Supplemental Figures

Figure 1S. Time evolution of the fluorescence emission spectra. (A) 15 μ M dT₁₂ with 90 μ M Ag⁺ and 90 μ M BH₄⁻ in a pH = 10.5 buffer using $\lambda_{ex} = 340 \text{ nm}/\lambda_{em} = 540 \text{ nm}$. (B) 15 μ M dT₄C₄T₄ with 90 μ M Ag⁺ and 90 μ M BH₄⁻ in a pH = 10.5 buffer using $\lambda_{ex} = 360 \text{ nm}/\lambda_{em} = 475 \text{ nm}$.

Figure 2S. Dependence of the fluorescence intensity with the relative concentration of Ag⁺:oligonucleotide for dT₁₂ (A) and dT₄C₄T₄ (B). The concentrations of the oligonucleotides were 15 μ M, and the pH of the buffer was 10.5. One equivalent of BH₄⁻ was used for one equivalent of Ag⁺. For dT₁₂ and dT₄C₄T₄, $\lambda_{ex} = 340 \text{ nm}/\lambda_{em} = 540 \text{ nm}$ and $\lambda_{ex} = 360 \text{ nm}/\lambda_{em} = 475 \text{ nm}$, respectively.

Figure 3S. Induced circular dichroism and absorption spectra for the electronic transitions of the cluster-oligonucleotide conjugates. The solid line (left axis) represents the circular dichroism spectrum, and the dashed line (right axis) represents the absorption spectrum. (A) 15 μ M dT₁₂ with 90 μ M Ag⁺ and 90 μ M BH₄⁻. (B) 15 μ M dT₄C₄T₄ with 90 μ M Ag⁺ and 90 μ M BH₄⁻.

Figure 4S: Fluorescence intensity (circles) of the $\lambda_{ex} = 340 \text{ nm}/\lambda_{em} = 540 \text{ nm}$ fluorescence species and the absorbance (crosses) at 430 nm as a function of time for a sample with 6 Ag⁺:dT₁₂ in a buffer with pH = 10.5. The data sets were fitted using single exponential functions. The rate is 0.004 /s for the fluorescence, and the rate is 0.005 /s for the absorbance.

Figure 5S. Absorption spectrum of 15 μ M dT₁₂ with 90 μ M Ag⁺ and 90 μ M BH₄⁻ in a pH = 10.5 buffer. The dotted line represents the spectrum in a nitrogen saturated sample while the solid line represents the spectrum in an oxygen saturated sample.

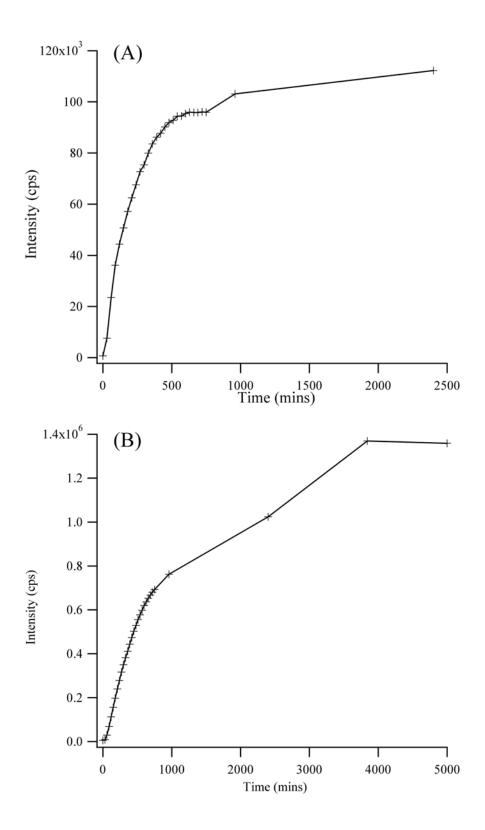

Figure 6S. Fluorescence spectrum were collected using $\lambda_{ex} = 340$ nm for a sample with 15 μ M dT₁₂ with 90 μ M Ag⁺ and 90 μ M BH₄⁻ in a pH = 10.5 buffer. The dotted line represents the spectrum in the air saturated sample while the solid line represents the spectrum in the O₂ saturated sample.

Figure 7S. Fluorescence spectra in solutions saturated with nitrogen (dashed line) and in same nitrogen-saturated solutions that were subsequently saturated with oxygen (solid line). The conditions were 15 μ M dT₄C₄T₄ with 90 μ M Ag⁺ and 90 μ M BH₄⁻ in a pH = 10.5 buffer.

Figure 8S: Fluorescence quantum yield measurements for the cluster- $dT_4C_4T_4$ conjugates. Using $\lambda_{ex} = 370$ nm, the fluorescence intensity at 475 nm is plotted as a function of the absorbance at 370 nm. The sample has 6 Ag⁺: $dT_4C_4T_4$ in a pH = 10.5 buffer. The slopes are 4.2 (± 0.1) x 10⁷ c/s (intercept = 70000 +/- 14000) for quinine and 1.1 (± 0.1) x 10⁷ c/s (intercept = 35000 +/- 140000) for the silver clusters.

Figure 9S. Fluorescence emission intensities as a function of the excitation power for a 10X diluted sample of 15 μ M dT₄C₄T₄ with 90 μ M Ag⁺ and 90 μ M BH₄⁻ in a pH = 10.5 buffer. The 30 μ W power used for these studies is indicated by the vertical line.

Figure 10S. (A) A composite fluorescence spectrum of 0.5 μ M dC₄T₄C₄ with 90 μ M Ag⁺ and 90 μ M BH₄⁻ in water. The emission wavelengths are on the bottom axis and the excitation wavelengths are on the right axis. The spectra were acquired 16 hrs after adding BH₄⁻. (B) Fluorescence spectra in solutions saturated with nitrogen (dashed line) and in same nitrogen-saturated solutions that were subsequently saturated with oxygen (solid line). (C) Fluorescence intensities of the $\lambda_{ex} = 340$ nm/ $\lambda_{em} = 495$ nm band as a function of pH.

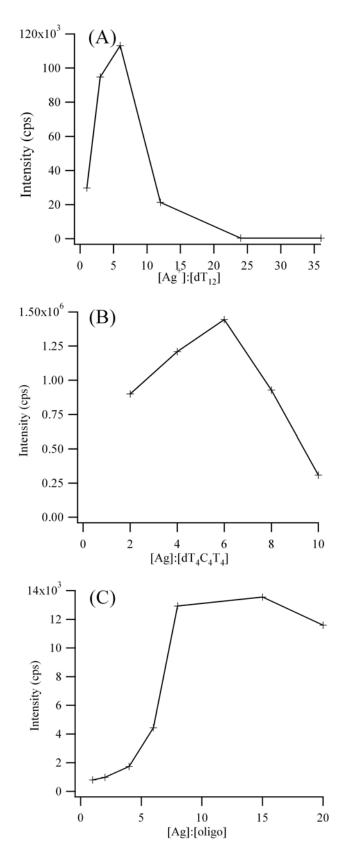


Figure 2S

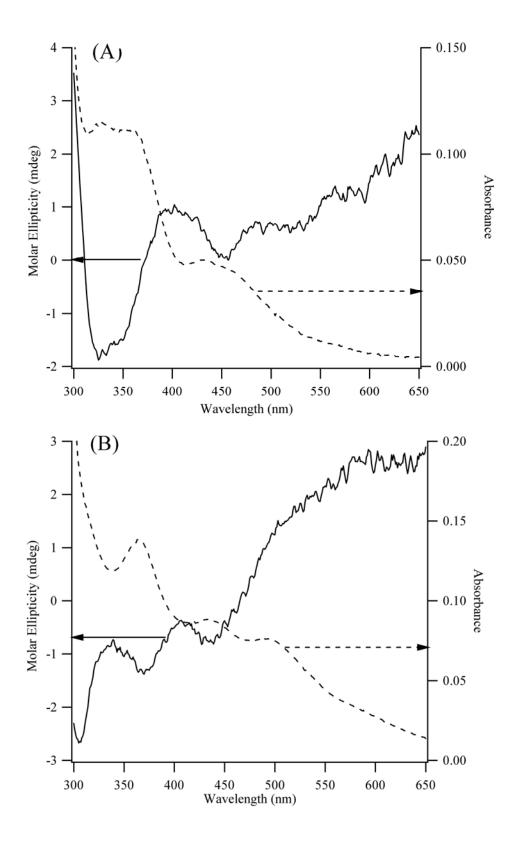
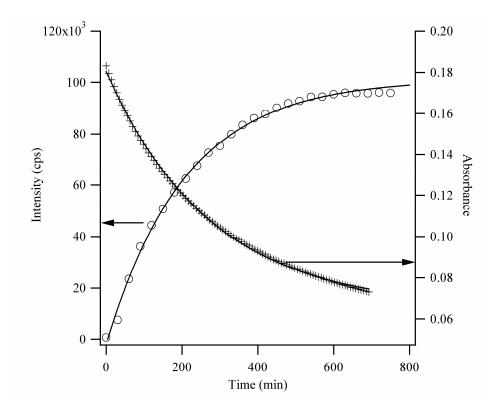



Figure 3S

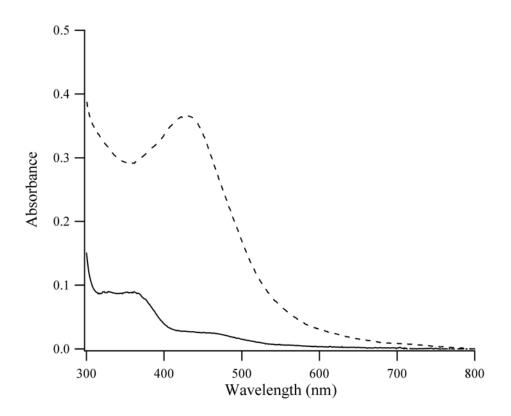


Figure 5S

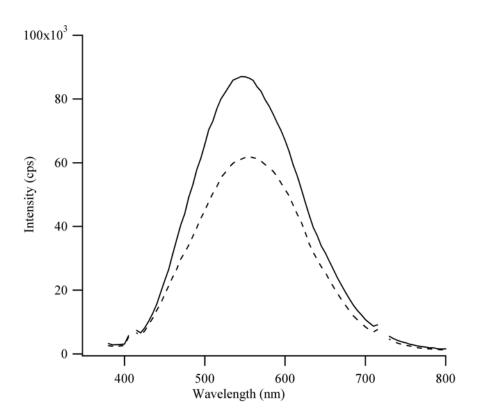
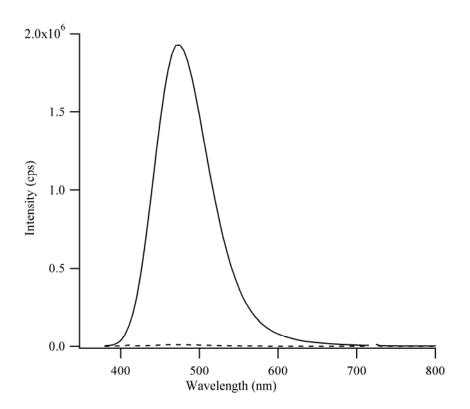
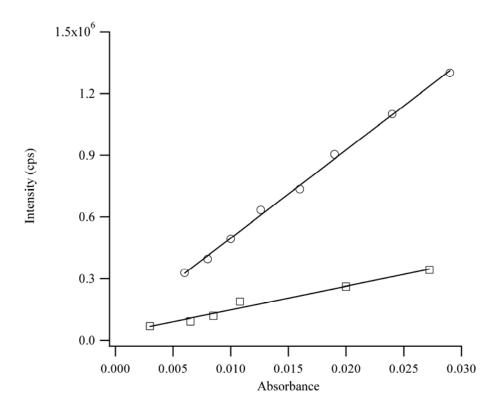
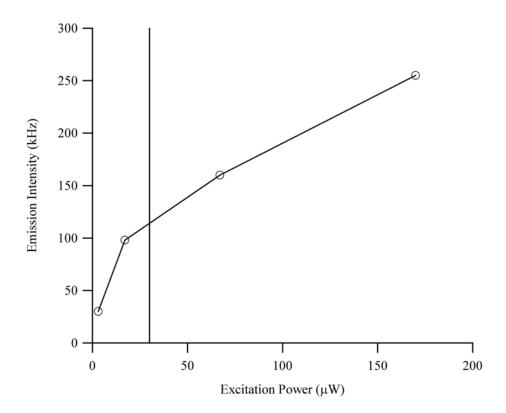





Figure 6S

•

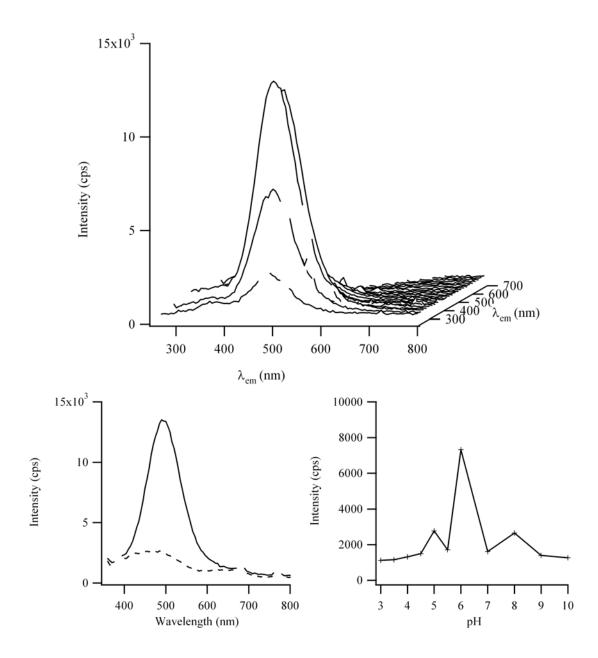


Figure 10S