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1. THE CURVELET TRANSFORM

The curvelet transform is a powerful nonadaptive multiresolution 

geometric analysis technique that provides a directional multiscale 

decomposition of images [S1]. At each scale, the curvelet functions 

(or curvelets) are generated from a ‘mother’ curvelet by 

translations and rotations. As a consequence, the curvelet 

functions φj,k,l(r) (r∈ℝ2) have three parameters: j is the scale index, 

k implies the location in the spatial domain, and l indicates the 

orientation. The ‘mother’ curvelet φj(r) at scale 2-j (j∈ℕ0) is 

formulated as the spatial counterpart of a polar ‘wedge’ shaped 

window function in the frequency domain. The rotation operation 

is then performed by multiplying the coordinates r by a rotation 

matrix 
,j lR  with the following form: 
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where θj,l = 2π⸱2-[j/2]⸱l, [j/2] extracts the integer part of j/2, and 0 ≤ l ≤ 

2[j/2] - 1. Finally, the location parameter k represents a translation to 

the position of 
,
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Based on the above parameters, φj,k,l(r) is defined by: 
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The curvelet coefficients of a given function f (r) are simply 
computed by its inner product with the curvelets φj,k,l: 

     , . , ,, , ,j k l j k lc c j k l f   r r .                    (S3) 

The curvelet family is redundant, thus the curvelet transform is 
not orthogonal. However, the curvelets form a tight frame, which 
means that f (r) can be exactly reconstructed from its curvelet 
coefficients: 
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Figure S1 shows an example of curvelet. It is noted that the 
‘mother’ curvelets have a parabolic scaling property. The effective 
length and width of φj(r) (j > 0) obey the anisotropy scaling 
relation: width ≈ length2. Furthermore, a curvelet is highly 
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direction sensitive due to the rotation operation. These two 
characteristics enable curvelet transform to provide sparse 
representations for images with linear and curvilinear features. 

Fig. S1.  An example of a curvelet (left) and its Fourier transform 
(right) 

In this paper, we use CurveLab[S2] as the implementation of the 
discrete curvelet transforms (DCT). It has two implementations: 
curvelets via unequally spaced fast Fourier transform (USFFT) and 
curvelets via wrapping. The latter approach is simpler to 
understand and implement and it is of lower computational 
complexity as well. Therefore, we adopt curvelets via wrapping in 
the paper and abbreviate it by DCTW. Roughly speaking, DCTW 
consists of four steps: 2D FFT, windowing, frequency wrapping, 
and 2D inverse FFT.  

The discrete curvelet transform of x can be expressed as: 

c x ,                 (S5) 

where Φ∈ℝK×N (K>N) is composed of the conjugates of discretized 
curvelets obtained by DCTW. The inverse transform is then: 

ˆ Hx c .                         (S6) 

where H denotes the conjugate transpose of a matrix. The tight 

frame property ensures that ΦHΦ = I and ˆ x x . However, it 
should be noted that ΦΦH ≠ I in general. 

2. RECONSTRUCTION STEPS

Figure S2 shows the complete flowchart of our blind sparse 
inpainting method for fast SMLM. The image acquisition setups are 
the same as conventional SMLM (or existing fast SMLM) expect 
that the number of acquired frames is far below the routine 
requirement. The input is thus a sequence of raw diffraction-
limited camera images and the output is a reconstructed Nyquist-
density image. Detailed descriptions of the steps are as follows: 
Step 1: Localization of molecules. 

After the raw camera images are acquired, the first step is to 
estimate the positions of the emitting fluorescent molecules with 
an accuracy below the diffraction limit. This can be accomplished 
by any existing methods. The underlying results is a list containing 
the coordinates and intensity of each localization. Note that dense 
activation and its accompanying algorithm also can be employed 
to provide a faster imaging speed. 
Step 2: Formulation of low-density image. 

A 2D pixel grid is established to discretize the coordinate system. 
The spacing is in general set to one-half of the desired spatial 
resolution. The minimum number of grid must ensure the spatial 
size of the whole grid covers all the localization results. Then, each 
fluorophore is assigned to its nearest grid. If several fluorophores 
are projected onto a same grid, the sum of their intensities are used 
as the value of that grid. Since the number of frames used is 

relatively small, only a low density image is obtained after the 
projection of all fluorophores. 
Step 3: preprocessing of low-density image. 

Threshholding is an optional operation to account for the 
background noises or remove small valued disturbance. The 
threshold is either a predefined value or a statistic drawn from the 
histogram. Normalization of the image intensity is required so that 
λ can be set to the same value for different images once it is 
manually tuned. Such a fixed λ has shown to be robust for different 
images and can also reduce the workload.  
Step 4: estimation of PQ. 

The unique characteristics of SMLM images make it challenging 
to estimate PQ. Unlike natural images, the background is ‘dark’. 
Therefore, the zero-valued pixels in the low density image can be 
either the background (corresponding elements of PQ should be 1) 
or the foreground with fluorophores but not activated or detected 
(corresponding elements of PQ should be 0). Also, the foreground 
texture is not that clear and smooth as well. 

We adopt a simple approach from a straightforward intuition. 
We divide the non-zero part of PQ into foreground part and 
background part. The foreground part is simply determined by the 
non-zero pixels on the enhanced low-density image. To determine 
whether a zero-valued pixel belongs to the background, we search 
its neighborhood to see if there exist a non-zero pixel. If all pixels in 
the neighborhood are zero, we believe it is in the background with 
a high probability and set the corresponding elements of PQ to be 1. 

Detection and localization 
of molecules

Input sequence 
of camera images

Start

Projection onto a 
pixelated image

List of molecular 
coordinates

# x y I

1

2

……

Q

Low density 
image

Thresholding and 
normalization

Estimating the 'mask' PQ

Filtered low 
density image

Reconstructing  the Nyquist 
density image x using 

sparse inpainting Eq. (2)

Mask PQ

Reconstructed 
Nyqyist density 

image

Thresholding

End

Output image
for visualization

time

Fig. S2.  Flowchart of blind sparse inpainting 

Step 5: reconstruction of Nyquist density image. 
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The reconstruction is obtained by solving the L1 minimization 
problem in Equation (2). The optimization algorithm is detailed in 
the next section. 
Step 6: thresholding of Nyquist density image. 

To enhance the visualization effect and eliminate small valued 
artifacts, threshholding is sometimes a necessary step and we 
adopt a predefined threshold in this paper. 

3. OPTIMIZATION ALGORITHM

The objective function is as follows: 
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This is a classical L1 minimization problem and can be solved by 
various methods, such as linear programming and interior point 
method. Recently, variable splitting and augmented Lagrangian 
method (ALM) have proven to be efficient approaches to solve the 
L1 minimization problems. In general, these algorithms introduce 
auxiliary variables to decouple the sparsity terms with other parts. 
ALM is then applied to solve the modified constrained problem. In 
this paper, we focus on a specific variation of ALM called 
alternating direction method with multiplier (ADMM) [S3]. 

Introducing auxiliary variables d = Φx, we have the equivalent 
form of Equation (S7): 
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The scaled form augmented Lagrangian function is: 
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where u is the scaled dual variables. Based on ADMM, we derive 
the following iteration scheme: 
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The x-subproblem has a closed form solution: 

1 ( ( )),x x
k T H k k
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where B = (λ
T

QP PQ+ ρ1I)
-1. The tight frame property of Φ is used in

the derivation. Since PQ is diagonal, B can be easily calculated by 
diagonal element inversions. 

The optimal value in d-subproblem is obtained through the 
element-wise shrinkage operator: 
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where shrink(x,γ) = sgn(x)⸱max(x - γ, 0). 

4. ERROR BOUNDS

Given the blind nature of the proposed method (that is PQ is 
unknown), theoretical analysis of error bounds is challenging. 
Here we assume the location of the acquired region PQ is known, 

and the performance of sparsity-based inpainting can be analyzed 
using asymptotic analysis as in Reference [S4]. 

Suppose that x lies in a Hilbert space ℋ which can be 
decomposed into a direct sum 

= ,M KH H H (S15)

where subspace ℋM is associated with the missing part of x and 
subspace ℋK relates to the known part of x. 

Define the concentration on ℋM  as 
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where 1Λ is the indicator function that takes the value 1 on Λ and 0 
on Λc, with Λ being an index set of coefficients and Λc is the 

complementary set. 

Define x is δ-clustered sparse in Φ with respect to Λ if  

1
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then in noise-free case, the reconstruction error is bounded by  
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and in noisy case such that ‖Φn‖1 ≤ ε where n is the noise vector, 
the reconstruction error is bounded by 
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      Note that both the concentration and the clustered 
sparsity depend on the chosen set of indices Λ. The explicit 
knowledge of Λ is not necessary because it is only an 
analysis tool. In practice, the correct choice of Λ is a key 
problem. In our sparse inpainting optimization scheme, this 
is automatic performed in solving the d-subproblem (i.e. 
Equation (S11)) by soft-thresholding, which is shown to be 
able to provide a good estimation [S4]. 

5. SUPPLEMENTARY SIMULATION RESULTS

A. Reconstruction for different numbers of frames

Figure S3 shows blind sparse inpainting reconstructions for 
different numbers of frames at 40nm nominal resolution. The 
result from 400 frames is very close to the Nyquist-density image 
in Figure 1. Even in the 150 frame case, the reconstruction can still 
visually reveal the structures. 

400 frames 300 frames

250 frames 150 frames

100 frames 75 frames
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Fig. S3.  Simulation results of low-density image (left) and blind sparse 
inpainting reconstruction (right) for different numbers of frames at 
40nm nominal resolution. Scale bars: 2μm. 

B. Reconstruction for different resolutions

Figure S4 shows blind sparse inpainting reconstruction at nominal 
resolutions from 40nm to 120nm. The numbers of frames is 
determined to ensure the true positive rate in the reconstruction is 
above 95%. In this case, the Nyquist resolution is approximately 
the same as the nominal resolution. When the resolution is poorer 
than 80nm, the inner ends of the radial bars are too close to be 
resolved.  

40nm, 400 frames 50nm, 300 frames

60nm, 250 frames 80nm, 150 frames

100nm, 100 frames 120nm, 75 frames

Fig. S4. Simulation results of low-density image (left) and blind sparse 
inpainting reconstruction (right) at nominal resolutions from 40nm to 
120nm. Scale bars: 2μm. 

6. SUPPLEMENTARY MICROTUBULE RESULTS

Figure S5 shows the results on the third real microtubule dataset. 
Blind inpainting from 400 frames can preserve the spatial 
resolution as well as the high-density image from 32000 frames. 

Diffraction limited Low-density Blind inpainting High-density

Fig. S5. Results on the third real microtubule dataset (top: full field of 
view with scale bars of 4μm, bottom: ROI with scale bars of 2.5μm). 
Pixel size: 53nm. 

7. SUPPLEMENTARY ACTIN RESULTS

Figure S6 shows real actin STORM data. The blind sparse 
inpainting was applied on the low-density image synthesized from 
1000 frames, and the result is seen to be close to the Nyquist-
density image synthesized from all 115000 frames. The white 

squares indicate the ROIs, with one shown in Figure 8 of the main 
text. 

2 1

3

ROI-2

ROI-3

Low-density Blind inpainting High-density

Fig. S6. Results on real actin STORM data. Scale bars: 4μm in full 
images and 1.25μm in ROI images, pixel size: 35nm. 
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