Thawing NSCs. 
• Partially thaw the cells in a 37 °C water bath.  
• Transfer the partially thawed NSCs to 10 volumes of room-temperature neural maintenance 

medium.  
• Centrifuge the cells once at 400g for 3 min  
• Gently resuspend the cells in 2 ml of neural maintenance medium, and plate into poly-

ornithine/laminin-coated 35-mm dishes at 50,000 cells per cm2 (or 1 vial/well). Addition of 20 
ng/ml FGF2 to media for the first 12-24hrs after thawing can greatly improve survival. 

• Withdraw FGF the following day, and resume culturing of cells as per protocol. 
 

1.8 Step50, Final plating: (As neurons are fragile, survival rate after passage is low. For this reason 
we routinely passage for the final time around day 35). Ideal starting material before final 
plating is >=60cm2 almost confluent NPs.  

 

Remove the medium and wash cells once with 2ml PBS (MgCl2 and CaCl2 free).  
• Add 0.5ml Accutase per 35mm well. Incubate the cells in Accutase at 37°C for 5mins.  
• Pipette up and down gently to detach the cells and dilute into 10ml neural maintenance 

medium.  
• Centrifuge cells at 400g for 5min, repeat the wash and spin, then re-suspend in neural 

maintenance medium. 
• Count cells and dilute in neural maintenance media to 3x10^5 cells per ml.  
• Remove laminin, and pipette 1ml re-suspended cells per well into 9 wells of each 12w 

plate. Thus final plating at 300K per well = 85k/cm2 
• Leave enough cells to enable quality control with immunochemistry (seed cells on 

poly/ornithine coated dishes or coverslips to confirm cortical identity, according to your 
own protocol) 

1.9 Replace the media the day after plating, and every 48hrs subsequently, performing full media 
changes each time, using 1ml media per 12w.  

 

1.10 Add laminin (1/100 in maintenance media, final conc 0.01 mg/ml) every 10 days at d44, d54, 
d64, d74, d84 

 

1.11 FP+25: Sample all media 48hrs after last change (total wells =18, pool into 6 tubes). FP+25 
omics samples: row A collect for RNA, row B harvest for protein . 

 

1.12 FP+55: Sample all media 48hrs after last change (total wells =9, pool into 3 tubes). FP+55 
omics samples: row A collect for RNA, row B harvest for protein . 

 

1.13 Sample collection. 
• To sample supernatants for beta-amyloid measurements (supernatants of the “RNA” 

samples will be used for MSD measurements): 
o 48 hrs after last media change, remove 1ml media from  wells A1, A2 and A3 into 

three separate collection tubes, spin at 1000g for 5mins to remove cells. Collect 
the supernatant from each collection tube into lo-bind eppendorf tubes. Store at -
80C. Unlike for the supernatants of proteomics and metabolomics wells, for the 
MSD measurements we keep the three “A” wells separate!  

• To sample supernatants for proteomics: 
o  48 hrs after last media change, pool 3x1ml media from rows B into two collection 

tubes, spin them at 1000g for 5 mins to remove cells. Collect 1ml supernatant into 
lo-bind eppendorf tubes. Store at -80C. From these conditioned media samples.  

 
• To sample cells for transcriptomics (totalRNA): (estimate 3ug/well) 



o Pre-warm PBS wash at 37C, pre cool PBS collection buffer on ice. 
o Wash well with warm PBS. Aspirate off.  
o Add 1ml ice cold PBS to well and pipette to detach cells (with scraping if needed, 

but this is not usually necessary).  
o Collect and pool PBS/cells from all three ‘A’ samples. Spin at >=1000g for 5mins, 

discard supernatant. Lyse cells in 600ul RLT buffer plus Beta-mercaptoethanol 
(as per Qiagen RNeasy Mini) and pipet to mix. Homogenize the lysate using 
QIAshredder spin column, and store homogenized lysate at -80C until needed.  

o Continue to purify RNA as per RNeasy protocol, eluting in 30ul RNase free water. 
Quantify using Qubit RNA broad range assay. 

 
• To sample cells for proteomics: (d90 estimate >500ug protein per well)  

o Prepare 37C PBS, (wet)ice cold PBS, and ethanol/dry ice bath 
o Wash well with warm PBS. Aspirate off.  
o Add 1ml ice cold PBS to ‘B’ wells and pipette to remove cells 
o Aspirate cells and collect in lo-bind tubes. Spin at 1600g for 5mins, discard 

supernatant and snap cool pellet on ethanol/dry ice bath. Store at -80C 
 

1.14 QC: 
For QC purposes, collect phase contrast images of each induction frequently, in particular 
at neuroepithelial sheet stage, on appearance of rosettes, after dissociation to single cells, 
and pre/post final plating. 

Immunostaining for TBR1 and CTIP2 after day 45 (FP+10) to confirm cortical identity. 

Example immuno protocol: 

Fix with 4% PFA 20min RoomTemp 

Wash with TBST (1x TBS plus 0.3% Triton) 5min RT 

Repeat wash 3x 

Block 4% Goat serum/TBST 1hr RT 

Primary antibodies overnight 4C in blocking buffer 

(Final concentration: ab31940 at 1ug/ml, ab18465 at 1ug/ml) 

Wash 3x with TBST 5min RT 

Secondary antibodies in TBST 1hr RT (1:500) 

Wash 3x with TBST and counterstain with DAPI if required. 

 

1.15 MSD kits used: 
K15200G-1 - Aβ Peptide Panel1 (6E10) V-PLEX Plus Kit: 25ul sample 

K15120E-1 - sAPPalpha/sAPPbeta Kit: 25ul sample 

 

One neural induction refers to a single well of a 6-well plate at d0. Multiple wells may be derived from one 
induction but replicates should be always maintained separately after this stage. 

 

 



Bulk RNAseq Analysis 

Sample Collection 

Pooled cells from three wells were detached in ice-cold PBS and total RNA was extracted using the RNeasy Mini 
Kit (Qiagen) following the manufacturer’s instructions. 

Sequencing, Mapping and gene count estimation: 

All sequencing was carried out in single partner centre on an Illumina Hiseq4000 obtaining 75PE reads. Basic 
quality control screenings on unmapped reads and sequence mapping were performed through CGAT pipeline 
pipeline_readqc.py. The quality of the sequencing was assessed by FASTQC software (version 0.9.3), 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). RNA-seq data were mapped to the hg19 assembly 
via STAR version 2.2.0c (Dobin et al., 2012). Read alignments were merged in single BAM file output per sample 
(57 in total). Reads were filtered to remove those not uniquely mapped (mapping quality equal to 255) and all 
ribosomal and mitochondrial RNA reads. Gene-level read counts were obtained using FeatureCount (Liao et al., 
2014). Cuffquant and Cuffnorm tools from Cufflinks program (Trapnell et al., 2010) were used to calculate 
fragments per kilobase per million reads (FPKM) from the merged BAM files. Only for a direct comparison 
between pooled proteomic data (20 samples) and transcriptomic data (57 samples), BAM files from replicate 
samples were merged and gene quantification process was repeated as before. 

Data normalisation 

Upper quartile (UQ) normalisation has been applied (in-house code) on raw gene counts to correct for library size 
differences. UQ normalised counts have been used throughout the paper when considering not RUV corrected 
gene data. UQ normalised counts were also used as input for RUVs correction and differential gene expression 
analysis.  

Analysis of sources of variation 

To minimize the impact of unwanted sources of variation we used methods implemented in the R-Project packages 

EDASeq(Muschet et al., 2016) and RUVseq(Heywood et al., 2015). The following steps were applied: first raw 

count data were normalized by upper quartile (UQ). Second, RUVs (remove unwanted variation method) was 

used to infer factors explaining transcriptome-wide variance components. Information about replicates’ structure 

was given as input to RUVs in order to retain variation coming from the covariates of interest (cell line and time 

point). Third, these factors were regressed out from the UQ-normalised gene counts (normCounts function used 

from EDASeq package) and RUVs corrected gene data were used to perform further analyses. The same approach 

was applied to samples from the control cell line only to expose a “clean" time point signal regardless of any cell 

line effect.  

To explain the variance captured by PCA principal components before and after RUV correction and the RUVs 

factors in terms of meta-data variables, an over-dispersed Gaussian response model was used. We fitted a Bayesian 

generalized linear multilevel model using the MCMCglmm R package (Hadfield, 2010). Eleven meta-data 

variables, or covariates, (SITE, CELL_LINE, TIME_POINT, DETACHMENT, EARLY_HARVEST, 

CELL_COUNT, MATURITY, CELL_LINE:TIME_POINT, SITE:CELL_LINE:TIME_POINT, 

SITE:CELL_LINE:INDUCTION, SITE:CELL_LINE:INDEPENDENT) were modelled. Posterior samples of 

variance proportions were obtained by standardizing the sum of posterior variances across covariates to sum to 

one. By fitting regression models between the first twenty RUVs factors and the covariates, we were able to 

estimate proportions of variance captured by RUVs factors and explained in terms of known covariates. Notably, 

since the factors were estimated based on genotype and time point replicates, the variation coming from these two 

biological covariates of interest was marginal as expected from our application of RUVs. The residual variance 



was generally low in almost all RUVs factors, suggesting that most of the variation captured by RUVs is 

attributable to the confounding factors we modelled. 

The same approach was used to explain variance attributable to each gene (before RUV correction) in terms of 

meta-data variables by using an over-dispersed Poisson response model. Genes were ranked based on proportion 

of variance explained by each meta-data variable and the top 100 were used for functional enrichment analysis 

(GO pathways). To dissect variation captured by any RUVs factor that we found to be explained by SITE-origin, 

SITE-specific means of proportions of variance were correlated to SITE-specific meta-data variables by fitting 

linear regression models. 

 

Differential gene expression analysis 

Within-laboratory differentially expressed (DE) genes were estimated before and after RUVs correction using 

Limma moderated t-statistic (Limma R package, Ritchie et al., 2015) for either cell line or time point effect 

correcting for the experimental structure (i.e. design formula defined as "~CELL_LINE + TIME_POINT + 

CELL_LINE:TIME_POINT") at FDR <= 0.01. Multi-laboratory DE genes were estimated as before but also 

correcting for laboratory origin before and after RUVs correction. In both cases, UQ normalized data was used as 

input for Limma. 

 

Heterogeneity analysis 

To quantify the effect of heterogeneity across laboratories we used the I2 quantity(Higgins et al., 2003) that 

describes the percentage of total variation across experiments. I2 is calculated based on Cochran’s Q(Higgins and 

Thompson, 2002) test for the null hypothesis that all experiments identify the same effect (cell line and time point 

effects in the present study). FDR adjusted p-values (Benjamini–Hochberg) are calculated for the test. I2 values 

range between 0% and 100%, where 0%, 50% and 75% correspond to no, moderate and high heterogeneity, 

respectively(Higgins et al., 2003). We used voom, lmFit and eBayes functions from Limma R package(Ritchie et 

al., 2015) to estimate the effects of interest and extract standard deviations for any effect and in any gene. Q and 

I2 measures were then calculated for either cell line or time point effect correcting for the experimental structure, 

as described previously (Higgins and Thompson, 2002; Higgins et al., 2003). 

 

Comparison with public data 

Gene expression profiles were compared to public RNA-Seq data sets (FPKM) from the Genotype-Tissue 

Expression Portal (GTEx consortium, 2015) [downloaded on September 2015] and the BrainSpan Atlas of the 

Developing Human Brain (Miller et al., 2014). GTEx data were averaged by tissue and BrainSpan data were 

averaged by tissue and age to obtain six main age groups (early-prenatal, late-prenatal, infancy, childhood, 

adolescence and adult). Both data sets were corrected for batch effect, using ComBat function from sva R 

package(Johnson et al., 2007) , and log-transformed for Principal Component Analysis (PCA) (scaled and 

centered) and Hierarchical Clustering Analysis (scaled, Euclidean distance, Ward method). 

CORTECON(van de Leemput et al., 2014) gene clusters for temporal cortex development were downloaded from 

the database available at http://cortecon.neuralsci.org. Genes assigned uniquely to any stage-specific cluster were 

used in our enrichment analysis. 

 



Identification of cortical markers and a transcriptional axis of neuronal maturation from GTEx and 

BrainSpan datasets 

A set of 787 ‘cortical marker genes’ was identified using GTEx data as genes showing at least five-fold higher 

RPKM level in three GTEx brain cortical tissues as compared to a group of at least 40 (~80%) “non-cortical” 

GTEx tissues. A transcriptional maturation axis was then identified on this set of cortical marker genes from PCA 

of BrainSpan data that clearly cluster by sample age (Figure S4A left). The position of STEMBANCC samples 

projected along this axis (first principal components) was used as covariate named ‘MATURITY’ in subsequent 

variance component analysis (Figure S4A right). 

 

Identification of cell type specific markers  

We used RNA-Seq data(Zhang et al., 2016) from purified human brain cell types including neurons, astrocytes, 

oligodendrocytes and endothelial cells available at http://www.brainrnaseq.org. In a PCA of these data (Figure 

S4B left), principal components 1 and 2 distinguish between three main groups namely neurons and 

oligodendrocytes, astrocytes and endothelial cells. Given that positive control cell type markers defined as in 

section ‘Brain cell class of different iPSC subpopulations’ (Single Cell Methods) lie correctly along the 

identified axes of PCA gene loadings (Figure S4B right), we derived extended lists of cell type-specific genes 

contributing to PCA coordinates of the respective cell type groups. We defined different sets of cell type specific 

genes using different stringency thresholds on the gene loadings. These sets were compared to DE genes from our 

samples using a hypergeometric test for significant overlap.  

 

GO pathway enrichment analysis 

We performed a classical enrichment analysis by testing the over-representation of gene ontology biological 

processes (GO BP) terms within the group of differentially expressed genes using a Fisher test. Semantic similarity 

between lists of enriched GO terms was calculated using GOSemSim R package(Yu et al., 2010) (Wang 

method(Wang et al., 2007)). 

 

Implementing RUVs 

RUVs (Risso et al., 2014) assumes that the biological covariates of interest are constant across replicates. Using 
a set of negative control samples, or replicates, to column-center the counts RUVs estimates sources of unwanted 
variation on a set of control genes. In our analysis we used all genes that are expressed (count>=1) across all 
samples. Information about replicates’ structure is given as input to RUVs. A further tuning parameter for RUVs 
is the number of k estimable factors whose choice should be driven by sample size, extent of technical effects and 
of differential expression. We estimated a maximum of 20 RUVs factors that we analysed in terms of variance 
decomposition, improvement of site reproducibility and increase in number of DE genes between covariates of 
interest. However, when referring to RUV corrected gene counts in all other analyses we intend gene counts 
normalised on the first five RUVs factors. This corresponds to a first clear clustering of samples on PCA plot 
based on the two covariates of interest. 

Variance component analysis 

To explain the variance captured by any RUVs factor in terms of meta-data variables we fitted a Bayesian 
generalized linear multilevel model using the MCMCglmm R package (Hadfield, 2010). Quantitative explanatory 
covariates were "CELL_NUMB_SCALED" and "Maturity_SCALED" (scaled to zero mean and unit variance). 



The “Maturity” covariate consisted of scores on the first principal component of the 57 samples on a set of cortical 
marker genes to reflect the neuronal maturation axis (Figure S4A, see Methods). 

Categorical covariates were: 

• SITE, modelling variation across sites, 
• CELL_LINE, modelling site-homogeneous variation across cell lines, 
• TIME_POINT modelling site-homogeneous variation across time points, 
• CELL_LINE:TIME_POINT modelling site-homogeneous interaction between time point and cell line 
• DETACHMENT,  
• EARLY_HARVEST,  
• SITE:CELL_LINE:INDUCTION, modelling inter-induction variation, having one level for each of 29 

inductions across the whole experiment  
• SITE:CELL_LINE:INDEPENDENT_DAY, modelling day-specific inter-induction variation, i.e.  

attributable to inductions being performed on different days (as was the case at three of the five labs), 
having one level for each of the 21 (site, cell line, day of induction) triples in the experiment.  

• SITE:CELL_LINE:TIME_POINT, modelling site-heterogeneous variation across cell lines and time 
points, one level for each of the 20 (site, cell line, time point) triples in the experiment. 

 

Each of the covariates SITE:CELL_LINE:INDUCTION, SITE:CELL_LINE:INDEPENDENT_DAY, 
SITE:CELL_LINE:TIME_POINT was modelled hierarchically (as a “random” effect) with its own variance 
component. Variance components were allocated non-informative Inverse-Gamma priors (shape = 0.01, rate = 
0.01). Other covariates were treated as “fixed” effects, with parameters given non-informative priors of Gaussian 
distributions with zero mean and standard deviation set at 100 times the SD of the model’s dependent variable. 
The models were fitted using Markov Chain Monte Carlo (MCMC), with samples collected for 500,000 iterations 
(with a thinning interval of 100) after a burn-in phase of 50,000. 

At each thinned MCMC iteration, samples were saved and extracted from the posterior distributions of fixed and 
random effects and used to estimate the posterior distribution of variance proportions. Variances were extracted 
as follows: for any particular covariate in the linear model (fixed or random) encoded by the design matrix X and 
with parameters β (with β modelled hierarchically in the case of a random covariate), the variance attributable to 
the effect at MCMC iteration j was quantified as the sample variance of the fitted values at that iteration, i.e. 
var(Xβ ' ). Posterior samples of variance proportions were obtained by standardizing the sum of posterior 
variances across covariates to sum to one 

Marker Genes 

The neuron-specific stage markers used to illustrate the relative cell culture heterogeneity before and after RUV 
(Figure 4B) were as follows: 

Cortex: FOXG1, FOXP2, LHX2, OTX1, EMX1, OTX2, LHX9, EMX2 

Layers: TBR1, OTX1, CTIP2, FEZF2, ETV1/ER81, SATB2, CUX1, RORB, BRN2, FOXG1 

Mature: SYP, SLC17A7, DLG4  

 

Other analyses 

Principal component analysis is performed on log-transformed gene counts through prcomp R function 
(center=T,scale=T). Hierarchical clustering is performed through hclust R function (on scaled data, Euclidean 
distance, Ward method). SVD single value decomposition analysis is performed on scaled gene counts through 
svd R function. Heatmaps are created using pheatmap R function. 

 



Single Cell RNAseq Analysis 

Quality control of single cell RNA sequence data 

We checked the quality of RNA sequencing data using the FASTQC software (version 0.9.3) 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) via the CGAT pipeline pipeline_readqc.py and 
reported the summary results of FASTQC by plate and by library. 

 

Exons genes annotations file 

We generated annotations within the ENSEMBL gene set after reconciliation with the UCSC genome assembly 
from human genome (hg19) by using the CGAT pipeline pipeline_annotations.py. The generated gtf file 
provided the information regarding exon parts of transcripts. This set includes both coding and non-coding 
transcripts. Coding transcripts span both the UTR and the CDS. We merged this file with ERCC-spike-ins 
annotations. 

 

Alignment and quality control of alignment of single cell 

We aligned our RNA sequences to the human genome (hg19) using STAR (version 2.3.0). STAR is a mapper 
developed for RNA-seq data and is able to ignore adapters by clipping. We generated the index required by 
STAR using the following options: 

--runMode genomeGenerate 

--genomeFastaFiles genome softmasked fasta file (hg19) 

--sjdbGTFfile gtf containing all known gene models (generated with CGAT pipeline pipeline_annotations.py) 

--outFilterType BySJout 

 

 We aligned reads with the CGAT pipeline pipeline_mapping.py (option: make mapping) using STAR default 
options and: 

-- runMode                        alignReads 

-- genomeLoad                        LoaDaNsdRemove 

-- outStd                            SAM 

-- outSAMstrandField                 intronMotif 

-- outSAMunmapped                    Within 

-- outFilterType                     BySJout 

 

For the batch1, the two bam files of each of the eight libraries coming from two lanes were then merged by 
using samtools (version 1.8) by running the CGAT pipeline pipeline_mapping.py with the option make 
mergeBAMFiles. We compiled the statistic regarding the quality of mapping by using make buildBAMStats of 
CGAT pipeline pipeline_mapping.py.  

Count read overlapping exon annotations and basic Metrics 



Uniquely mapped read pairs were counted using featureCounts  subread-1.5.0 by using the exons annotations 
generated by approach described above. To evaluate the sequencing output and the amount of usable data, we 
used some metrics reported by featuresCounts including sequencing depth (Number of sequenced read pairs - 
Count), percentage of mapped reads, numbers of mapped reads aligning to various annotated genomic features, 
namely non-exonic coverage (No_feature), exonic-coverage (Ambiguous_mapping, Multiple_mapping and 
uniquely mapped reads- ENSEMBL_Genes).  

We observed a low average proportion of uniquely mapped read (38%). The 5’ to 3’ coverage plots show 
mostly uniform coverage of all samples with only a few potentially failed samples (or blanks) that show spiky 
coverage. The coverage plots do not suggest degradation for most of the samples. 

 

Quality control and cells filtering  

All QC metrics and plot diagnostic were computed by using the R package scater (1.0.4)  (doi: 
http://dx.doi.org/10.1101/069633). Firstly we noted that for the batch1 including four plates, the libraries were 
associated with low libraries complexity measure. We determined whether RNA in each captured cell was 
degraded by studying the total % of mapped reads compared to the proportion of reads mapped to spike-in 
molecules.  

We excluded the libraries with: 

(1) less than 2000 expressed genes  
(2) low complexity, where the % of 200 most expressed features (genes and ERCC-spike in) represented 

more than 50% of total number of counts. 
(3) low % of endogenous RNA, for which the % of  ERCC spike-in > 14% 
(4) low number of mapped read for which the total counts < 106 
(5) bulk libraries that was used as control libraries. 

 By using these filters we removed 669 libraries with aberrant patterns from downstream analyses. Please Note 
that all libraries from batch 1 (batch test) prepared with higher concentrations in ERCC spike-inns and TSO than 
others batch were discarded. 

We performed QC diagnostic at feature level. We observed 1197 features was observed with detectable 
expression in 50% of libraries and that the top 20 expressed features (including 10 ERRC spike-ins) consumed ~ 
25% of reads. We removed the features for which the means of counts where less than one and thus considered 
12825 features. We then computed the normalized log-expression values with R package scran (1.0.4) by adding 
one to each count, dividing by the size factor for that cell, and log transforming. 

 

Important explanatory variables 

From normalized expression values matrix (771 single cell libraries x 12835 genes), we then identified variables 

that drive variation in expression data across cells by using a linear model for each cell feature and by plotting the 

distribution of their marginal R2 values. As expected we found that the read depth (total features) and the library 

complexity (% counts top 100 features) were the two most important explanatory variables. We observed that the 

site origin was also an important explanatory variable (> 20% of variance) suggesting that two sites produced 

different cell types (Figures S5E). Finally, we noted that the variables batch (2,3,4) and genotype explained a low 

fraction of the total variance. Since we wanted to identify the causes explaining the cell population differences 

between sites, we did not correct for these effects. 

 



Identification of iPSC subpopulations: clustering analyses  

We performed hierarchical clustering on the Euclidean distances between cells, using Ward’s criterion to 

minimize the total variance within each cluster. This yields a dendrogram that groups together cells with similar 

expression patterns across the chosen genes. Clusters are explicitly defined by applying dynamic tree cut to the 

dendrogram(Langfelder et al., 2008) (R package dynamicTreeCut). This approach exploits the shape of the 

branches in the dendrogram to refine the cluster definitions. We identified four, five and six cells subpopulations 

in SB808, SBAD3 and SB808 and SBAD3 together respectively (Figure 6A) 

 

Gene markers between iPSC subpopulations 

Markers of specific subpopulations were identified by looking at genes that are consistently differentially 

expressed in the largest subpopulation compared to the others (cluster 1 vs others clusters). DE analyses were 

performed with the R package edgeR (3.14.0)(Robinson et al., 2010) that uses negative binomial (NB) 

distributions to model the read counts for each sample. We estimated the NB dispersion parameter that quantifies 

the biological variability in expression across cells in the same cluster. Large dispersion estimates (> 0.5) were 

observed due to technical noise with single cell RNA-seq data  (in contrast to bulk data where values of 0.05–0.2 

are more typical). We then used the design matrix to fit a NB General Linear Model to the counts for each gene. 

Finally, the top ten sets of DE genes from each pairwise comparison were considered to be as potential marker 

genes separating subpopulations (Table S5). 

 

GO pathway associated with markers genes between iPSC subpopulations 

We performed gene set enrichment analysis with topGO R package (2.24.0) by considering top 50 marker genes 

identified above. We performed a classical enrichment analysis by testing the over-representation of GO BP terms 

within the group of differentially expressed genes by  Fisher test. We then listed the top 20 significant GO BP 

terms identified (Table S6). 

 

Brain cell class of different iPSC subpopulations 

To classify which brain cell type is resembled by the different subpopulations, we used  a public database 

containing transcriptional datasets of purified cortical cells, such as neurons, astrocytes, microglia, endothelial 

cells, pericytes, and various maturation states of oligodendrocytes(Zhang et al., 2014). Mouse data, instead of 

human data as used in bulk analysis, has been chosen for its larger number of samples available for each cell type.  

From Fragments Per Kilobase of transcript per Million (FPKM) mouse gene expression values 

(http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) we ranked the genes according to their fold change 

in each cell type. To evaluate the specificity of each population for a specific cell type, we compared the sum of 

expression values for top 50 cell specific marker genes with those of random sampling of 50 genes (Figure 

S5A).To simplify the heatmap, we display only the top 20 marker genes for each cell type that were expressed in 

25% single cell libraries (Figure 6A). 

 



Comparison of differentially-expressed genes and pathways between genotypes between iPSC 

subpopulations 

We performed differential expression analyses between the two line within each subpopulation. As cluster 5 

included no control iPSC cells, we excluded this cluster from downstream analyses. We performed differential 

expression analyses with edge R with the same approach as described above to identify marker genes for the 

subpopulations by considering DE genes based on empiric p-value < 0.001. We then examined the overlap 

between up- or down-regulated genes among different iPSC subpopulations (Figure S5D). Further we calculated 

the correlation coefficients and their significance values for log fold change between DE of different iPSC 

subpopulations (Figure S5D). We reported DE genes by iPSC subpopulations in Table S3.  

To ensure that there was no overlap between GO pathways associated with distinct sets of DE genes of each iPSC 

subpopulation, we compared the p-values of enrichment analyses for the top 10 BP GO terms associated to DE 

genes in each iPSC subpopulations. GO enrichment analysis was performed as described above using topGO R 

package. 

 

 

Proteomics 

Materials and Reagents 

All materials were of analytical and mass-spectrometry grade. DL-dithiothreitol (DTT), iodoacetamide, ASB-14, 
Tris base and urea were all purchased from Sigma-Aldrich. UPLC-MS grade acetonitrile (ACN), Formic acid 
(FA) and water were obtained from Fluka, and sequencing-grade modified porcine trypsin from Promega. All 
buffers and solutions were prepared using ultra-pure 18 MΩ water (MilliQ) and UPLC solvents using UPLC-MS 
grade water. 

In-solution proteolytic digestion   

Lysate and supernatant were stored at -80 °C until use. The frozen cell pellets (about 2 million cells) were thawed, 
dissolved in lysis buffer containing 100mM Tris HCl pH 7.8, 6M Urea, 2M Thiourea, 2% ASB-14. Cells were 
then sonicated for 5 min to disrupt cell membranes followed by shaking for 1h in room temperature in order to 
solubilize proteins.  Samples were reduced with the addition of 1.5 µl of DTT (30 mg/mL) for 1h at room 
temperature and then alkylated with 3 µL of iodoacetamide (36 mg/mL) for 30 min in the dark. To dilute the urea, 
155 µL of ultra-pure water was added prior to addition of 10 µL of sequencing-grade trypsin (Promega) (0.1 
µg/µL). Trypsin digestion was carried out for 12 hours at 37°C, followed by desalting and concentrated using C18 
Isolute columns (Biotage). 

Label-free proteomic analyses (2D-LC-MSe) 

1 pmol of yeast enolase reference standard (Waters) was added to the each sample and 1 µg of the sample analysed 
using a 2D-LC-nanoESI-MSe using a nanoAcquity UPLC 2D-LC system and Synapt G2-Si mass spectrometer 
(Waters, Manchester, UK). Peptides were fractionated in 8 steps (8.7%, 11.8%, 13.6%, 15.3%, 17.1%, 19.3%, 
22.5% and 50% of solvent B) under high pH conditions using XBridge BEH C18 Trap Column, 130Å, 5 µm, 180 
µm x 50 mm (Waters). Solvent A was 20 mM ammonium formate in water (pH 9) and solvent B was 100% 
acetonitrile (ACN). Eluted peptides were trapped in the Symmetry C18, 100Å 5 µm, 300 µm x 20 mm (Waters) 
trap column and subsequently separated under low pH conditions on a nanoAcquity C18 column Peptide BEH 
C18, 130Å, 1.7 µm, 75 µm x 150 mm (Waters). Analytical chromatography was performed using a 60-min 
gradient starting at 97% solvent A, ramping to 40% solvent B in 40 min, then to 85% solvent B over 2 min (held 
for 3 min) and finally decreased to 97% solvent A in 15 min. Mobile phase A contained 95% H2O, 5% DMSO, 
0.1% FA and mobile phase B was 95% ACN, 5% DMSO and 0.1% FA. 



Principal Component Analysis 

Protein abundances of 1037 proteins, which are expressed across all samples, are corrected for batch effect 
using ComBat function from sva R package(Leek et al., 2012) (two batches done separately for the two time 
points). PCA is performed by prcomp R function (scale=T, center=T). 

PCA of protein abundances and gene counts at FP+55 time point is performed on the same set of 1037 
proteins/genes after correcting for differences between the two types of data using ComBat function. 
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