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Contents

• Sections S1 – S5

• Figures S1 – S7

• Tables S1 and S2

• References



S1. SIFTER fluorescence

Sun-induced fluorescence (SIF) is the re-emission of light by the chloro-
plast during photosynthesis. Since SIF is directly linked to the photosynthesis
process, it can serve as a proxy for photosynthetic CO2 uptake by vegetation.
It was shown in laboratory and field studies that SIF can be used to detect
water stress of vegetation [1, 2]. SIF can also be measured from space, which
provides a unique opportunity to study large-scale vegetation response to
climatic events.

We use SIF obtained from the Global Ozone Monitoring Experiment-2
(GOME-2) instruments on board of the MetOp-A satellite that is operated
by the European Organization for the Exploitation of Meteorological Satel-
lites (EUMETSAT). The MetOp-A satellite was launched in October 2006,
followed by the MetOp-B satellite in September 2012. MetOp-C, a third
satellite in this series, is scheduled to be launched in 2018. The MetOp satel-
lites have a sun-synchronous orbit and have a local overpass time of 9:30 in
the morning.

Our analysis is based on a custom version of Sun-Induced Fluorescence of
Terrestrial Ecosystems Retrieval (SIFTER) developed at the Royal Nether-
lands Meteorological Institute (KNMI). This SIFTER version is an update of
the retrieval described by Sanders et al. [3]. The SIFTER retrieval is based
on a stochastic representation of the atmospheric reflectance spectrum by a
set of principal components. These principal components are derived from
GOME-2 observations over a reference region over the Sahara where vegeta-
tion (and hence SIF) is absent. In the retrieval algorithm the surface albedo
and fluorescence are estimated from the GOME-2 observations and the prin-
cipal components by minimizing a cost function. Note that SIF is retrieved
without ancillary datasets such as pre-defined land cover type maps.

The following major changes were made in the retrieval method for SIFTER:
(1) the principal components representing the atmospheric disturbance are
now determined for the period from 2007-2016, instead of a moving yearly
window; (2) the spectral fitting window is reduced from 712-783 nm to 734-
758 nm and the number of principal components used to simulate atmo-
spheric effects is reduced from 35 to 8; (3) SIF retrievals are rejected when
autocorrelation in the fit residuals is larger than 0.2; and (4) a correction for
the remaining irradiance bias and latitudinal bias was applied.

SIFTER values were retrieved with a set of principal components that
represents the atmospheric effects on measured irradiance. As mentioned
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above, the principal components are derived from the period 2007-2016 for
a reference area over the Sahara. Experiments with different settings for
the retrieval algorithm have shown that the inter-annual variability (IAV) in
the SIF signal strongly increases when a shorter reference periods is selected
(data not shown). A possible explanation for this effect is that the IAV in
the water vapour over the Saharan reference area translates into IAV in the
retrieved SIF signal for e.g. the Amazon region.

Analysis of the raw SIF signal reveals that there is a negative trend in
the SIF signal over the Amazon region (see Figure 2). To remove the trend
from the SIF signal, we used the following detrending methods: (1) linear
detrending; (2) quadratic detrending; and (3) detrending using the CCGCRV
routine that was developed by Thoning et al. [4] for the analysis of CO2 time
series. The effect of the selected detrending method on the resulting GPP
anomalies is discussed in the main text.

Possible explanations for the observed SIF trend are changes related to (1)
the physical instruments (e.g. sensor degradation or drift of the satellite from
its original orbit); (2) the instrument settings and low level data processing
(e.g. the pixel size that changed for GOME-2A from 80×40 km2 to 40×40
km2 in 2013 and changes in the processing of level 0 and level 1 data) or (3)
geophysical changes in the Earth system (e.g. the atmospheric composition
which can make the set of principal components less representative). Our
method, using a long baseline period to derive these PCs and reduce noise,
is likely more sensitive to this decline in signal than other GOME retrievals.

S2. Coverage of SIFTER over time

Figure S1 shows the mean number of ‘valid’ samples that were used to
determine the monthly mean SIF signal for the 0.5◦×0.5◦ grid boxes within
the different subregions of the legal Amazon. The most important reasons
for disregarding an observation are (1) cloud fraction over the grid box is
higher than the maximum of 0.4; (2) the autocorrelation in the residue is
higher than 0.2, which is an indication of an erroneous fit [5]. Note that
each subregion A, B, or C contains 636, 688, and 840 gridboxes respectively,
such that the total number of SIF values used per aggregated region is highly
robust.

The number of samples per month follows a strong seasonal cycle and
also an upward trend, similar to the downward trend that we find in the
raw SIFTER signal. As noted above, the number of samples per grid box
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per month contains indirect information about the clouds, since a maximum
cloud fraction of 0.4 was imposed. The seasonal cycle in number of retrievals
thus closely follows the seasonal cycle of cloudiness, and thus the wet seasons
and dry seasons.

The number of samples over the Amazon regions is about 50% lower than
the number of samples over all tropical land (from 30◦N-30◦S, including the
Amazon region itself, data not shown), which is due to (1) the above average
cloudy conditions over the forested Amazon and (2) the noise originating
from the South Atlantic Anomaly.

S3. Additional datasets

S3.1. MPI-BGC gross primary productivity

We use the annual mean GPP product from the Max Planck Institute
for Biogeochemistry (MPI-BGC) [6] that was created by extrapolating a
database of eddy-covariance measurements using different machine learning
approaches. This GPP product has a spatial resolution of 0.5◦×0.5◦.

S3.2. GRACE terrestrial water storage

We use the GRACE JPL-RL05M mascon product from the Jet Propulsion
Laboratory (JPL). This mascon product is based on prior model information
which results in a better signal-to-noise ratio than GRACE products based
on the spherical harmonics retrieval [7].

The JPL-RL05M GRACE data is available from April 2002 to June 2017
at (nearly) monthly time resolution and a spatial resolution of 3◦×3◦. This
dataset is hosted in the data portal at https://podaac.jpl.nasa.gov/ [8].

Note that the JPL GRACE product does not represent an absolute value
for the terrestrial water storage, but it is a series of anomalies in terrestrial
water storage. Since these anomalies are defined relative to a multi-year
baseline (2004-2009), the anomalies still contain a seasonal cycle.

S3.3. MSWEP precipitation

We also use precipitation from the Multi-Source Weighted-Ensemble Pre-
cipitation (MSWEP) [9] dataset in this study. MSWEP is a global precipi-
tation dataset derived from gauge measurements, satellite observations and
re-analysis products. The spatial resolution of MSWEP is 0.1◦×0.1◦ and
MSWEP has a 3-hourly temporal resolution. It was found in a comparative
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study that MSWEP has the highest correlation with local gauge measure-
ments out of 22 precipitation products [10]. The MSWEP product is available
through the data portal http://www.gloh2o.org/.

S4. SIF-GPP scaling

To quantify the observed SIF-reductions in terms of PgC, a conversion
from SIF to GPP is required. We derive a linear fit for GPP vs. SIF, similar
to Parazoo et al. [11]. Figure S2 shows GPP from Beer et al. [6] versus
annual mean SIFTER for cells within the Amazon region. To prevent that
large concentrations of points within a small SIF range are dominating the
constructed fit, we have first calculated the mean GPP over equal bins of
0.2 mW·sr−1·m−2·nm−1. Subsequently, the fit was determined based on the
binned representation of the data, where equal weights were assigned to each
bin. Bins with less than 3 points were discarded.

The default set-up for calculating the GPP-SIF slope is using a linear SIF
detrending, for different climate zones (Regions A, B and C) and using the
Beer et al. [6] GPP product (see Figure S2). For our error analysis we also
use the quadratic and CCGCRV [4] detrending method as alternative to the
linear detrending. Furthermore we tested the effect of plant functional type
(PFT) specific scaling as alternative to the division in climate zones. Finally,
we used GPP from terrestrial biosphere model SiBCASA [12] as alternative
to the Beer et al. [6] GPP product. The resulting slopes and intercepts are
summarized in Table S2.

S5. SIF correlations with environmental variables

Figure S5 shows the relationship between SIF and VPD after aggrega-
tion over the regions A, B, and C (see main text for definition), for each
month of our climatology (colour) as well as for the 2015/2016 El Niño and
the 2010 drought event. It illustrates the larger sensitivity of regions B, and
especially C, to VPD compared to Region A. Highest VPD values are con-
sistently found over Region C. Lowest normalized SIF values correspond to
these points, with the 2010 drought having the highest impact and the rela-
tion appearing to drop below the exponential curve that would connect the
coloured (climatological) values.

Figure S6 presents this same view, but now using soil moisture stress on
the horizontal axis. This is derived from the simulations presented in van
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Schaik et al. [13] (this issue). High values of relative soil moisture stress
correspond to high reductions in SIF. The figure shows that VPD and soil
moisture stress likely both play a role in reducing SIF over Region C, but
likely also have contributed to the reduction of SIF in Region B. Disentan-
gling this relative influence is challenging, but would give further insights
into the drought dynamics of vegetation in this region.
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Figure S1: Time series of the mean number of samples constituting the monthly SIF from
SIFTER retrieval of GOME-2A for different regions inside the legal Amazon.
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Figure S2: GPP from the Beer et al. [6] product versus annual mean detrended SIFTER
fluorescence for each 0.5◦×0.5◦ grid box within the Amazon region. Colours correspond
to the climate zones defined in the main text.
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Figure S3: Spatio-temporal distributions of 2015/2016 anomalies in the Amazon region of (a, d, g) SIFTER
fluorescence; (b, e, h) GRACE terrestrial water storage anomalies; and (c, f, i) MSWEP precipitation. The
spatial distributions show the cumulative anomaly of the variable integrated over the period September 2015
to May 2016 for the northern part of South America. The location of the legal Amazon region is indicated by
a thick green line. The time series show the climatological values, and values during the 2015/2016 El Niño
period integrated over the legal Amazon region. The bands surrounding the climatological values indicate
the year-to-year variability (1-σ) around the climatology. For SIF and precipitation we used the period
2007-2014, whereas the baseline for GRACE terrestrial water storage is 2002-2014. The dark grey shaded
area indicates the climatological dry season (< 100 mm/month precipitation) for the Amazon region, the
light grey shaded area indicates the extended dry season for 2015 and 2016.
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Figure S4: Anomaly of potential evapotranspiration, relative to the 2010-2016 period.
Red colours show higher than normal atmospheric demand. Numbers are based on a
Penman-Monteith calculation with ERA5 atmospheric variables.
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Figure S5: Average SIF for each region normalised by the cosine of the solar zenith angle,
versus VPD. Each dot corresponds to one month from either the climatology (colours),
from the 2015/2016 El Niño period (gray), or from the 2010 drought (black). Shapes and
colours are used to distinguish between Regions A, B, and C. A summary view of this
figure is presented in the main text.
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Figure S6: Average SIF for each region normalised by the cosine of the solar zenith
angle, versus relative soil moisture stress as calculated by van Schaik et al. [13]. Each dot
corresponds to one month from either the climatology (colours), from the 2015/2016 El
Niño period (gray), or from the 2010 drought (black). Shapes and colours are used to
distinguish between Regions A, B, and C. A summary view of this figure is presented in
the main text.
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Figure S7: Comparison of the Legal Amazon mask (https://doi.org/10.18160/
P1HW-0PJ6) used in this study and the “Trop SA” mask used by Liu et al. [14]. The
Liu et al. [14] mask is about 44% larger in land area and contains 34% more GPP accord-
ing to the Beer et al. [6] GPP product.
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Table S1: Climatological GPP for different climate zones in the Amazon regions. Values
are derived from SIFTER fluorescence and MPI-BGC gross primary productivity (Beer
et al. [6]), and integrated over 3-month periods, and regions defined in Sect 2.2 of the main
text.

Regions Area (km2) SIF (mW·sr−1·m−2·nm−1) GPP (PgC)
OND JFM OND JFM

Legal Amazon 7.05·106 1.42 1.55 4.83 5.29
Region A 1.96·106 1.47 1.48 1.45 1.46
Region B 2.11·106 1.49 1.55 1.54 1.59
Region C 2.54·106 1.41 1.69 1.63 2.02
Other 4.34·105 0.90 0.99 0.21 0.23

S14



Table S2: Values of the GPP/SIF slope derived for the Amazon.

Aggregation Slope Intercept SIF range
[kgC·yr−1/ [kgC·m−2·yr−1] [mW·sr−1·m−2·nm−1]

mW·sr−1·nm−1]

Climate zones, Amazon, GOME-2A vs Beer et al. [6]
Region A 0.60 2.09 0.8–1.6
Region B 1.64 0.48 0.6–1.8
Region C 2.17 -0.48 0.6–1.8
Other 2.07 0.03 0.2–1.6
All Amazon 1.80 0.18 0.2–1.8

PFTs, Amazon, GOME-2A vs Beer et al. [6]
Tropical forest 1.38 0.84 0.6–1.8
Savanna 1.78 0.08 0.2–1.8
Others 1.99 -0.14 0.2–1.8

Climate zones, Amazon, GOME-2A vs SiBCASA [12]
Region A 1.87 0.85 0.8–1.6
Region B 1.86 0.32 0.6–1.8
Region C 1.41 0.30 0.6–1.8
Other 3.35 -1.56 0.2–1.6
All Amazon 2.31 -0.53 0.2–1.8

Parazoo et al. [11], global, GOSAT vs Beer et al. [6]
Evergreen broad-
leaf forest 5.77 0.62 0.05–0.45
Savanna 5.59 0.22 0.05–0.38
All 6.63 0.04 -0.1–0.45
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