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empiricIST​: An Integrated Software and analysis Tool for analyzing         
deep-mutational scanning data (such as empiric) 
 
Outlier detection and data imputation 

 
First, amplification error during the sequencing procedure – amongst other factors -- can result in               
sequencing errors at single time points. To identify and correct for these individual false data points,                
Bank ​et al. (2014) showed that estimation accuracy can be optimized using the DFBETA statistic with                
a (conservative) cutoff of 2, based on the log ratio of the mutant’s read number to the total number of                    
reads at each individual time point (i.e., ). In particular, this regression-based statistic       og ( ) l nt

ni, t       

measures the difference in each parameter estimate when a specific data point is excluded. If this                
difference surpasses a chosen threshold, the corresponding data point has a large effect on the               
parameter estimates and is called influential, and indicative of an outlier. In our analyses, these data                
points (for the respective mutant and time point) were removed (i.e., set to zero). Excluded data points                 
were summed up and added in an additional row for each time point at the end of the data set to                     
preserve the overall read number for the multinomial sampling (and hence the multinomial             
probabilities). There is reason to believe that not all of these removed data points are true outliers, but                  
biologically interesting non-log-linear effects. However, their majority should be sequencing errors           
that affect the accuracy of all growth rate estimates, rendering their exclusion necessary. Note that this                
approach uses the so-called total normalization (i.e., ), which has been shown to bias growth       og ( ) l nt

ni, t         

rate estimates (Matuszweski ​et al. 2016). This uniquely allows to detect outliers in the reference               
genotype, which, if undetected, would introduce a systematic bias in the growth rate estimates of all                
other mutants. If the reference genotype is sampled with great accuracy (i.e., does not contain any                
outliers), detecting outliers based on log ratio using the so-called wild-type normalization (i.e.,             

) should yield more accurate results. However, since data from previous DMS studiesog ( ) l
ni, t
n1, t

             

suggest (Bank ​et al. 2014) that wild-type sequences are often consistently mismeasured and since              
these mismeasurements can only be detected by using the total normalization, only this approach has               
been implemented into empiricIST at this point. 
 
If there is only a single outlier in the data set, this data point is imputed (i.e., corrected) by updating                    
the corresponding log-ratio. Particularly, the imputed log-ratio for mutant at time point , , is         i     t  x̃i, t   
given by  

 N (s  t, ϵ ),x̃i, t
˜ xi, t

 xi, t
 

where and denote the slope respectively residual variance of the linear regression excluding sxi, t
   ϵxi, t             

the outlier. The updated log-ratio is then translated into an updated read number. Note that due to the                  
total normalization, updating a log-ratio changes all other log-ratios as well. This becomes             
problematic when there are multiple identified outliers, as it raises the questions which outlier should               
be imputed first (as this will affect all others too), and how to deal with all other data points. Here, we                     



took again a conservative approach and always imputed the outlier with the largest absolute              
studentized residual. All log-ratios were then updated and potential outliers re-identified. Note that             
due to swamping (i.e., the misclassification of a regular data point as outlier), imputing a single outlier                 
might reduce the number of total outliers by more than one. In contrast, imputing a single outlier                 
might also make previously masked outliers visible. We chose to impute only those data points that                
have initially been classified as outliers to minimize changes to the original experimental data. Thus,               
once a data point is classified as a non-outlier it will no longer be a candidate for being imputed. 
 
 
 
DFE tail-shape estimation  
 
All three domains are contained in the so-called generalized Pareto distribution (GDP; Pickands             
1975), whose probability density function is given by: 
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where and denote the shape and scale parameter, respectively. The domain of attraction of the κ   ξ               
GDPis solely determined by the shape parameter . In particular, if , the beneficial tail of the       κ     κ > 0       
DFE falls into the (heavy-tailed) Fréchet domain, if it falls into the (truncated) Weibull domain,        κ < 0         
and if  it falls into the Gumbel domain containing the exponential distribution.κ = 0  
 
Using the re-parameterization , a direct maximum likelihood estimate of the shape parameter   σ = κ

ξ           κ  
of the underlying GPD can be obtained by maximizing the the profile-log-likelihood function of the               
GPD 
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for  data points with respect to  (Castillo & Serra 2015).x ,  , x )x = ( 1 …  n σ   
To account for unobserved small-effect mutations (“censored data”), we furthermore implemented a            
shifting data approach (see Beisel ​et al. 2007), where all (beneficial) selection coefficients are shifted               
by the smallest observed beneficial selection coefficient.  
 
Finally, we implemented a likelihood-ratio test, to assess whether the beneficial tail of the DFE               
follows an exponential distribution (i.e., whether . For that we first calculated the      κ )Ho :  = 0        
likelihood-ratio test statistic  
 
(S3) log (Λ) (L(X |σ) L(X |σ))− 2 = 2 − (  
 



and then generated data sets under the null model using the estimated parameter . Finally, the             (σ)κ ˆ    
likelihood-ratio test statistic is calculated over all simulated data sets and an approximate   log (Λ) − 2            
p-value is obtained by comparing the empirical distribution of the test statistic to that obtained from                
the data (Beisel ​et al.​ 2007). 
 
Bibliography 

 
Bank C, Hietpas RT, Wong A, Bolon DN, Jensen JD (2014). A Bayesian MCMC approach to assess                 
the complete distribution of fitness effects of new mutations: Uncovering the potential for adaptive              
walks in challenging environments. Genetics 196: 841–852.  

 
Beisel CJ, Rokyta DR, Wichman HA, Joyce P (2007). Testing the extreme value domain of attraction                
for distributions of beneficial fitness effects. Genetics 176: 2441–2449.  
 
Castillo Jd, Serra, I, Likelihood inference for generalized Pareto distribution, Computational Statistics            
& Data Analysis, Volume 83, 2015, Pages 116-128. 
 
Matuszewski S, Hildebrandt ME, Ghenu AH, Jensen JD, Bank C (2016). A statistical guide to the                
design of deep mutational scanning experiments. Genetics 204: 77–87. 
 
Pickands, J. (1975) Statistical Inference Using Extreme Order Statistics. ​The Annals of Statistics 3 (1):               
119-131. 
 
 
 
 

 
 


