Supplementary Information updated and replaced on 26th October 2018

Supplementary Information

Synthetic biology approaches and combinatorial biosynthesis towards heterologous lipopeptide production

Fu Yan,^a‡ Christian Burgard,^a‡ Alexander Popoff,^a Nestor Zaburannyi,^a Gregor Zipf,^b Josef Maier,^c Hubert S. Bernauer,^b Silke C. Wenzel,^a Rolf Müller^a*

a. Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany. E-mail: rom@helmholtzhzi.de

b. ATG: biosynthetics GmbH, Weberstraße 40, 79249 Merzhausen, Germany

c. IStLS – Information Services to Life Sciences, Härlestraße 24/1, 78727 Oberndorf am Neckar/Boll, Germany

‡ These authors contributed equally

Contents

1.	Strains and culture conditions	2
2.	Design and assembly of artificial gene clusters	2
	2.1 Design of artificial gene clusters	2
	2.2 Design of the cloning vector pSynbio1 and the expression vector pSynbio2	6
	2.3 Generation of <i>mch</i> cluster fragments via DNA synthesis	7
	2.4 Assembly of artificial <i>mch</i> genes and gene clusters	9
3.	Transformation of <i>M. xanthus</i> and verification by colony PCR1	6
4.	Expression of artificial mch clusters in M. xanthus and production analysis	8
	4.1 Production of native myxochromides in <i>M. xanthus</i>	8
	4.1.1 Estimation of myxochromide production yield2	0
	4.2 Heterologous expression of artificial hybrid mch clusters in M. xanthus	0
	4.3 Heterologous expression of CP-mutated mch clusters in M. xanthus	2
	4.4 Heterologous expression of mch clusters with duplication or deletion of biosynthetic domains2	3
	4.5 Verification of <i>M. xanthus</i> mutants by Southern blot	7
5.	Structure elucidation of novel hybrid myxochromides2	9
	5.1 Cultivation of heterologous production strains and isolation of myxochromides2	9
	5.2 Structure elucidation of hybrid myxochromides	0
	5.2.1 Structure of myxochromide AS ₄	0
	5.2.2 Structure of myxochromide SA ₃	8
	5.2.3 Structure of myxochromide SB_4 4	5
	5.2.4 Structure of myxochromide SC ₄	3
	5.2.5 Structure of myxochromide SD ₃	1
6.	Reference	8

1. Strains and culture conditions

Escherichia coli strains (HS996 or DH10B) were routinely grown in LB medium (1% tryptone, 0.5% yeast extract, 0.5% NaCl) at 37 °C. For myxochromide production analysis, *Myxococcus xanthus* DK1622 wild type strain,¹ the myxochromide A-deficient mutant strain *M. xanthus* DK1622 $\Delta mchA-tet^2$ and its heterologous expression mutants (harboring artificial *mch* clusters) were routinely grown in 300 mL shaking flasks on a 50 mL scale in CTT medium (casitone 1%, Tris-HCl 10 mM, K₂HPO₄/KH₂PO₄ 1 mM, MgSO₄ × 7 H₂O 8 mM, pH adjusted to 7.6) at 30 °C and 180 rpm for 4-5 days. For the isolation of hybrid myxochromides, fermentations on a 1 L scale were performed under the same conditions in 5 L shaking flasks. Cultures were amended with antibiotics if necessary in the following final concentrations: ampicillin 100 µg/mL, kanamycin 50 µg/mL and oxytetracycline 10 µg/mL.

2. Design and assembly of artificial gene clusters

2.1 Design of artificial gene clusters

Biosynthetic gene cluster (BGC) sequences for the production of myxochromides in M. xanthus were designed based on the native BGCs listed in Table S1.³ During the design and *de novo* synthesis, the BGCs were separated into seven fragments - promoter, mchA', 3mchA-5mchB linker, mchB', 3mchB-5mchC linker, mchC' and 3mchC-mchD-terminator. To facilitate subcloning and assembly, unique restriction sites were introduced into each fragment (Table S2). To allow for versatile engineering of the myxochromide PKS/NRPS megasynthetase, splitter elements (SE) were introduced between each catalytic domain-encoding fragment (except mchC_B') of the biosynthesis genes mchA-C (Table S3). SEs are composed of a type II endonuclease restriction enzyme recognition site (R-site) flanked by type IIS endonuclease recognition sequences (AarI or BsaI) that are extended with 5 bp (for BsaI) or 8 bp (for AarI) sequences to include their variable R-site (Fig. S1). The type II endonuclease R-sites are unique in each synthetic gene construct and enable the exchange, deletion or insertion of domain and module fragments via conventional restriction/ligation methods. The variable 4 bp AarI or BsaI R-sites are designed to be unique for the domain-linker fragments along the entire BGC sequence, and thus can be used as unique fusion sites for the directed reassembly of the mchA'-C' genes after the "desplitting" process (see Fig. 2). Sequences of the designed SEs and the position at which they were introduced into the respective mch gene are shown in Table S2. Recognition sites of endonucleases selected for the constructional design (e.g. including the design of SEs, fragment subcloning and assembly, and synthetic vectors), in total 19 different R-sites (see Table S2), were eliminated from the BGC sequences by silent point mutations. DNA synthesis was commissioned by ATG:biosynthetics GmbH (Merzhausen, Germany). Since DNA synthesis is restricted by the length of a gene, the large genes mchA, mchB and mchC were split into seven synthetic fragments (mchA_fragA, mchA_fragB, mchB_fragA, mchB_fragB, mchC_fragA, mchC_fragB and $mchC_fragC$).

Producer strain	Strain abbrev.	Cluster	GenBank Accession [*]
Myxococcus xanthus DK1622	Mx1	A-type	KX622595
Myxococcus sp. 171	M1	B-type	KX622591
Myxococcus virescens ST200611	Mv1	C-type	KX622594
Stigmatella erecta Pde77	Se1	D-subtype 1	KX622602
Stigmatella aurantiaca DW4/3-1	Sa1	S-type	KX622599

Table S1: Myxochromide biosynthetic gene clusters subjected to the gene design process in this study.

*, annotated cluster files were additionally deposited in the MiBIG database.

Fig. S1 Design of splitter elements (SEs) for *mch* gene (cluster) assembly and engineering. SEs were inserted between PKS/NRPS domain encoding fragments (illustrated as grey boxes), except for the ER-CP linker region of *mchA*. They contain two recognition sites for a type IIS endonuclease (*AarI* or *BsaI*; highlighted in red) with variable R-sites representing the fusion sites for directed religation of the domain fragments after the "desplitting" process. Therefore, the 4 bp type IIS R-sites/fusion sites (highlighted in blue) are designed to be unique between different SEs and identical within each SE (see Table S3). Additionally, SEs habour a palindromic 6-8 bp R-site for a type II endocnuclease (shown in black) that is unique for SEs of a particular gene and enables engineering and assembly procedures via conventional restriction/ligation methods on "gene level". A: SE based on the type IIS restriction enzyme *AarI* (32-34 bp in size). B: SE based on the type IIS restriction enzyme *BsaI* (26-28 bp in size).

Table S2 Restriction enzyme sites used for pathway assembly and engineering.

Restriction enzyme	Recognition sequence	Function
AarI	CACCTGC	Type IIS endonuclease R-site
BsaI	GGTCTC	Type IIS endonuclease R-site
AgeI	ACCGGT	R _{C14}
BsiWI	CGTACG	R _{A1}
MluI	ACGCGT	R_{B1}, R_{C15}
MreI	CGCCGGCG	R_{A6}, R_{C17}
NotI	GCGGCCGC	R_{B8}, R_{C16}
SphI	GCATGC	R _{C1}
AsiSI (SfaAI)	GCGATCGC	R_{A3}, R_{B3}, R_{C3}
AflII (BspTI)	CTTAAG	R_{A5}, R_{B6}, R_{C7}
AseI (VspI)	ATTAAT	R _{C9}
AvrII (XmaJI)	CCTAGG	R_{B7}, R_{C11}
BamHI	GGATCC	R_{C10}
EcoRI	GAATTC	R _{C4}
HindIII	AAGCTT	R _{C12}
KpnI	GGTACC	R _L
MfeI (MunI)	CAATTG	R _{C6}
NdeI	CATATG	R_{A4}, R_{B2}, R_{C5}
NheI	GCTAGC	R _{C13}
PvuI	CGATCG	R _R
SpeI (BcuI)	ACTAGT	R_{A2}, R_{B5}, R_{C2}
XbaI	TCTAGA	R_{A6} , R_{B4} , R_{C8}
PacI	TTAATTAA	Vector backbone modification
PmeI (MssI)	GTTTAAAC	Vector backbone modification
SwaI (SmiI)	ATTTAAAT	Vector backbone modification
DraI	TTTAAA	Destruction of cloning vector backbone

*, to allow for the assembly and interchangeability of *mch* cluster parts, the recognition sequences of 6 type II restriction enzymes (highlighted in red) were introduced into the coding sequence of *mch* genes; the recognition sequences of other 19 restriction enzymes were eliminated from *mch* genes; according to the assembly strategy depicted in Fig. 2, the functions of the restriction enzymes are shown.

Table S3 Design of SEs between catalytic domain encoding regions and terminal regions of mchA'/B'/C' fragments.

Sequence of SEs and terminal regions	Restriction site and position ^b	Location in the gene (bp) ^c	
mchA (A-type cluster)			
5'-GGTCTCCGCAAGA <u>CGTACG</u> -KS	BsiWI (R _{A1})	191–194	

KS-CACCTGAGACCACTAGTGGTCTCCCACC-AT	$SpeI(R_{A2})$	1498–1501
AT-GGCAGGAGACC <u>GCGATCGC</u> GGTCTCTGGCA-DH	AsiSI (R _{A3})	2645-2648
DH-ACGGAGAGACC <u>CATATG</u> GGTCTCGACGG-ER	Ndel (R_{A4})	4295-4298
ER-CGTTCGAGACCCTTAAGGGTCTCTCGTT-KK/CP	$Afl\Pi$ (R _{A5})	5186-5189
KK/CP- $\underline{CGCCGGCG}N_{27}ATCGCGAGACC-3$	$Mrel(R_{A6})$	6361-6364
<i>menb</i> (A-, D- or 5-type	$M_{\rm HeI}({\rm P})$	222 225
$\begin{array}{c} \mathbf{S} \cdot \mathbf{O} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} G$	$MdaI(\mathbf{R}_{B1})$	232-233
A -CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	$A si SI (R_{-1})$	$4282 - 4285$ (in Λ type)
	715751 (IXB3)	4312-4315 (in D / S-type),
CP1-AGCGAGAGACCTCTAGAGGTCTCGAGCG-C2	XbaI ($\mathbf{R}_{\mathbf{P}4}$)	4604-4607 (in A-type).
	110 W1 (14 <u>B</u> 4)	4634-4637 (in D / S-type)
C2-CAGCCGAGACCACTAGTGGTCTCGCAGC-A2	$SpeI(R_{B5})$	5826–5829 (in A-type),
	1 (155)	5856–5859 (in D / S-type)
A2-GAAGTGAGACCCTTAAGGGTCTCCGAAG-CP2	AflII (R _{B6})	7437–7440 (in A-type),
		7467–7470 (in D / S-type)
CP ₂ -GCAGGGAGACC <u>CCTAGG</u> GGTCTCTGCAG-E ₂	AvrII (R _{B7})	7739–7742 (in A-type),
		7769–7772 (in D / S-type)
E ₂ - <u>GCGGCCGCN₂₀TCCCCGAGACC-3</u> '	NotI (R _{B8})	9080–9083 (in A-type),
		9107–9110 (in D / S-type)
mchC (A-, D- or S-type	e cluster)	
5'-GGTCTCTAGCACG <u>GCATGC</u> -C3	$SphI(R_{C1})$	50-53
C ₃ -GAGCCGAGACC <u>ACTAGT</u> GGTCTCGGAGC-A ₃	Spel (R_{C2})	1240–1243
$\mathbf{A}_3 \textbf{-} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} G$	AsiSI (R_{C3})	2853-2856 (in A-type),
		2880-2883 (in D-type),
$CP_{-CC} \land CTC \land C \land CCC \land \land TTC CCTC CCC \land C_{-C}$	$E_{co} \mathbf{PI} (\mathbf{P}_{-1})$	2802-2803 (III S-type) 3147-3150 (in A type)
CI 3-OUACIONOACC <u>ONATIC</u> OUICICCOUAC-C4	ECORT(RC4)	3156_{-3159} (in D-type),
		3156–3159 (in S-type),
C ₄ -ACACCGAGACCCATATGGGTCTCTACAC-A ₄	$NdeI(R_{C5})$	4325-4328 (in A-type).
		4334–4337 (in D-type),
		4337–4340 (in S-type)
A ₄ -CCGCAGAGACCCAATTGGGTCTCTCCGC-CP ₄	MfeI (R _{C6})	5960–5963 (in A-type),
		5969–5972 (in D-type),
		5972–5975 (in S-type)
CP ₄ -CGAGCGAGACC <u>CTTAAG</u> GGTCTCTCGAG-C ₅	AflII (R _{C7})	6270–6273 (in A-type),
		6276–6279 (in D-type),
		6279–6282 (in S-type)
C ₅ -CGGACGAGACC <u>TCTAGA</u> GGTCTCTCGGA-A ₅	Xbal (R_{C8})	7469–7472 (in A-type),
		74/5 - 74/8 (in D-type),
	$A = I(\mathbf{D})$	$\frac{14}{8} - \frac{1481}{481}$ (in S-type)
A5-IUUAUUAUAUUAUAU	Asel (R _{C9})	9080 - 9080 (III A-type), 9080 - 9002 (in D type)
		9092-9092 (in D-type), 9092-9095 (in S-type)
CP=-CGCCAGAGACCGGATCCGGTCTCACGCC-C	BamHI (R _{C10})	9400–9403 (in A-type).
		9406–9409 (in D-type).
		9409–9412 (in S-type)
C6-CGACCGAGACCCCTAGGGGTCTCACGAC-A6	AvrII (R _{C11})	10605–10608 (in A-type),
		10611–10614 (in D-type),
		10614–10617 (in S-type)
A ₆ -GCGATGAGACCAAGCTTGGTCTCCGCGA-CP ₆	<i>Hind</i> III (R _{C12})	12235-12238 (in A-type),
		12241–12244 (in D-type),
		12244–12247 (in S-type)
CP6-CGCTGGAGACCGCTAGCGGTCTCTCGCT-TE	Nhel (R _{C13})	12527–12530 (in A-type),
		12533–12536 (in D-type),
TE ACCCCTNI COTCOCACACC 2	A gal (D)	1200–12039 (in S-type)
IE- <u>AUUUI</u> N ₁₉ UUIUUAUAUU-J	Agel (κ_{C14})	1522/-15250 (in A-type), 12220 12242 (in D type)
		13239 - 13242 (III D-type), 13242 - 13245 (in S type)
mchC (R-type clus	ter)	15242-15245 (III S-type)

5'-GGTCTCTAGCACG <u>GCATGC</u> -C ₃	SphI (R _{C1})	50–53		
C ₃ -GAGCCGAGACCACTAGTGGTCTCGGAGC-A ₃	$SpeI(R_{C2})$	1240–1243		
A ₃ -GGAGCGAGACCGCGATCGCGGTCTCGGGAG-CP ₃	AsiSI (R _{C3})	2853–2856		
CP ₃ -GGACTGAGACCGAATTCGGTCTCCGGAC-C ₄	EcoRI (R _{C4})	3147-3150		
C ₄ -ACCTCGAGACCACGCGTGGTCTCGACCT-A ₄	MluI (R _{C15})	4414–4417		
A ₄ -TCGCCGAGACCGCGGCCGCGGGTCTCGTCGC-CP ₄	NotI (R _{C16})	5971-5974		
CP ₄ -TCTCCGAGACC <u>CGCCGGCG</u> GGTCTCGTCTC-C ₅	MreI (R _{C17})	6239–6242		
C5-ACACCGAGACCCATATGGGTCTCTACAC-A5	NdeI (R _{C5})	7439–7442		
A ₅ -CCGCAGAGACCCAATTGGGTCTCTCCGC-CP ₅	MfeI (R _{C6})	9074–9077		
CP ₅ -CGAGCGAGACCCTTAAGGGTCTCTCGAG-C ₆	AflII (R _{C7})	9381–9384		
C6-CGGACGAGACCTCTAGAGGTCTCTCGGA-A6	XbaI (R_{C8})	10580-10583		
A ₆ -TGGAGGAGACC <u>ATTAAT</u> GGTCTCATGGA-CP ₆	AseI (R _{C9})	12194–12197		
CP ₆ -CGCCAGAGACC <u>GGATCC</u> GGTCTCACGCC-C ₇	BamHI (R _{C10})	12511–12514		
C7-CGACCGAGACCCCTAGGGGTCTCACGAC-A7	AvrII (R _{C11})	13716–13719		
A7-GCGATGAGACCAAGCTTGGTCTCCGCGA-CP7	HindIII (R _{C12})	15346–15349		
CP7-CGCTGGAGACCGCTAGCGGTCTCTCGCT-TE	NheI (R _{C13})	15638–15641		
TE- <u>ACCGGTN19GCTCCGAGACC-3'</u>	AgeI (R_{C14})	16335–16338		
mchC (C-type cluster)				
5'-GGTCTCTAGCACG <u>GCATGC</u> -C ₃	$SphI(R_{C1})$	50–53		
C ₃ -GAGCCGAGACCACTAGTGGTCTCGGAGC-A ₃	SpeI (R _{C2})	1240–1243		
A ₃ -GGAGCGAGACCGCGATCGCGGTCTCGGGAG-CP ₃	AsiSI (R _{C3})	2853-2856		
CP ₃ -GGACTGAGACCGAATTCGGTCTCCGGAC-C ₄	$EcoRI(R_{C4})$	3147-3150		
C ₄ -ACACCGAGACCCATATGGGTCTCTACAC-A ₄	NdeI (R _{C5})	4325–4328		
A ₄ -CCGCAGAGACC <u>CAATTG</u> GGTCTCTCCGC-T ₄	MfeI (R _{C6})	5960–5963		
CP ₄ -CGAGCGAGACC <u>CTTAAG</u> GGTCTCTCGAG-C ₅	AflII (R _{C7})	6270–6273		
C5-CGGACGAGACCTCTAGAGGTCTCTCGGA-A6	XbaI (R _{C8})	7469–7472		
A ₆ -GCGATGAGACC <u>AAGCTTGGTCTC</u> CGCGA-CP ₆	HindIII (R _{C12})	9100–9103		
CP ₆ -CGCTGGAGACCGCTAGCGGTCTCTCGCT-C ₆	NheI (R _{C13})	9392–9395		
TE- <u>ACCGGTN₁₉GCTCCGAGACC-3</u> '	AgeI (R _{C14})	10098–10101		

a, SEs were introduced between each domain fragment of the *mch* genes (except between the KR and CP domain of *mchA*). For the *mchA* gene, only the PKS coding sequence from the A-type producer (Mx1) was subjected to the sequence design. For the *mchB* gene, the NRPS sequences from the A-, D- and S-type producers (Mx1, Se1 and Sa1) were subjected to the sequence design. For the *mchC* gene, the NRPS sequences from the A-, B-, C-, D- and S-type producers (Mx1, M1, Mv1, Se1 and Sa1) were subjected to the designed. *BsaI* recognition sequences are labeled in red, the corresponding restriction sites (= fusion sites) are labeled in blue, the spacer nucleotide which is skipped by the type IIS restriction enzyme is shown in grey; type II enzyme recognition sites are underlined;

b, positions of the type II endonuclease recognition sites (underlined) corresponding to Fig. 2 in the main text;

c, calculation of location of fusion sites is based on the *mch* clusters deposited in GeneBank (see Table S1).

Table S4 Modified nucleotides/amino acids in the SEs and the terminal regions listed in Table S3 during the constructional design.^{*}

Position of modified sequences	Modified nucleotides **	Modified amino acids ***		
A-type cluster				
SE between CP ₃ and C ₄ in <i>mchC</i> (3147–3150 bp), <i>BsaI</i> fusion site	GGG GAC ACG	G D T		
	(GGA GAC ACG)	(GDT)		
SE between CP ₅ and C ₆ in <i>mchC</i> (9400–9403 bp), <i>BsaI</i> fusion site	GTC CGC CTG	VRL		
	(GTC CGA CTG)	(V R L)		
3'-term in <i>mchC</i> (13202–13207 bp), <i>AgeI</i> (R _{C14}) site	G <u>AC CGG T</u> GT	D R C		
	(GAC CG <mark>C A</mark> GT)	(D R <mark>S</mark>)		
B-type cluster				
SE between CP ₃ and C ₄ in <i>mchC</i> (3147–3150 bp), <i>BsaI</i> fusion site	GGG GAC ACG	G D T		
	(GGA GAC ACG)	(G D T)		
SE between CP ₅ and C ₆ in <i>mchC</i> (9381–9384 bp), <i>BsaI</i> fusion site	CCC GAG GGC	P E G		
	(CCC GAA GGC)	(P E G)		
SE between CP ₆ and C ₇ in <i>mchC</i> (12511–12514 bp), <i>BsaI</i> fusion site	GTC CGC CTG	VRL		
	(GTC CG <mark>G T</mark> TG)	(V R L)		
3'-term in <i>mchC</i> (16310–16315 bp), <i>AgeI</i> (R _{C14}) site	G <u>AC CGG T</u> GC	D R C		
	(GAC CGT GGC)	(D R <mark>G</mark>)		
C-type cluster				

SE between CP ₄ and C ₅ in <i>mchC</i> (6270–6273 bp), <i>BsaI</i> fusion site	CCC GAG GGC	P E G
	(CCG GAG GGC)	(P E G)
SE between A_6 and CP_6 in <i>mchC</i> (9100–9103 bp), <i>BsaI</i> fusion site	GGC GCG ATG	GAM
	(GGC GCG CTG)	(G A L)
3'-term in mchC (10073–10078 bp), $AgeI(R_{C14})$ site	GAC CGG TGC	DRC
	(GAC CGG AGC)	(D R <mark>S</mark>)
D-type cluser		
5'-term in mchB (254–259 bp), $MluI$ (R_{B1}) site	C <u>AC GCG T</u> GC	H A C
-	(CAC CCG AGC)	(H <mark>P S</mark>)
SE between A ₁ and CP ₁ in <i>mchB</i> (4312–4315 bp), <i>BsaI</i> fusion site	CGG CGC GCC	RRA
	(CGG CGA GCC)	(R R A)
SE between CP ₂ and E ₂ in <i>mchB</i> (7769–7772 bp), <i>BsaI</i> fusion site	ACG GGC AGT	TGS
	(ACG GGG AGT)	(T G S)
3'-term in <i>mchB</i> (9079–9086 bp), <i>Not</i> I (R _{B8}) site	<u>GCG GCC GC</u> G	AAA
-	(GCC GCG ACG)	(A A T)
SE between A ₃ and CP ₃ in <i>mchC</i> (2880–2883 bp), <i>BsaI</i> fusion site	ACG GAG CAC	ТЕН
	(ACA GAG CAC)	(T E H)
SE between CP ₃ and C ₄ in mchC (3156–3159 bp), BsaI fusion site	GG <mark>G GAC</mark> GGG	G D G
-	(GGT GAC GGG)	(G D G)
SE between CP_4 and C_5 in <i>mchC</i> (6276–6279 bp), <i>BsaI</i> fusion site	CCC GAG AGC	PES
	(CCG GAG AGC)	(P E S)
SE between CP_5 and C_6 in <i>mchC</i> (9406–9409 bp), <i>BsaI</i> fusion site	GTC CGC CTG	VRL
	(GTC CGG CTG)	(V R L)
SE between A_6 and CP_6 in <i>mchC</i> (12241–12244 bp), <i>BsaI</i> fusion site	GGG GCG ATG	G T M
	(GGG ACG ATG)	(G <mark>A</mark> M)
SE between CP_6 and TE in <i>mchC</i> (12533–12536 bp), <i>BsaI</i> fusion site	CCG CTC ACG	P L T
	(CCT CTC ACG)	(P L T)
3'-term in <i>mchC</i> (13214–13219 bp), <i>AgeI</i> (R _{C14}) site	G <u>AC CGG T</u> AT	D R Y
	(GAC AGG GAT)	(D R D)
3'-term in mchC (13239–13242 bp), BsaI fusion site	CCT GAG CTC	PEL
	(CCT GAG CTT)	(P E L)
S-type cluster		
5'-term in mchB (254–259 bp), $MluI$ (R_{B1}) site	C <u>AC GCG T</u> GC	HAC
	(CAC CCG AGC)	(H P S)
3'-term in <i>mchB</i> (9079–9086 bp), <i>NotI</i> (R _{B8}) site	<u>GCG GCC GC</u> A	AAA
	(GCA GCC GCA)	(A A A)
SE between CP_4 and C_5 in <i>mchC</i> (6279–6282 bp), <i>BsaI</i> fusion site	CCC GAG AGC	PES
	(CCG GAG AGC)	(P E S)
SE between CP ₅ and C ₆ in <i>mchC</i> (9409–9412 bp), <i>BsaI</i> fusion site	GTC CGC CTG	VRL
	(GTC CG <mark>G</mark> CTG)	(V R L)
3'-term in <i>mchC</i> (13217–13222 bp), <i>AgeI</i> (R _{C14}) site	G <u>AC CGG T</u> AT	D R Y
	(GAC AGG GAC)	(D R D)

*, comparing to the BGCs in the native producers, only the SEs and the terminal regions containing mutated recognition/fusion sites in Table S3 are listed, while the elements with unmodified sites are not shown.

** fusion sites after *Bsa*I digestion are in shown in blue, type II restriction sites introduced for conventional cloning are underlined. The respective nucleotide and amino acid sequences in the native BGCs are shown in brackets, mutated nucleotides and amino acids are highlighted in red.

2.2 Design of the cloning vector pSynbio1 and the expression vector pSynbio2

For the assembly of large biosynthesis gene fragments and for 'desplitting' processes, the cloning vector pSynbio1, derived from the pSV vector (standard vector of ATG:biosynthetics GmbH), was designed and manufactured by DNA synthesis. The high-copy vector backbone pSynbio1 is composed of a minimal set of genetic elements required for the amplification and selection in *E. coli*. These include the *oriV* origin of replication from the broad-range RK2 plasmid,⁴ the *trfA* gene, whose gene product binds to and activates *oriV*,⁵ and an ampicillin resistance gene (*ampR*). Recognition sequences for *KpnI* and *PmeI* were introduced into the vector backbone to allow for subcloning of synthetic fragments, and unique R-sites *PacI*, *SwaI* and *PmeI* were introduced into the pSynbio2 for modification of the vector backbone. To meet the constructional requirements, the recognition sequences of endonucleases required for cloning and engineering of the synthetic cluster fragments/gene constructs (Table S2) were calculated out of the vector sequence. To deliver and functionally

express the synthetic *mch* pathways in *M. xanthus* DK1622 Δ *mchA-tet*, the expression vector pSynbio2 was designed and manufactured by DNA synthesis (Fig. S2). The minimal pSynbio2 vector backbone includes a p15A low-copy origin of replication to ensure stability of the large *mch* cluster constructs during propagation in *E.coli*, an antibiotic resistance gene (kanamycin, *kanR*) suitable for selection of *M. xanthus* DK1622 Δ *mchA-tet* transformants, an origin of transfer (*oriT*) to allow for conjugation as an alternative strategy to transformation via electroporation, and a multiple cloning site (MCS) which is composed of all the R-sites needed for pathway assembly and engineering (Table S2). In addition, unique restriction sites (*PacI*, *PmeI*, *SwaI*) were introduced between the genetic elements to allow for the exchange or addition of vector backbone elements by conventional cloning techniques, *e.g.* to investigate other chromosomal integration sites.

Fig. S2 Vector maps of pSynbio1 and pSynbio2.

2.3 Generation of mch cluster fragments via DNA synthesis

Artificial *mch* cluster fragments, which were designed and synthesized in this study, are shown in Table S5. Cluster fragments were delivered either in the pSV (standard vector of ATG:biosynthetics GmbH) vector or in the pUC57 vector backbone harboring an ampicillin resistance gene.

Construct Name	Description	Size [bp]	Flanking restriction sites		
A-type <i>mch</i> cluster fragments from <i>M. xanthus</i> DK1622 ¹⁾					
pSV-P-5mchA_Ab	Promotor fragment (6607-7208 nt)	3539	KpnI-BsiWI/PmeI		
pSV-3mchA-5mchB_Ab	Linker region between <i>mchA</i> and <i>mchB</i> (13332-13720 nt)	3326	KpnI/MreI-MluI/PmeI		
pSV-3mchB-5mchC_Ab	Linker region between <i>mchB</i> and <i>mchC</i> (22513-22701)	3126	KpnI/NotI-SphI/PmeI		
pSV-T-3mchC_Ab	Terminator fragment (35867-38440 nt)	5547	KpnI/AgeI-PvuI/PmeI		
pSV-MchA_A_fragA	mchA gene fragment (7197-11354 nt)	7116	KpnI/BsiWI-NdeI/PmeI		
pSV-MchA_A_fragA_dcm	mchA gene fragment (7197-8507 nt)	4260	KpnI/BsiWI-SpeI		
pSV-MchA_A_fragB	mchA gene fragment (11301-13394 nt)	5063	KpnI/NdeI-MreI/PmeI		
pSV-MchB_A_fragA	<i>mchB</i> gene fragment (13693-19364 nt)	8628	KpnI/MluI-SpeI/PmeI		
pSV-MchB_A_fragA_dcm	mchB gene fragment (13693-14768 nt)	4026	KpnI/MluI-NdeI		
pSV-MchB_A_fragB	<i>mchB</i> gene fragment (19287-22592 nt)	6275	KpnI/SpeI-NotI/PmeI		
pSV-MchC_A_fragA	<i>mchC</i> gene fragment (22690-27042 nt)	7295	KpnI/SphI-NdeI/PmeI		
pSV-MchC_A_fragA_dcm	<i>mchC</i> gene fragment (22690-23883 nt)	4138	KpnI/SphI-SpeI		
pSV-MchC_A_fragB	<i>mchC</i> gene fragment (26965-31798 nt)	7797	KpnI/NdeI-AseI/PmeI		
pSV-MchC_A_fragC	<i>mchC</i> gene fragment (31723-35966 nt)	7207	KpnI/AseI-AgeI/PmeI		
pSV-MchC_A_fragC_dcm	<i>mchC</i> gene fragment (31723-32043 nt)	3264	AseI-BamHI		
pUC57-CP1_A_inact1	Carrier protein fragment (17743-18068 nt)	3078	KpnI/AsiSI-XbaI/PmeI		
pUC57-CP2_A_inact1	Carrier protein fragment (20898-21203 nt)	3056	KpnI/AflII-AvrII/PmeI		

Table S5 Constructs generated via DNA synthesis.

pUC57-CP3_A_inact1	Carrier protein fragment	3050	KpnI/AsiSI-EcoRI/PmeI
pSV-CP4_A_inact1	Carrier protein fragment	3079	KpnI/MfeI-AflII/PmeI
pSV-CP4_A_inact2	Carrier protein fragment	3079	KpnI/MfeI-AflII/PmeI
pUC57-CP5_A_inact1	Carrier protein fragment	3071	KpnI/AseI-BamHI/PmeI
pUC57-CP6_A_inact1	Carrier protein fragment (34876-35171 nt)	3046	KpnI/HindIII-NheI/PmeI
pUC57-MchB A delM1	mchB gene fragment (14803-19299 nt)	5413	MluI-AflII
pUC57-MchB A delM2	<i>mchB</i> gene fragment (19414-21210 nt)	5382	XbaI-NotI
pUC57-MchC A delM3	<i>mchC</i> gene fragment (23861-26974 nt)	5517	SphI-MfeI
pUC57-MchC A delM4	<i>mchC</i> gene fragment (27015-30155 nt)	5535	EcoRI-AseI
pUC57-MchC A delM5	mchC gene fragment (30111-33245 nt)	5570	AflII-HindIII
pUC57-MchC A delM6	mchC gene fragment (33372-35228 nt)	4674	BamHI-AgeI
pUC57-MchB A duplM1	mchB gene fragment (15010-19509 nt)	8459	XbaI-SpeI
pUC57-MchB A dupIM2	mchB gene fragment (18088-21213 nt)	6168	AfIII-AvrII
pUC57-MchC A dupIM2	mchC gene fragment (24057-27186 nt)	7044	FcoRI-NdeI
pUC57 MchC A duplM4	mchC gene fragment (27183-30330 nt)	7086	AfIII YhaI
pUC57-MehC_A_dupIM4	mehC gene fragment (20224 22455 nt)	7030	
pUC57-MchC_A_dupIM5	menc gene fragment $(30324-33433 \text{ III})$	/0/1 6101	HindIII Mhol
pUC57-MCIIC_A_dupINI6	ment gene fragment $(52007-55158 \text{ m})$	0191	
pUC57-P-5mcnA_opt_Ab	Promotor fragment (6607-7208 nt)	3332	Kpn1-Bstw1/Pme1
pUC57-3mcnA-	Linker region between <i>mchA</i> and <i>mchB</i>	3119	Kpn1/Mre1-Miu1/Pme1
SmchB_opt_Ab	(13332-13/20 nt)	2010	
pUC57-3mchB-	Linker region between <i>mchB</i> and <i>mchC</i>	2919	Kpnl/Notl-Sphl/Pmel
5mchC_opt_Ab	(22513-22701 nt)		
pUC57-T-3mchC_opt_Ab	Terminator fragment (35842-38439 nt)	5328	KpnI/AgeI-PvuI/PmeI
pUC57-MchA_A_opt	mchA gene fragment (7197-13370 nt)	9169	KpnI/BsiWI-MreI/PmeI
pUC57-	mchB gene fragment (13693-19290 nt)	8335	KpnI/MluI-SpeI/PmeI
MchB_A_opt_fragA			
pUC57-MchB_A_opt_fragB	mchB gene fragment (19287-22544 nt)	6003	KpnI/SpeI-NotI/PmeI
pUC57-	<i>mchC</i> gene fragment (22690-28913 nt)	8961	KpnI/SphI-AflII/PmeI
MchC_A_opt_fragA			
pUC57-MchC_A_opt_fragB	<i>mchC</i> gene fragment (28910-35870 nt)	9706	KpnI/AflII-AgeI/PmeI
B-ty	pe mch cluster fragments from Myxoco	<i>ccus</i> sp. 171 ²	2)
pSV-3mchB-5mchC_Bb	Linker region between <i>mchB</i> and <i>mchC</i>	3126	KpnI/NotI-SphI/PmeI
	(22379-22578 nt)		
pSV-T-3mchC_Bb	Terminator fragment (38817-41402 nt)	5547	KpnI/AgeI-PvuI/PmeI
pSV-MchC_B_fragA_woSE	<i>mchC</i> gene fragment (22557-26925 nt)	7760	KpnI/SphI-MluI/PmeI
pSV-MchC_B_fragB_woSE	mchC gene fragment (26921-31584 nt)	8061	KpnI/MluI-MfeI/PmeI
pSV-MchC_B_fragC_woSE	mchC gene fragment (31581-34704 nt)	6521	KpnI/MfeI-AseI/PmeI
pSV-MchC B fragC	mchC gene fragment (31581-34704 nt)	7807	KpnI/MfeI-AseI/PmeI
pSV-MchC B fragD woSE	<i>mchC</i> gene fragment (34701-38845 nt)	7542	KpnI/AseI-AgeI/PmeI
C-typ	e mch cluster fragments from M. viresco	ens ST20061	.1 ³⁾
pSV-3mchB-5mchC_Cb	Linker region between <i>mchB</i> and <i>mchC</i> (23091-23279 nt)	3126	KpnI/NotI-SphI/PmeI
pSV-T-3mchC Cb	Terminator fragment (33291-35906 nt)	5525	KpnI/AgeI-PvuI/PmeI
pSV-MchC C fragA	mchC gene fragment (50-4328 nt)	7311	KpnI/SphI-NdeI/PmeI
pSV-MchC C fragA dcm	mchC gene fragment (23268-24461 nt)	4142	KpnI/SphI-SpeI
nSV-MchC C fragB	mchC gene fragment (4325-10101 nt)	8860	KnnI/NdeI-AgeI/PmeI
	-type mch cluster fragments from S ere	ecta Pde77 ⁴⁾	Rentingent met
pSV-3mchA-5mchB Db	Linker region between $mchA$ and $mchB$	3760	KpnI/MreI-MluI/PmeI
ps v sinein v sinein _200	(11825-12206 nt)	5700	
pSV-3mchB-5mchC_Db	Linker region between <i>mchB</i> and <i>mchC</i> (21027-21217 nt)	3568	KpnI/NotI-SphI/PmeI
nSV-T-3mchC Db	Terminator fragment (34376-35036 nt)	5550	KnnI/AgeI_PvuI/PmeI
$pSV-MchR$ D from Λ	mchR gene fragment (12178 17812 nt)	8660	KnnI/M/uL_SnoI/Dmol
nSV-MchR D frogP	mchB gene fragment (1720/ 21052 mt)	6776	KnnI/SnoI NotI/DwoI
pSV MahC D from A	mchC gene fragment (21207 25569 mt)	7310	KpnI/SpbI NdoI/Pml
Po v - wienc_D_nagA	mene gene magnient $(21207-23300 \text{ III})$	1317	npmisphi-maet/rmet

pSV-MchC_D_fragB	<i>mchC</i> gene fragment (25492-30322 nt)	7793	KpnI/NdeI-VspI/PmeI
pSV-MchC_D_fragC	<i>mchC</i> gene fragment (30245-34493 nt)	7213	KpnI/VspI-AgeI/PmeI
S-typ	be mch cluster fragments from S. aurant	iaca DW4/3-	-1 ⁵⁾
pSV-3mchB-5mchC_Sb	Linker region between <i>mchB</i> and <i>mchC</i>	3127	KpnI/NotI-SphI/PmeI
	(22680-22869 nt)		
pSV-T-3mchC_Sb	Terminator fragment (36025-36702 nt)	5544	KpnI/AgeI-PvuI/PmeI
pSV-MchA_S_fragA	mchA gene fragment (7314-11450 nt)	7146	KpnI/BsiWI-NdeI/PmeI
pSV-MchA_S_fragB	mchA gene fragment (11446-13510 nt)	5051	KpnI/NdeI-MreI/PmeI
pSV-MchB_S_fragA	<i>mchB</i> gene fragment (13833-19510 nt)	8650	KpnI/MluI-SpeI/PmeI
pSV-MchB_S_fragA_dcm	mchB gene fragment (13833-14908 nt)	4020	KpnI-NdeI
pSV-MchB_S_fragB	<i>mchB</i> gene fragment (19456-22711 nt)	6272	KpnI/SpeI/NotI/PmeI
pSV-MchC_S_fragA	<i>mchC</i> gene fragment (22858-27148 nt)	7329	KpnI/SphI/NdeI/PmeI
pSV-MchC_S_fragA_dcm	<i>mchC</i> gene fragment (22858-24051 nt)	4138	KpnI/SpeI
pSV-MchC_S_fragB	<i>mchC</i> gene fragment (27145-31903 nt)	7800	KpnI/NdeI/VspI/PmeI
pSV-MchC_S_fragC	<i>mchC</i> gene fragment (31900-36101 nt)	7211	KpnI/VspI/AgeI/PmeI
pSV-MchC_S_fragC_dcm	<i>mchC</i> gene fragment (31900-32220 nt)	3264	AseI/BamHI
pSV-CP4_S_react	Carrier protein fragment (28780-29090	3076	KpnI/MfeI-AflII/PmeI
	nt)		
A-t	ype mch cluster fragments from M. xant	hus DK1622	2 ⁶⁾
pSV-P-5mchA_A_AarI	Promotor fragment (6603-7206 nt)	4003	KpnI-BsiWI/PmeI
pSV-3mchA-	Linker region between <i>mchA</i> and <i>mchB</i>	3783	KpnI/MreI-MluI/PmeI
5mchB_A_AarI	(13335-13718 nt)		
pSV-3mchA-	Linker region between <i>mchB</i> and <i>mchC</i>	3582	KpnI/NotI-SphI/PmeI
5mchB_A_AarI	(22517-22699 nt)		
pSV-T-3mchC_A_AarI	$T_{a} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{$		
	Terminator fragment (55842-58445 nt)	6001	KpnI/AgeI-PvuI/PmeI
pSV-MchA_A_AarI_SE	mchA gene fragment (7203-13468 nt)	6001 9665	KpnI/AgeI-PvuI/PmeI KpnI/BsiWI-MreI/PmeI
pSV-MchA_A_AarI_SE pSV-MchB_A_AarI_SE	mchA gene fragment (35842-38445 nt) mchB gene fragment (7203-13468 nt) mchB gene fragment (13715-22746 nt)	6001 9665 12431	KpnI/AgeI-PvuI/PmeI KpnI/BsiWI-MreI/PmeI KpnI/MluI-NotI/PmeI
pSV-MchA_A_AarI_SE pSV-MchB_A_AarI_SE pSV-	mchA gene fragment (35842-38443 nt) mchB gene fragment (7203-13468 nt) mchB gene fragment (13715-22746 nt) mchC gene fragment (22697-27083 nt)	6001 9665 12431 9404	KpnI/AgeI-PvuI/PmeI KpnI/BsiWI-MreI/PmeI KpnI/MluI-NotI/PmeI KpnI/SphI-BamHI/MluI
pSV-MchA_A_AarI_SE pSV-MchB_A_AarI_SE pSV- MchC_A_AarI_fragABCE	<i>mchA</i> gene fragment (35842-38445 nt) <i>mchB</i> gene fragment (7203-13468 nt) <i>mchB</i> gene fragment (13715-22746 nt) <i>mchC</i> gene fragment (22697-27083 nt)	6001 9665 12431 9404	KpnI/AgeI-PvuI/PmeI KpnI/BsiWI-MreI/PmeI KpnI/MluI-NotI/PmeI KpnI/SphI-BamHI/MluI
pSV-MchA_A_AarI_SE pSV-MchB_A_AarI_SE pSV- MchC_A_AarI_fragABCE pSV-MchC_A_AarI_fragD	mchA gene fragment (35842-38443 nt) $mchB gene fragment (7203-13468 nt)$ $mchC gene fragment (13715-22746 nt)$ $mchC gene fragment (22697-27083 nt)$ $mchC gene fragment (26971-30113 nt)$	6001 9665 12431 9404 6186	KpnI/AgeI-PvuI/PmeI KpnI/BsiWI-MreI/PmeI KpnI/MluI-NotI/PmeI KpnI/SphI-BamHI/MluI NdeI-XbaI
pSV-MchA_A_AarI_SE pSV-MchB_A_AarI_SE pSV- MchC_A_AarI_fragABCE pSV-MchC_A_AarI_fragD pSV-MchC_A_AarI_fragF	<i>mchA</i> gene fragment (35842-38443 nt) <i>mchA</i> gene fragment (7203-13468 nt) <i>mchB</i> gene fragment (13715-22746 nt) <i>mchC</i> gene fragment (22697-27083 nt) <i>mchC</i> gene fragment (26971-30113 nt) <i>mchC</i> gene fragment (32059-35845 nt)	6001 9665 12431 9404 6186 6863	KpnI/AgeI-PvuI/PmeI KpnI/BsiWI-MreI/PmeI KpnI/MluI-NotI/PmeI KpnI/SphI-BamHI/MluI NdeI-XbaI BamHI-MluI
pSV-MchA_A_AarI_SE pSV-MchB_A_AarI_SE pSV- MchC_A_AarI_fragABCE pSV-MchC_A_AarI_fragD pSV-MchC_A_AarI_fragF	<i>mchA</i> gene fragment (35842-38443 nt) <i>mchA</i> gene fragment (7203-13468 nt) <i>mchB</i> gene fragment (13715-22746 nt) <i>mchC</i> gene fragment (22697-27083 nt) <i>mchC</i> gene fragment (26971-30113 nt) <i>mchC</i> gene fragment (32059-35845 nt) Cloning and expression vectors	6001 9665 12431 9404 6186 6863	KpnI/AgeI-PvuI/PmeI KpnI/BsiWI-MreI/PmeI KpnI/MluI-NotI/PmeI KpnI/SphI-BamHI/MluI NdeI-XbaI BamHI-MluI
pSV-MchA_A_AarI_SE pSV-MchB_A_AarI_SE pSV- MchC_A_AarI_fragABCE pSV-MchC_A_AarI_fragD pSV-MchC_A_AarI_fragF	<i>mchA</i> gene fragment (35842-38443 nt) <i>mchA</i> gene fragment (7203-13468 nt) <i>mchB</i> gene fragment (13715-22746 nt) <i>mchC</i> gene fragment (22697-27083 nt) <i>mchC</i> gene fragment (26971-30113 nt) <i>mchC</i> gene fragment (32059-35845 nt) Cloning and expression vectors Cloning vector	6001 9665 12431 9404 6186 6863 \$ 3383	KpnI/AgeI-PvuI/PmeI KpnI/BsiWI-MreI/PmeI KpnI/MluI-NotI/PmeI KpnI/SphI-BamHI/MluI NdeI-XbaI BamHI-MluI
pSV-MchA_A_AarI_SE pSV-MchB_A_AarI_SE pSV- MchC_A_AarI_fragABCE pSV-MchC_A_AarI_fragD pSV-MchC_A_AarI_fragF pSynbio1_AarI pSynbio2_AarI	<i>mchA</i> gene fragment (35842-38443 nt) <i>mchA</i> gene fragment (7203-13468 nt) <i>mchB</i> gene fragment (13715-22746 nt) <i>mchC</i> gene fragment (22697-27083 nt) <i>mchC</i> gene fragment (26971-30113 nt) <i>mchC</i> gene fragment (32059-35845 nt) Cloning and expression vectors Cloning vectorExpression vector	6001 9665 12431 9404 6186 6863 s 3383 2700	KpnI/AgeI-PvuI/PmeI KpnI/BsiWI-MreI/PmeI KpnI/MluI-NotI/PmeI KpnI/SphI-BamHI/MluI NdeI-XbaI BamHI-MluI
pSV-MchA_A_AarI_SE pSV-MchB_A_AarI_SE pSV- MchC_A_AarI_fragABCE pSV-MchC_A_AarI_fragD pSV-MchC_A_AarI_fragF pSynbio1_AarI pSynbio2_AarI pSV-Amp_Synbio1mut	mchA gene fragment (35842-38443 nt) $mchA$ gene fragment (7203-13468 nt) $mchB$ gene fragment (13715-22746 nt) $mchC$ gene fragment (22697-27083 nt) $mchC$ gene fragment (26971-30113 nt) $mchC$ gene fragment (32059-35845 nt)Cloning and expression vectorsCloning vectorExpression vector $ampR$ gene fragment	6001 9665 12431 9404 6186 6863 s 3383 2700 3587	KpnI/AgeI-PvuI/PmeI KpnI/BsiWI-MreI/PmeI KpnI/MluI-NotI/PmeI KpnI/SphI-BamHI/MluI NdeI-XbaI BamHI-MluI
pSV-MchA_A_AarI_SE pSV-MchB_A_AarI_SE pSV- MchC_A_AarI_fragABCE pSV-MchC_A_AarI_fragD pSV-MchC_A_AarI_fragF pSynbio1_AarI pSynbio2_AarI pSV-Amp_Synbio1mut pSV-MCS_Synbio2	mchA gene fragment (35842-38443 nt) $mchA$ gene fragment (7203-13468 nt) $mchB$ gene fragment (13715-22746 nt) $mchC$ gene fragment (22697-27083 nt) $mchC$ gene fragment (26971-30113 nt) $mchC$ gene fragment (32059-35845 nt)Cloning and expression vectorsCloning vectorExpression vector $ampR$ gene fragmentMultiple cloning site fragment	6001 9665 12431 9404 6186 6863 s 3383 2700 3587 3415	KpnI/AgeI-PvuI/PmeI KpnI/BsiWI-MreI/PmeI KpnI/MluI-NotI/PmeI KpnI/SphI-BamHI/MluI NdeI-XbaI BamHI-MluI - - PstI-MscI SwaI-HindIII

2) BsaI design based on mch cluster retrieved from GeneBank entry KX622591

3) BsaI design based on mch cluster retrieved from GeneBank entry KX622593

4) BsaI design based on mch cluster retrieved from GeneBank entry KX622602

5) BsaI design based on mch cluster retrieved from GeneBank entry KX622599

6) AarI design based on mch cluster retrieved from GeneBank entry KX622595

2.4 Assembly of artificial *mch* genes and gene clusters

The synthetic fragments of biosynthetic genes were stitched and subcloned to pSynbio1 vector. The resulting intermediate constructs, pSyn1-mchA_SE, pSyn1-mchB_SE and pSyn1-mchC_SE, were hydrolyzed by *BsaI* to retrieve the splitter elements. After purification with QIAquick PCR Purification Kit (Qiagen), SEs were removed and the SE-free fragments were ligated by T4 DNA ligase. The reassembled biosynthetic genes as well as synthetic promoter, intergenic linkers and terminator were subcloned to pSynbio2, generating final *mch* expression vector. To generate CP-mutations, module duplications and module deletions, dedicated synthetic fragments were subcloned to pSyn1-mchB_SE or pSyn1-mchC_SE. After desplitting and reassembly, modified *mchB* or *mchC* replaced the corresponding gene on pSynMch13 by conventional cloning to yield modified *mch* expression vector. Detailed information for the construction of expression vectors is available in Table S6 and Table S7. The point mutations in final expression constructs were excluded by Illumina MiSeq sequencing.

Plasmid	Construction
	A-type mch cluster fragments from M. xanthus DK1622
	(1) 2122 bp Ndel/PmeI MchA_A_fragB fragment from pSV-MchA_A_fragB
	ligated into pSV-MchA_A_fragA hydrolyzed with Ndel/PmeI to generate
	pSV-MchA_A_fragAB
	(2) 6302 bp <i>KpnI/PmeI</i> MchA_A_fragAB fragment from pSV-MchA_A_fragAB
pSyn1-MchA_A_SE	ligated into pSynbio1 hydrolyzed with KpnI/PmeI to generate pSyn1-
	MchA_A_SE_pre
	(3) 1336 bp <i>KpnI/SpeI</i> MchA_A_fragA_dcm fragment from pSV-
	MchA_A_fragA_dcm ligated into pSyn1-MchA_A_SE_pre to generate pSyn1-
	MchA_A_SE
pSyn1-MchA_A	Hydrolysis of pSyn1-MchA_A_SE by <i>Bsa</i> 1 followed by re-ligation to remove SE
	(1) 5555 Up Spei/Pmel MchD_A_hagb hadrolyzed with Spei/Pmel to generate pSV
	Mabba A fragAB
	(2) 9028 hp $KnvI/PmeI$ MchB Δ frag ΔB fragment from pSV-MchB Δ frag ΔB
pSyn1-MchB A SF	ligated into nSymbol hydrolyzed with Knnl/Pmel to generate nSynl-
poynt menb_rt_oL	MchB A SE pre
	(3) 1100 bp <i>KnnI/Nde</i> I MchB A fragA dcm fragment from nSV-
	MchB A fragA dcm ligated into pSvn1-MchB A SE pre to generate pSvn1-
	MchB A SE
pSyn1-MchB_A	Hydrolysis of pSyn1-MchB_A_SE by <i>Bsa</i> I followed by re-ligation to remove SE
	(1) 4862 bp <i>NdeI/PmeI</i> MchC_A_fragB fragment from pSV-MchC_A_fragB ligated
	into pSV-MchC_A_fragA hydrolyzed with NdeI/PmeI to generate pSV-
	MchC_A_fragAB
	(2) 9237 bp KpnI/PmeI MchC_A_fragAB fragment from pSV-MchC_A_fragAB
	ligated into pSynbio1 hydrolyzed with KpnI/PmeI to generate pSyn1-
	MchC_A_fragAB
	(3) 4272 bp Asel/Pmel MchC_A_fragC fragment from pSV-MchC_A_fragC ligated
pSyn1-MchC_A_SE	into pSyn1-MchC_A_fragAB digested with Asel/Pmel to generate pSyn1-
	MchC_A_SE_pre (4) 1210 hr Keyl(Gyl MahC A first dam first start from πSV
	(4) 1219 bp Kpni/spei McnC_A_IragA_dcm Iragment from pSv- MabC A fragA dam lighted into pSun1 MabC A SE pro to generate pSun1
	MchC_A_fragA_dcfif figated into pSyfit-MchC_A_SE_pre to generate pSyfit- MchC_A_SE_pre2
	(5) 344 hp Asel/RamHI MchC A frac dcm fragment from pSV-
	MchC A fragC dcm ligated into pSvn1-MchC A SE pre2 to generate pSvn1-
	MchC A SE
pSyn1-MchC_A	Hydrolysis of pSyn1-MchC_A_SE by <i>Bsa</i> I followed by re-ligation to remove SE
pSyn1-	350 bp AsiSI/XbaI MchB_A_CP1inact1 fragment from pUC57-MchB_A_CP1inact1
MchB_A_CP1inact1_SE	ligated into pSyn1-MchB_A_SE to generate pSyn1-MchB_A_CP1inact1_SE
pSyn1-	Hydrolysis of pSyn1-MchB_A_CP1inact1_SE by BsaI followed by re-ligation to
MchB_A_CP1inact1	remove SE
pSyn1-	330 bp <i>AfIII/AvrII</i> MchB_A_CP2inact1 fragment from pUC57-MchB_A_CP2inact1
MchB_A_CP2inact1_SE	ligated into pSyn1-MchB_A_SE to generate pSyn1-MchB_A_CP2inact1_SE
pSyn1-	Hydrolysis of pSyn1-MchB_A_CP2inact1_SE by Bsa1 followed by re-ligation to
McnB_A_CP2inact1	remove SE 222 hr AsiSI/EacDI Mahe A CD2inact1 from rUC57
MobC A CP3inact1 SE	S22 Up ASISI/ECOKI MCIC_A_CFSIIIacti IIaginetit IIOIII pUCS/- MchC A CP2inacti liceted into pSyn1 MchC A SE to concrete pSyn1
Mene_A_er Sinaeti_SE	MchC A CP3inact1 SE
pSyn1-	Hydrolysis of pSyn1-MchC A CP3inact1 SE by <i>ByaI</i> followed by re-ligation to
MchC A CP3inact1	remove SE
pSvn1-	338 bp <i>MfeI/Afl</i> II MchC A CP4inact1 fragment from pUC57-MchC A CP4inact1
MchC A CP4inact1 SE	ligated into pSyn1-MchC A SE to generate pSyn1-MchC A CP4inact1 SE
pSyn1-	Hydrolysis of pSyn1-MchC_A_CP4inact1_SE by BsaI followed by re-ligation to
MchC_A_CP4inact1	remove SE
pSyn1-	338 bp MfeI/AflII MchC_A_CP4inact2 fragment from pUC57-MchC_A_CP4inact2
MchC_A_CP4inact2_SE	ligated into pSyn1-MchC_A_SE to generate pSyn1-MchC_A_CP4inact2_SE
pSyn1-	Hydrolysis of pSyn1-MchC_A_CP4inact2_SE by BsaI followed by re-ligation to

Table S6 Constructs for *mch* gene library generated in this study.

	MchC_A_CP4inact2	remove SE
	pSyn1-	344 bp AseI/BamHI MchC_A_CP5inact1 fragment from pUC57-
	MchC_A_CP5inact1_SE	MchC_A_CP5inact1 ligated into pSyn1-MchC_A_SE to generate pSyn1-
		MchC_A_CP5inact1_SE
	pSyn1-	Hydrolysis of pSyn1-MchC_A_CP5inact1_SE by BsaI followed by re-ligation to
	MchC_A_CP5inact1	remove SE
	pSyn1-	320 bp HindIII/NheI MchC A CP6inact1 fragment from pUC57-
	MchC A CP6inact1 SE	MchC A CP6inact1 ligated into pSvn1-MchC A SE to generate pSvn1-
		MchC A CP6inact1 SE
	nSvn1-	Hydrolysis of pSyn1-MchC A CP6inact1 SE by <i>Bsal</i> followed by re-ligation to
	MchC A CP6inact1	remove SF
	nSvn1	57/3 hp Vhal/Spal MahR A duplM1 fragment from pUC57 MahR A duplM1
	MohD A duplM1 SE	ligated into pSym1 MobP. A SE to generate pSym1 MobP. A dup1M1 SE
	"Sum1 MahD A dum1M1	Induction of pSyn1-MenD_A_SE to generate pSyn1-MenD_A_dupin1_SE
	pSyIII-MCIB_A_dupIMI	Hydrolysis of psylit-inclib_A_duplivi1_SE by <i>Bsal</i> followed by fe-ligation to
		remove SE 2452 hr Adu/And MahD A duriNQ for smart from aUC57 MahD A duriNQ
	pSyn1-	3452 bp Afili/Avrii MichB_A_dupiM2 iragment from pUC5/-MichB_A_dupiM2
	MchB_A_dupIM2_SE	ligated into pSyn1-MchB_A_SE to generate pSyn1-MchB_A_dupIM2_SE
	pSyn1-MchB_A_dupIM2	Hydrolysis of pSyn1-MchB_A_dupIM2_SE by Bsa1 followed by re-ligation to
		remove SE
	pSyn1-	4329 bp <i>EcoRI/NdeI</i> MchC_A_duplM3 fragment from pUC57-MchC_A_duplM3
	MchC_A_duplM3_SE	ligated into pSyn1-MchC_A_SE to generate pSyn1-MchC_A_duplM3_SE
	pSyn1-MchC_A_duplM3	Hydrolysis of pSyn1-MchC_A_duplM3_SE by BsaI followed by re-ligation to
		remove SE
	pSyn1-	4370 bp AfIII/XbaI MchC_A_duplM4 fragment from pUC57-MchC_A_duplM4
	MchC_A_duplM4_SE	ligated into pSyn1-MchC_A_SE to generate pSyn1-MchC_A_duplM4_SE
	pSyn1-	4355 bp BamHI/AvrII MchC_A_duplM5 fragment from pUC57-MchC_A_duplM5
	MchC A duplM5 SE	ligated into pSyn1-MchC A SE to generate pSyn1-MchC A duplM5 SE
	pSyn1-	3475 bp HindIII/NheI MchC A duplM6 fragment from pUC57-MchC A duplM6
	MchC A duplM6 SE	ligated into pSyn1-MchC A SE to generate pSyn1-MchC A duplM6 SE
	pSyn1-MchC A duplM6	Hydrolysis of pSyn1-MchC A duplM6 SE by <i>Bsal</i> followed by re-ligation to
	popul inche_il_aapinio	remove SE
	nSvn1-	2697 bn <i>MluI/AfI</i> II MchB A delM1 fragment from nUC57-MchB A delM1 ligated
	$McbB \Delta delM1 SE$	into nSvn1-MchB A SE to generate nSvn1-MchB A delM1 SE
	nSvn1 MchB A delM1	Hydrolysis of nSyn1 MchB A delM1 SE by Real followed by re lighting to
	pSyll1-MellD_A_delWl1	remove SE
	n Sym 1	2665 hn Vhal/Notl MahD A dalM2 fragment from nUC57 MahD A dalM2 ligated
	PSyIII- MahD A dalM2 SE	2005 0p Addi/Wolf MeliD_A_deliW2 fragment from pOC57-MeliD_A_deliW2 figated
	NICIID_A_delIVI2_SE	Into psyl11-inchd_A_se to generate psyl11-inchd_A_denvi2_se
	pSyn1-MCnB_A_delM2	Hydrolysis of pSyn1-MichB_A_delM2_SE by Bsal followed by re-ligation to
	G 1	remove SE
	pSyn1-	2/9/ bp Sphl/Mfel MchC_A_delM3 fragment from pUC5/-MchC_A_delM3 ligated
	MchC_A_delM3_SE	into pSyn1-MchC_A_SE to generate pSyn1-MchC_A_delM3_SE
	pSyn1-MchC_A_delM3	Hydrolysis of pSyn1-MchC_A_delM3_SE by Bsal followed by re-ligation to
		remove SE
	pSyn1-	2820 bp <i>EcoRI/AseI</i> MchC_A_delM4 fragment from pUC57-MchC_A_delM4
	MchC_A_delM4_SE	ligated into pSyn1-MchC_A_SE to generate pSyn1-MchC_A_delM4_SE
	pSyn1-MchC_A_delM4	Hydrolysis of pSyn1-MchC_A_delM4_SE by BsaI followed by re-ligation to
		remove SE
	pSyn1-	2584 bp AfIII/HindIII MchC_A_delM5 fragment from pUC57-MchC_A_delM5
	MchC_A_delM5_SE	ligated into pSyn1-MchC_A_SE to generate pSyn1-MchC_A_delM5_SE
	pSyn1-MchC_A_delM5	Hydrolysis of pSyn1-MchC_A_delM5_SE by BsaI followed by re-ligation to
		remove SE
	pSyn1-	1958 bp BamHI/AgeI MchC_A_delM6 fragment from pUC57-MchC_A_delM6
	MchC_A delM6 SE	ligated into pSyn1-MchC_A_SE to generate pSyn1-MchC A delM6 SE
		B-type mch cluster fragments from Myxococcus sp. 171
1	pSyn1-MchC B SE	(1) 2954 bp KpnI/MluI MchC B fragA fragment from pSV-
		MchC B fragA woSE and 2947 bp <i>MluI/PmeI</i> MchC B fragB fragment from
		pSV-MchC B fragB woSE ligated into pSynbiol hydrolyzed with KnnI/PmeI
		to generate pSyn1-MchC B fragAB
		(2) 4854 bp <i>KpnI/AseI</i> MchC B fragC fragment from pSV-MchC B fragC woSE
		(-, -)

(2) 4854 bp *KpnI/AseI* MchC_B_fragC fragment from pSV-MchC_B_fragC_woSE and 4269 *AseI/PmeI* MchC_B_fragD fragment from pSV-

	MchC_B_fragD_woSE ligated into pSynbio1 hydrolyzed with KpnI/PmeI to
	generate pSyn1-MchC_B_fragCD
	(3) 7318 bp <i>MunI/PmeI</i> MchC_B_fragA fragment from pSyn1-MchC_B_fragCD
	ligated into pSyn1-McnC_B_fragAB hydrolyzed with Muni/Pmel to generate
	(4) 3193 bn MunU/AseI MchC B fragC fragment from nSV-MchC B fragC
	ligated into pSyn1-MchC B SE pre to generate pSyn1-MchC B SE
pSyn1-MchC B	Hydrolysis of pSyn1-MchC B SE by <i>Bsa</i> I followed by re-ligation to remove SE
1 7 –	C-type mch cluster fragments from M. virescens ST200611
	(1) 5923 bp NdeI/PmeI MchC_C_fragB fragment from pSV-MchC_C_fragB
	ligated into pSV-MchC_C_fragA hydrolyzed with NdeI/PmeI to generate pSV-
	MchC_C_SE
	(2) 10296 bp <i>Kpnl/Pmel</i> MchC_C_SE fragment from pSV-MchC_C_SE ligated
pSyn1-MchC_C_SE	into pSynbiol hydrolyzed with Kpnl/Pmel to generate pSyn1-
	(3) 1211 bp Knnl/Sngl McbC C fragA dem fragment from pSV-
	MchC C fragA dcm ligated into pSvn1-MchC C SE pre hydrolyzed with
	<i>KnnI/PmeI</i> to generate pSyn1-MchC C SE
pSyn1-MchC_C	Hydrolysis of pSyn1-MchC_C_SE by <i>Bsa</i> I followed by re-ligation to remove SE
1 7 -	D-type mch cluster fragments from S. erecta Pde77
	5719 bp KpnI/SpeI MchB_D_fragA fragment from pSV-pMchB_D_fragA and 3332
pSyn1-MchB_D_SE	bp SpeI/PmeI MchB_D_fragB fragment from pSV-pMchB_D_fragB ligated into
	pSynbiol hydrolyzed with <i>KpnI/PmeI</i> to generate pSyn1-MchB_D_SE
pSyn1-MchB_D	Hydrolysis of pSyn1-MchB_D_SE by <i>Bsa</i> 1 followed by re-ligation to remove SE
	(1) 4380 bp Aphi/Nael MichC_D_IragA Iragment from pSV-MichC_D_IragA and 4850 bp Ndel/Proof MichC_D frogB frogment from pSV MebC_D frogB
	ligated into nSynhiol hydrolyzed with Knnl/PmeI to generate nSynl-
pSvn1-MchC D SE	MchC D fragAB
	(2) 4278 bp AseI/PmeI MchC D fragC fragment from pSV-pMchC D fragC
	ligated into pSyn1-MchB_D_fragAB hydrolyzed with AseI/PmeI to generate
	pSyn1-MchC_D_SE
pSyn1-MchC_D	Hydrolysis of pSyn1-MchC_D_SE by BsaI followed by re-ligation to remove SE
	S-type <i>mch</i> cluster fragments from <i>S. aurantiaca</i> DW4/3-1
	(1) 3328 bp Spel/Pmel MchB_S_tragB tragment from pSV-MchB_S_tragB
	ngated find psv-pixelib_s_fragA flydrolyzed with spent met to generate pSV_MchB S fragAB
	(2) 9051 bn Knnl/Pmel MchB S fragAB fragment from nSV-MchB S fragAB
pSvn1-MchB S SE	ligated into pSynbio1 hydrolyzed with <i>KpnI/PmeI</i> to generate pSyn1-
1	MchB_S_SE_pre
	(3) 1100 bp <i>KpnI/NdeI</i> MchB_S_fragA_dcm fragment from pSV-
	MchB_S_fragA_dcm ligated into pSyn1-MchB_S_SE_pre to generate pSyn1-
	MchB_S_SE
pSyn1-MchB_S	Hydrolysis of pSyn1-MchB_S_SE by <i>Bsa</i> l followed by re-ligation to remove SE
	(1) 485/ bp Ndel/Pmel MchC_S_tragB tragment from pSV-MchC_S_tragB
	MebC S fragAB
	(2) 9234 bp KnnI/PmeI MchC S fragAB fragment from nSV-MchC S fragAB
	ligated into pSynbio1 hydrolyzed with <i>KpnI/PmeI</i> to generate pSyn1-
	MchC S fragAB
	(3) 4276 bp AseI/PmeI MchC_S_fragC fragment from pSV-MchC_S_fragC
pSyn1-MchC_S_SE	ligated into pSyn1-MchC_S_fragAB hydrolyzed with AseI/PmeI to generate
	pSyn1-MchC_S_SE_pre
	(4) 1219 bp <i>KpnI/SpeI</i> MchC_S_fragA_dcm fragment from pSV-
	MchC_S_fragA_dcm ligated into pSyn1-MchC_S_SE_pre to generate pSyn1-
	WICHU_S_SE_PIE2 (5) 344 bp Asel/RamHI MehC S fragC dem fragmant from pSV
	MchC S fragC dcm ligated into nSvn1-MchC S SE pre2 to generate nSvn1-
	MchC S SE
pSyn1-MchC S	Hydrolysis of pSyn1-MchC_S SE by <i>Bsa</i> I followed by re-ligation to remove SE
pSvn1-	335 bp <i>MfeI/AfIII</i> MchC_S_CP4react fragment from pUC57-MchC S CP4act

MchC_S_CP4react_SE ligated into pSyn1-MchC_S_SE to generate pSyn1-MchC_S_CP4react_SE	ligated into pSyn1-MchC_S_SE to generate pSyn1-MchC_S_CP4react_SE		
pSyn1- Hydrolysis of pSyn1-MchC_S_CP4react_SE by BsaI followed by re-liga	tion to		
MchC_S_CP4react remove SE			
A-type <i>mch</i> cluster fragments from <i>M. xanthus</i> DK1622 ^{**}			
6303 bp <i>KpnI/PmeI</i> MchA_A_AarI_SE fragment from pSV-MchA_A_Aa	rI_SE		
Moh A April SE ligated into pSynbio1 hydrolyzed with KpnI/PmeI to generate p	Syn1-		
MchA_A_AarI_SE MchA_A_ArI_SE			
pSyn1-MchA_A_AarI Hydrolysis of pSyn1-MchA_A_AarI_SE by <i>Aar</i> I followed by re-ligation to SE	remove		
9069 bp <i>KpnI/PmeI</i> MchB_A_AarI_SE fragment from pSV-MchB_A_Aa	rI_SE		
MobB A April SE ligated into pSynbio1 hydrolyzed with KpnI/PmeI to generate p	Syn1-		
MchB_A_AarI_SE MchB_A_AarI_SE			
pSyn1-MchB_A_AarI Hydrolysis of pSyn1-MchB_A_AarI_SE by <i>Aar</i> I followed by re-ligation to SE	remove		
 (1) 3944 bp BamHI/MluI MchC_A_AarI_fragF fragment from MchC_A_AarI_fragF ligated into pSV-MchC_A_AarI_fragABCE hydrowith BamHI/MluI to generate pSV-MchC_A_AarI_fragABCEF (2) 3256 bp NdeI/XbaI MchC_A_AarI_fragD fragment from MchC_A_AarI_fragD ligated into pSV-MchC_A_AarI_fragAI hydrolyzed with NdeI/XbaI to generate pSV-MchC_A_AarI_SE (3) 13637 bp KpnI/PmeI MchC_A_AarI_SE fragment from MchC_A_AarI_SE ligated into pSynbio1 hydrolyzed with KpnI/Pn generate pSyn1-MchC_A_AarI_SE 	pSV- olyzed pSV- BCEF pSV- ueI to		
pSyn1-MchC_A_AarI Hydrolysis of pSyn1-MchC_A_AarI_SE by <i>Aar</i> I followed by re-ligation to SE	remove		
641 bp <i>KpnI/PmeI</i> P-5mchA_A_AarI fragment from pSV- P-5mchA_A	_AarI		
psyn1-P-SinchA_A_Aari iigaled into psynoioi iigdrofyzed with Kph1/Pmei to generate psy	m-r-		
$\frac{1}{121} \text{hn} \frac{1}{2} \text{ mol} \frac{1}{2} $	mah A		
pSyn1-3mchA- 5mchB A Aarl ligated into pSynbiol hydrolyzed with Knnl/Pmal to g	anorato		
5mchB_A_AarI SuchA_Factor ingaced into psynologi ingatoryzed with Kphili mer to g	cherate		
220 hn <i>KnnI/Pme</i> I 3mchB-5mchC A AarI fragment from nSV-3	mchB-		
pSyn1-3mchB- 5mchC A AarI ligated into pSynbiol hydrolyzed with Knnl/Pmel to g	enerate		
5mchC_A_AarI nSvn1-3mchB-5mchC_A_AarI	enerate		
2639 bp KpnI/PmeI T-3mchC A AarI fragment from pSV-T-3mchC A	AarI		
pSyn1-T-3mchC A AarI ligated into pSynbio1 hydrolyzed with <i>KnnI/PmeI</i> to generate pSyn	 m1 T		
p_{i}	111-1-		

* SE = splitter element ** Based on *Aar*I design

Table S7 Constructs for *mch* cluster assemblies generated in this study.

Pla	smid	Construction
		(1) 621 bp KpnI/BsiWI P5mchA _A fragment from pSyn1-P-5mchA_A_ArI ligated into pSynbio2
		hydrolyzed with KpnI/BsiWI to generate pSyn2-ca1
		(2) 6134 bp BsiWI/MreI mchAA fragment from pSyn1-MchA_A_AarI ligated into pSyn2-ca1
		hydrolyzed with BsiWI/MreI to generate pSyn2-ca2
		(3) 386 bp MreI/MluI 3AA5BA fragment from pSyn1-3mchA-5mchB_A_AarI ligated into pSyn2-
		ca2 hydrolyzed with MreI/MluI to generate pSyn2-ca3
~ C	Mahl	(4) 8803 bp MluI/NotI mchBA fragment from pSyn1-MchB_A_AarI ligated into pSyn2-ca3
рзуг	INICITI	hydrolyzed with MluI/NotI to generate pSyn2-ca4
		(5) 186 bp NotI/SphI 3BA5CA fragment from pSyn1-3mchB-5mchC_A_AarI ligated into pSyn2-
		ca4 hydrolyzed with NotI/SphI to generate pSyn2-ca5
		(6) 13150 bp SphI/AgeI mchCA fragment from pSyn1-MchC_A_AarI ligated into pSyn2-ca5
		hydrolyzed with SphI/AgeI to generate pSyn2-ca6
		(7) 2616 bp AgeI/PvuI T3mchC _A fragment from pSyn1-T-3mchC_A_AarI ligated into pSyn2-ca6
		hydrolyzed with AgeI/PvuI to generate pSynMch1
pSyr	nMch2	(1) 606 bp KpnI/BsiWI P5mchA _A fragment from pSV-P-5mchA_Ab ligated into pSynbio2

hydrolyzed with KpnI/BsiWI to generate pSyn2-ca7

- (2) 6134 bp *Bsi*WI/*MreI mch*A_A fragment from pSyn1-MchA_A ligated into pSyn2-ca7 hydrolyzed with *Bsi*WI/*MreI* to generate pSyn2-ca8
- (3) 386 bp *MreI/MluI* 3A_A5B_A fragment from pSV-3mchA-5mchB_Ab ligated into pSyn2-ca8 hydrolyzed with *MreI/MluI* to generate pSyn2-ca9
- (4) 8803 bp *MluI/NotI mchB_A* fragment from pSyn1-MchB_A ligated into pSyn2-ca9 hydrolyzed with *MluI/NotI* to generate pSyn2-ca10
- (5) 186 bp NotI/SphI 3B_A5C_A fragment from pSV-3mchB-5mchC_Ab ligated into pSyn2-ca10 hydrolyzed with NotI/SphI to generate pSyn2-ca11
- (6) 13150 bp *SphI/AgeI* mchC_A fragment from pSyn1-MchC_A ligated into pSyn2-ca11 hydrolyzed with *SphI/AgeI* to generate pSyn2-ca12
- (7) 2601 bp AgeI/PvuI T3mchC_A fragment from pSV-T-3mchC_Ab ligated into pSyn2-ca12 hydrolyzed with AgeI/PvuI to generate pSynMch2_pre
- (8) 15917 bp KpnI/NotI P5mchA_A-mchA_A-3A_A5B_A-mchB_A fragment from pSyn2-ca10 ligated into pSynMch2_pre hydrolyzed with KpnI/NotI to generate pSynMch2
- (1) 186 bp *NotI/SphI* 3B_B5C_B fragment from pSV-3mchB-5mchC_Bb ligated into pSynbio2 hydrolyzed with *NotI/SphI* to generate pSyn2-ca13
- (2) 2601 bp *AgeI/PvuI* T3*mchC_B* fragment from pSV-T-3mchC_Bb ligated into pSyn2-ca13 hydrolyzed with *AgeI/PvuI* to generate pSyn2-ca14
- (3) 16250 bp *SphI/AgeI mchC_B* fragment from pSyn1-MchC_B ligated into pSyn2-ca14 hydrolyzed with *SphI/AgeI* to generate pSyn2-ca15
- (4) 15909 bp KpnI/NotI P5mchA_A-mchA_A-3A_A5B_A-mchB_Afragment from pSynMch2 ligated into pSyn2-ca15 hydrolyzed with KpnI/NotI to generate pSynMch3
- (1) 186 bp *NotI/Sph*I 3B_c5C_c fragment from pSV-3mchB-5mchC_Cb ligated into pSyn2-ca10 hydrolyzed with *NotI/Sph*I to generate pSyn2-ca16

pSynMch4 (2) 10013 bp $SphI/AgeI mchC_c$ fragment from pSyn1-MchC_C ligated into pSyn2-ca16 hydrolyzed with SphI/AgeI to generate pSyn2-ca17

- (3) 2601 bp *AgeI/PvuI* T3*mchC_c* fragment from pSV-T-3mchC_Cb ligated into pSyn2-ca17 hydrolyzed with *AgeI/PvuI* to generate pSynMch4
- 205 bp NotI/SphI 3B_D5C_D fragment from pSV-3mchB-5mchC_Db ligated into pSynbio2 hydrolyzed with NotI/SphI to generate pSyn2-ca18
- (2) 2610 bp *AgeI/PvuI* T3*mchC_D* fragment from pSV-T-3mchC_Db ligated into pSyn2-ca18 hydrolyzed with *AgeI/PvuI* to generate pSyn2-ca19
- pSynMch5 (3) 13154 bp *SphI/AgeI mchC_D* fragment from pSyn1-MchC_D ligated into pSyn2-ca19 hydrolyzed with *SphI/AgeI* to generate pSyn2-ca20
 - (4) 8826 bp *MluI/NotI mchB_D* fragment from pSyn1-MchB_D ligated into pSyn2-ca20 hydrolyzed with *MluI/NotI* to generate pSyn2-ca21
 - (5) 7110 bp *KpnI/MluI* P5*mchA_A-mchA_A*-3A_A5B_A from pSynMch2 ligated into pSyn2-ca21 hydrolyzed with *KpnI/MluI* to generate pSynMch5
 - (1) 8830 bp *MluI/NotI mchB_s* fragment from pSyn1-MchB_S ligated into pSyn2-ca9 hydrolyzed with *MluI/NotI* to generate pSyn2-ca22
 - (2) 187 bp *NotI/Sph*I 3B_s5C_s fragment from pSV-3mchB-5mchC_Sb ligated into pSyn2-ca22 hydrolyzed with *NotI/Sph*I to generate pSyn2-ca23
 - (3) 13157 bp *SphI/AgeI mchC_s* fragment from pSyn1-MchC_S ligated into pSyn2-ca23 hydrolyzed with *SphI/AgeI* to generate pSyn2-ca24
 - (4) 2620 bp *AgeI/PvuI* T3*mchC_s* fragment from pSV-T-3mchC_Sb ligated into pSyn2-ca24 hydrolyzed with *AgeI/PvuI* T3*mchC_s* to generate pSynMch6
 - 13165 bp SphI/AgeI mchC_s fragment from pSyn1-MchC_S ligated into pSyn2-ca11 hydrolyzed with SphI/AgeI to generate pSyn2-ca31
- pSynMch8 (2) 2620 bp AgeI/PvuI T3mchC_s fragment from pSV-T-3mchC_Sb ligated into pSyn2-ca31 hydrolyzed with AgeI/PvuI to generate pSynMch8_pre
 - (3) 15917 bp KpnI/NotI P5mchA_A-mchA_A-3A_A5B_A-mchB_A fragment from pSyn2-ca10 ligated into

pSynMch3

pSynMch6

pSynMch8_pre hydrolyzed with KpnI/NotI to generate pSynMch8

- 186 bp NotI/SphI 3B_A5C_A fragment from pSV-3mchB-5mchC_Ab into pSyn2-ca22 hydrolyzed with NotI/SphI to generate pSyn2-ca32
- (2) 13150 bp *SphI/AgeI* mchC_A fragment from pSyn1-MchC_A ligated into pSyn2-ca32 hydrolyzed with *SphI/AgeI* to generate pSyn2-ca33
- pSynMch9 (3) 2608 bp AgeI/PvuI T3mchC_A fragment from pSV-T-3mchC_Ab ligated into pSyn2-ca33 hydrolyzed with AgeI/PvuI to generate pSynMch9_pre
 - (4) 15944 bp KpnI/NotI P5mchA_A-mchA_A-3A_A5B_A-mchB_S fragment from pSyn2-ca22 ligated into pSynMch9_pre hydrolyzed with KpnI/NotI to generate pSynMch9
 - 186 bp *NotI/SphI* 3B_c5C_c fragment from pSV-3mchB-5mchC_Cb into pSyn2-ca22 hydrolyzed with *NotI/SphI* to generate pSyn2-ca34
 - (2) 10021 bp *SphI/AgeI* mchC_c fragment from pSyn1-MchC_C ligated into pSyn2-ca34 hydrolyzed with *SphI/AgeI* to generate pSyn2-ca35
- pSynMch10 (3) 2601 bp AgeI/PvuI T3mchC_c fragment from pSV-T-3mchC_Cb ligated into pSyn2-ca35 hydrolyzed with AgeI/PvuI to generate pSynMch10_pre
 - (4) 15944 bp KpnI/NotI P5mchA_A-mchA_A-3A_A5B_A-mchB_S fragment from pSyn2-ca22 ligated into pSynMch10_pre hydrolyzed with KpnI/NotI to generate pSynMch10
- pSynMch11 19037 bp *NotI/PvuI* 3B_B5C_B-*mchC_B*-T3*mchC_B* fragment from pSyn2-ca15 ligated into pSynMch10 hydrolyzed with *NotI/PvuI* to generate pSynMch11
- pSynMch12 15952 bp *NotI/PvuI* 3B_D5C_D-*mchC_D*-T3*mchC_D* fragment from pSyn2-ca20 ligated into pSynMch10 hydrolyzed with *NotI/PvuI* to generate pSynMch12
 - (1) The native promoter of *mchA* gene cluster on pSynMch2 was replaced with *cmR-ccdB* cassette by Red/ET recombination to generate pSynMch2-cmccdB
- pSynMch13 (2) The *cmR-ccdB* cassette on pSynMch2-cmccdB was substituted with overexpression promoter *Ptn5* by Red/ET recombination
- pSynMch14 8830 bp *MluI/NotI mchB*_s fragment from pSyn1-MchB_S ligated into pSynMch13 hydrolyzed with *MluI/NotI* to generate pSynMch14
- pSynMch15 21643 bp *KpnI/Not*I 3B_B5C_B-*mchC_B*-T3*mchC_B* fragment from pSyn2-ca15 ligated into pSynMch14 hydrolyzed with *KpnI/Not*I to generate pSynMch15
- pSynMch17 8803 bp *MluI/NotI mchB*_A fragment from pSyn1-MchB_A_CP1inact1 ligated into pSynMch13 hydrolyzed with *MluI/NotI* to generate pSynMch17
- pSynMch18 8803 bp *MluI/NotI mchB*_A fragment from pSyn1-MchB_A_CP2inact1 ligated into pSynMch13 hydrolyzed with *MluI/NotI* to generate pSynMch18
- pSynMch19 13150 bp *SphI/AgeI mchC*_A fragment from pSyn1-MchC_A_CP3inact1 ligated into pSynMch13 hydrolyzed with *SphI/AgeI* to generate pSynMch19
- pSynMch20 13150 bp *SphI/AgeI mchC*_A fragment from pSyn1-MchC_A_CP4inact1 ligated into pSynMch13 hydrolyzed with *SphI/AgeI* to generate pSynMch20
- pSynMch21 13150 bp *SphI/AgeI mchC*_A fragment from pSyn1-MchC_A_CP4inact2 ligated into pSynMch13 hydrolyzed with *SphI/AgeI* to generate pSynMch21
- pSynMch22 13150 bp *SphI/AgeI mchC*_A fragment from pSyn1-MchC_A_CP5inact1 ligated into pSynMch13 hydrolyzed with *SphI/AgeI* to generate pSynMch22
- pSynMch23 13150 bp *SphI/AgeI mchC*_A fragment from pSyn1-MchC_A_CP6inact1 ligated into pSynMch13 hydrolyzed with *SphI/AgeI* to generate pSynMch23
- pSynMch24 13165 bp *SphI/AgeI mchC*_s fragment from pSyn1-MchC_S_CP4react ligated into pSynMch6 hydrolyzed with *SphI/AgeI* to generate pSynMch24
- pSynMch25 13296 bp *MluI/NotI mchB*_A fragment from pSyn1-MchB_A_duplM1 ligated into pSynMch13 hydrolyzed with *MluI/NotI* to generate pSynMch24
- pSynMch26 11925 bp *MluI/NotI mchB*_A fragment from pSyn1-MchB_A_duplM2 ligated into pSynMch13 hydrolyzed with *MluI/NotI* to generate pSynMch25
- pSynMch27 16268 bp *SphI/AgeI mchC*_A fragment from pSyn1-MchC_A_duplM3 ligated into pSynMch13 hydrolyzed with *SphI/AgeI* to generate pSynMch27

pSynMch28	16301 bp SphI/AgeI mchC _A fragment from pSyn1-MchC_A_duplM6 ligated in	nto pSynMch13
	hydrolyzed with SphI/AgeI to generate pSynMch28	
pSynMch29	4302 bp MluI/NotI mchB _A fragment from pSyn1-MchB_A_delM1 ligated in	nto pSynMch13
	hydrolyzed with <i>MluI/Not</i> I to generate pSynMch29	
pSynMch30	7002 bp MluI/NotI mchB _A fragment from pSyn1-MchB_A_delM2 ligated in	nto pSynMch13
	hydrolyzed with <i>MluI/NotI</i> to generate pSynMch30	
pSynMch31	10028 bp SphI/AgeI mchC _A fragment from pSyn1-MchC_A_delM3 ligated in	nto pSynMch13
	hydrolyzed with SphI/AgeI to generate pSynMch31	
pSynMch32	10001 bp SphI/AgeI mchC _A fragment from pSyn1-MchC_A_delM4 ligated in	nto pSynMch13
	hydrolyzed with SphI/AgeI to generate pSynMch32	
pSynMch33	10007 bp SphI/AgeI mchC _A fragment from pSyn1-MchC_A_delM5 ligated ir	nto pSynMch13
	hydrolyzed with SphI/AgeI to generate pSynMch33	

3. Transformation of M. xanthus and verification by colony PCR

The *mch* expression constructs harboring synthetic *mch* cluster were transferred into *M. xanthus* DK1622 Δ *mchA-tet* via electroporation using established standard protocols.⁶ The *mch* gene clusters were integrated to the chromosome of *M. xanthus* DK1622 Δ *mchA-tet* by homologous recombination (Fig. S3). The *rhlE* gene served as homologous sequence. The integration of the respective *mch* clusters in *M. xanthus* mutants were verified by colony PCR. Briefly, cells from a CTT agar plate were re-suspended in 100 µL water and heated at 100 °C for 10 min, 1 µL of the supernatant was used as template for PCR. Oligonucleotide sequences are given in the Table S8. As shown in Fig. S4, all *mch* clusters were integrated to the genome.

Fig. S3 Integration of artificial *mch* gene cluster into the chromosome of *M. xanthus* DK1622 $\Delta mchA$ -tet. The host *M. xanthus* DK1622 $\Delta mchA$ -tet was generated by deletion of the native A-type *mch* cluster with a tetracycline resistance gene (*tet*^{*R*}). The synthetic *mch* gene cluster on pSynbio2 vector was integrated downstream of the *tet*^{*R*} site by homologous recombination. The chromosomal integration of artificial *mch* clusters was verified by colony PCR. The positions of the primers (see Table S8) for colony PCR are illustrated.

Table S8	Oligonucleotides	used in colony	PCR.
----------	------------------	----------------	------

Oligonucleotide	Sequence	Expected size (bp)
P2-1	CGGAGAACTGTGAATGCGC	1572
P2-2	GTTTCATTTGATGCTCGATG	1372

P3-1	CGCCGGACGCATGACTCAC	1563
P4-2	AGAGGCACTCCAGGCCTCTTA	1505
PAB-1	CGGCAGCCAGAGCTGGAGAA	880
PAB-2	TGGTGGACGGTCATCAGGAGG	880
PBC-1	GGAGACGATTGAACGGCTGAACG	836
PBC-2	AAGGGCAGTGGCGTGGGTTG	850
PC-1	GTGGAACCTCTACGGACCGACAG	857
PC-2	ACAGGGACACCAGCGGAAGC	037

Fig. S4 Colony PCR analysis of mch cluster integration in M. xanthus mutants. (A) analysis of the integration of the native and hybrid mch clusters; (B) anlysis of the integration of the mch clusters with module engineering. The integrated mch gene clusters are shown on the top of figures; primer pairs used in the colony PCR are indicated in figures; the sizes of amplified fragments are illustrated. M. xanthus DK1622 AmchA-tet (Mx) served as negative control. MchA, M. xanthus DK1622 AmchA-tet::pSynMch2; Ptn5MchA, M. xanthus DK1622 AmchA-tet::pSynMch13; MchB, M. xanthus DK1622 AmchA-tet::pSynMch3; MchC, M. xanthus DK1622 AmchA-tet::pSynMch4; MchD, M. xanthus DK1622 AmchA-tet::pSynMch5; MchS, M. xanthus DK1622 AmchA-tet::pSynMch6; MchSD, M. xanthus DK1622 AmchA-tet::pSynMch12; MchSC, M. xanthus DK1622 AmchA-tet::pSynMch10; MchSB, M. xanthus DK1622 AmchA-tet::pSynMch11; MchSA, M. xanthus DK1622 AmchA-tet::pSynMch9; MchAS, M. xanthus DK1622 AmchA-tet::pSynMch8; CP1inact, M. xanthus DK1622 AmchA-tet::pSynMch17; CP2inact, M. xanthus DK1622 AmchA-tet::pSynMch18; CP3inact, M. xanthus DK1622 AmchA-tet::pSynMch19; CP4inact1, M. xanthus DK1622 AmchA-tet::pSynMch20; CP4inact2, M. xanthus DK1622 AmchA-tet::pSynMch21; CP5inact, M. xanthus DK1622 AmchA-tet::pSynMch22; CP6inact, M. xanthus DK1622 AmchA-tet::pSynMch23; DuplM1, M. xanthus DK1622 AmchA-tet::pSynMch25; DuplM2, M. xanthus DK1622 AmchA-tet::pSynMch26; DuplM3, M. xanthus DK1622 AmchA-tet::pSynMch27; DuplM6, M. xanthus DK1622 AmchA-tet::pSynMch28; DelM1, M. xanthus DK1622 AmchA-tet::pSynMch29; DelM2, M. xanthus DK1622 AmchA-tet::pSynMch30; DelM3, M. xanthus DK1622 AmchA-tet::pSynMch31; DelM4, M. xanthus DK1622 AmchA-tet::pSynMch32; DelM5, M. xanthus DK1622 AmchA-tet::pSynMch33.

4. Expression of artificial mch clusters in M. xanthus and production analysis

Myxochromide production analysis in the heterologous host was carried out on a 50 mL scale under routine cultivation conditions. Cells and Amberlite XAD-16 adsorber resin were harvested by centrifugation at 8,000 rpm for 10 min and subsequently extracted twice with 50 mL methanol and acetone (1:1). The extracts were evaporated to dryness, dissolved in methanol and subjected to UPLC-MS analysis using a Dionex Ultimate 3000 RSLC system coupled to a Bruker maXis 4G TOF mass spectrometer. Separation was performed using a Waters BEH C18, 100×2.1 mm, $1.7 \mu m d_p$ column. At a flow rate of 0.6 mL/min, the following gradient was applied (A: deionized water + 0.1% formic acid, B: acetonitrile + 0.1% formic acid): 0-0.5 min 5% B, 0.5-18.5 min 5-95% B, 18.5-20.5 min 95% B. Full scan mass spectra were acquired in positive ESI mode in a range from 150-2500 *m/z*.

4.1 Production of native myxochromides in M. xanthus

The constructs harboring synthetic *mch* clusters, pSynMch2 (A-tpye cluster), pSynMch3 (B-tpye cluster), pSynMch4 (C-tpye cluster), pSynMch5 (D-tpye cluster), pSynMch6 (S-tpye cluster) and pSynMch13 (A-tpye cluster controlled by *PTn5* promoter), were transferred into *M. xanthus* DK1622 Δ *mchA-tet*. Mutant strains were grown under routine conditions and the production of myxochromides was analyzed by UPLC-MS (Fig. S5).

Fig. S5 UPLC-MS analysis of native myxochromide production in *M. xanthus*. Extracted ion chromatograms (EICs) for ±0.02 *m/z* corresponding to the $[M+H]^+$ ions of myxochromides are shown. **A**: No myxochromide production in *M. xanthus* DK1622 $\Delta mchA$ -tet. **B**: Detection of myxochromides A in *M. xanthus* DK1622 wild type; A₂ ($[M+H]^+ = 834.47542$), A₃ ($[M+H]^+ = 846.47600$) and A₄ ($[M+H]^+ = 860.49223$). **C**: Detection of myxochromides A in *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch2; A₂ ($[M+H]^+ = 860.49223$). **A**: ($[M+H]^+ = 847.47583$), A₄ ($[M+H]^+ = 860.49201$). **D**: Detection of myxochromides B in *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch3; B₂ ($[M+H]^+ = 947.56010$), B₃ ($[M+H]^+ = 959.56212$), B₄ ($[M+H]^+ = 973.57804$). **E**: Detection of myxochromides C in *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch4; C₂ ($[M+H]^+ = 763.44022$), C₃ ($[M+H]^+ = 775.43935$), C₄ ($[M+H]^+ = 737.42169$), D₃ ($[M+H]^+ = 749.42156$), D₄ ($[M+H]^+ = 763.43939$). **G**: Detection of myxochromides S in *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch5; D₂ ($[M+H]^+ = 737.42169$), D₃ ($[M+H]^+ = 749.42156$), D₄ ($[M+H]^+ = 737.42423$), S₃ ($[M+H]^+ = 749.42284$), S₄ ($[M+H]^+ = 763.43604$). **H**: Detection of myxochromides A in *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch6; S₂ ($[M+H]^+ = 737.42423$), S₃ ($[M+H]^+ = 749.42284$), S₄ ($[M+H]^+ = 763.43604$). **H**: Detection of myxochromides A in *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch6; S₂ ($[M+H]^+ = 737.42423$), S₃ ($[M+H]^+ = 749.42284$), S₄ ($[M+H]^+ = 763.43604$). **H**: Detection of myxochromides A in *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch6; S₂ ($[M+H]^+ = 737.42423$), S₃ ($[M+H]^+ = 749.42284$), S₄ ($[M+H]^+ = 763.43604$). **H**: Detection of myxochromides A in *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch13; A₂ ($[M+H]^+ = 834.47842$), A₃ ($[M+H]^+ = 846.47917$) and A₄ ($[M+H]^+ = 860.49366$).

4.1.1 Estimation of myxochromide production yield

M. xanthus DK1622 wilde type and *M. xanthus* DK1622 Δ *mchA-tet* mutants harboring synthetic *mch* clusters were cultivated in 50 mL CTT medium for 3.5 and 4.5 days with adsorber resin Amberlite XAD-16. The cells and XAD-16 were collected by centrifugation and were extracted with 50 mL acetone and methonal (1:1). The dried extracts were dissolved in 500 µL MeOH. 1 and 2 µL of dilutions between 1:10 and 1:500 were injected on LC-UV/MS Thermo Scientific UltiMate 3000 coupled with Bruker amazon. Following HPLC conditions: Waters BEH C18 column (130 Å, 1.7 µm, 100 × 2.1 mm); eluent A: H₂O + 0.1% formic acid, eluent B: acetonitrile + 0.1% formic acid; flow rate: 0.6 mL/min; column temperature 45 °C; gradient: 0-0.5 min 5% B, 0.5-3.5 min 5-50% B, 3.5-18 min 50-60% B, 18-18.5 min 60-95% B, 18.5-20.5 min 95% B, 20.5-20.8 min 95-5% B and 20.8-22.5 min 5% B.

In order to estimate the production, the UV Peak at 420 nm was integrated using Data Analysis 4.2. The MS trace or MS/MS fragments were used to identify the corresponding UV peak before integration. Based on the UV peak areas of myxochromide standards, the concentrations of the myxochromides were calculated using OriginPro 2017 and Microsoft Excel 2010. The estimated yields of myxochromide representatives (myxochromide A₃, myxochromide B₂, myxochromide C₂, myxochromide D₃, myxochromide S₃, see Fig. S5) are shown in Fig. S6.

Fig. S6 Production yield of representative myxochromides in *M. xanthus* mutants. DK1622 WT, *M. xanthus* DK1622 wilde type; DK1622::mchA, *M. xanthus* DK1622 *AmchA-tet*::pSynMch2; DK1622::PTn5-mchA, *M. xanthus* DK1622 *AmchA-tet*::pSynMch13; DK1622::mchB, *M. xanthus* DK1622 *AmchA-tet*::pSynMch3; DK1622::mchC, *M. xanthus* DK1622 *AmchA-tet*::pSynMch4; DK1622::mchD, *M. xanthus* DK1622 *AmchA-tet*::pSynMch5; DK1622::mchS, *M. xanthus* DK1622 *AmchA-tet*::pSynMch6.

4.2 Heterologous expression of artificial hybrid mch clusters in M. xanthus

To heterologously produce novel hybrid myxochromides in *M. xanthus* DK1622, the expression constructs pSynMch8 (AS-type), pSynMch9 (SA-type), pSynMch10 (SC-type), pSynMch11 (SB-type) and pSynMch12 (SD-type) harboring the artificial hybrid *mch* clusters were subsequently transformed into the heterologous host *M. xanthus* DK1622 Δ *mchA-tet*. The production of hybrid myxochromides was checked by UPLC-MS (Fig. S7). Although the hybrid *mch* clusters were controlled by *PTn5* promoter, the production levels were comparable to the yield achieved by the artificial *mchA* cluster controlled by the native promoter.

Myxochromides AS – novel engineered lipopentapeptides

Myxochromide derivatives with $[M+H]^+$ masses corresponding to the expected hybrid myxochromides AS₂, AS₃ and AS₄ (Fig. S7) were detected in the extracts of *M. xanthus* DK1622 *AmchA-tet::*pSynMch8. The most prominent derivative was AS₂ under the applied cultivation conditions, whereas derivatives AS₃ and AS₄ were produced in lower yields but at similar levels compared to each other (Fig. S7).

Myxochromides SA – novel engineered lipohexapeptides

Myxochromide derivatives with $[M+H]^+$ masses corresponding to the expected novel hybrid lipohexapeptides myxochromides SA₂, SA₃ and SA₄ (Fig. S7) were detected in the extracts of *M. xanthus* DK1622 *AmchA-tet:*:pSynMch9. Compound SA₃ was found to be the major derivative under the applied cultivation conditions, whereas derivatives SA₂ and SA₄ were produced in significantly lower amounts (Fig. S7).

Myxochromides SB – novel engineered lipoheptapeptides

Myxochromide derivatives with $[M+H]^+$ masses corresponding to the assumed hybrid lipoheptapeptides myxochromides SB₂, SB₃ and SB₄ (Fig. S7) were detected in the extracts of *M. xanthus* DK1622 $\Delta mchA$ -*tet:*:pSynMch11. The major derivative was SB₄ under the applied cultivation conditions followed by SB₃ and SB₂, which were produced in significantly lower amounts (Fig. S7).

Myxochromides SC – novel engineered lipopentapeptides

Myxochromide derivatives with $[M+H]^+$ masses corresponding to the expected novel lipopentapeptides myxochromides SC₂, SC₃ and SC₄ (Fig. S7) were detected in the extracts of *M. xanthus* DK1622 *AmchA-tet::*pSynMch10. The production profile was found to be highly similar to that of the myxochromide SB producing mutant strain (Fig. S7). Compound SC₄ was identified as most prominent derivative under the applied cultivation conditions, whereas derivatives SC₂ and SC₃ were produced as minor products.

Myxochromides SD – novel engineered lipopentapeptides

Myxochromide derivatives with $[M+H]^+$ masses corresponding to the expected hybrid myxochromides SD₂, SD₃ and SD₄ (Fig. S7) were detected in the extracts of *M. xanthus* DK1622 *AmchA-tet::*pSynMch12. In comparison to the other hybrid myxochromides, production of myxochromides SD was found to be significantly lower, and was also observed for several independent clones. The major derivative was SD₃ under the applied cultivation conditions and was roughly produced at similar levels as some minor compounds in the other extracts. Derivatives SD₂ and SD₄ were produced in even lower yields (Fig. S7).

Fig. S7 UPLC-MS analysis of hybrid myxochromide production in myxobacterial mutant strains. Extracted ion chromatograms (EICs) for $\pm 0.02 \text{ m/z}$ corresponding to the $[M+H]^+$ ions of myxochromides are shown. **A**: Detection of myxochromides A in *M. xanthus* DK1622 wild type; A₂ ($[M+H]^+ = 834.47655$), A₃ ($[M+H]^+ = 846.47655$) and A₄ ($[M+H]^+ = 860.49220$). **B**: No myxochromide production in *M. xanthus* DK1622 $\Delta mchA$ -tet. **C**: Detection of myxochromides AS in *M. xanthus* DK1622 $\Delta mchA$ -tet:::pSynMch8; AS₂ ($[M+H]^+ = 695.37684$), AS₃ ($[M+H]^+ = 707.37684$), AS₄ ($[M+H]^+ = 721.39249$). **D**: Detection of myxochromides SA in *M. xanthus* DK1622 $\Delta mchA$ -tet:::pSynMch9; SA₂ ($[M+H]^+ = 876.52350$), SA₃ ($[M+H]^+ = 888.52350$), SA₄ ($[M+H]^+ = 902.53915$). **E**: Detection of myxochromides SB in *M. xanthus* DK1622 $\Delta mchA$ -tet:::pSynMch11; SB₂ ($[M+H]^+ = 989.60757$), SB₃ ($[M+H]^+ = 1001.60757$), SB₄ ($[M+H]^+ = 1015.62322$). **F**: Detection of myxochromides SC in *M. xanthus* DK1622 $\Delta mchA$ -tet:::pSynMch10; SC₂ ($[M+H]^+ = 805.48639$), SC₃ ($[M+H]^+ = 817.48639$), SC₄ ($[M+H]^+ = 779.47074$), SD₃ ($[M+H]^+ = 791.47074$), SD₄ ($[M+H]^+ = 805.48639$).

4.3 Heterologous expression of CP-mutated mch clusters in M. xanthus

In order to imitate the 'module-skipping' process observed in MchD and MchS pathways, we replaced the CP domains in the artificial A-type myxochromide pathway with CP-inactivated synthetic fragments. The expression constructs pSynMch17 (CP1 inactivated), pSynMch18 (CP2 inactivated), pSynMch19 (CP3 inactivated), pSynMch20 (CP4 inactivated, version 1), pSynMch21 (CP4 inactivated, version 2), pSynMch22

(CP5 inactivated), pSynMch23 (CP6 inactivated) and pSynMch24 (CP4 reactivated in S-type *mch* cluster) were transformed into *M. xanthus* DK1622 *AmchA-tet*. The production of myxochromides was detected by UPLC-MS. Myxochromides D were produced in *M. xanthus* DK1622 *AmchA-tet*::pSynMch20 and *M. xanthus* DK1622 *AmchA-tet*::pSynMch21, while the production of myxochromides was abolished in other mutants (Fig. S8).

Fig. S8 HPLC-MS analysis of myxochromide production in CP4-mutants. Extracted ion chromatograms (EICs) for $\pm 0.02 \text{ m/z}$ corresponding to the $[M+H]^+$ ions of myxochromides D are shown. **A**, Detection of myxochromides D in *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch20; D₂ ($[M+H]^+ = 737.42474$), D₃ ($[M+H]^+ = 749.42289$), D₄ ($[M+H]^+ = 763.43882$). **B**, Detection of myxochromides D in *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch21; D₂ ($[M+H]^+ = 737.42474$), D₃ ($[M+H]^+ = 749.42289$), D₄ ($[M+H]^+ = 737.42269$), D₃ ($[M+H]^+ = 749.42317$), D₄ ($[M+H]^+ = 763.43833$). **C**, *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch5 was set as reference; D₂ ($[M+H]^+ = 737.42169$), D₃ ($[M+H]^+ = 749.42156$), D₄ ($[M+H]^+ = 763.43939$).

4.4 Heterologous expression of mch clusters with duplication or deletion of biosynthetic domains

The duplicated A_n - CP_n - C_{n+1} encoding fragments of the A-type BGC were inserted to the previously identified fusion site (F-site) in A domains (Fig. S9).³ In the cases of DuplM2 and DuplM6, A₂- CP_2 - C_2 and A₆- CP_6 - C_6 encoding fragments were inserted to the F-site in A₂ domain and A₆ domain, respectively. For the deletions of biosynthetic domains, the unit A_n- CP_n - C_{n+1} encoding fragments of A-type BGCs were deleted between two F-sites locate at the C-terminus of C_n and C_{n+1} domains (Fig. S10). In the case of DelM2, A₂- CP_2 encoding fragment was deleted between C₂ and E₂ encoding fragments.

Δ			F-site		
~	C1 (C-terminus)	C1-A1 linker	A1 (N-terminus)	A1	
M1	RGYFEKLVEEMVRA PDEPVAF C2 (C-terminus)	RLSLAVKAPSPVHEARVESAPAVT C2-A2 linker	TAQ TLTGWFEAQAERSPNAT. A2 (N-terminus)	A - LTFGETHLSYAE A1	LNARANVLAHALRDH
DuplM1	A EHLVVMUR EAVQA PERRVPA C2 (C-terminus)	A F AL - LGANEASLVAKWEQGPSAP C2-A2 linker	LAPG - SVMELFQAQVARAPNAT. A2 (N-terminus)	A - LTFGETHLSYAE A2	
M2	A EHLVVMLREAVQA PERRVPA C3 (C-terminus)	A F AL – L GANEASL VAKWEQGPSAP C3-A3 linker	LAPG - SVMELFQAQVARAPEAT. A3 (N-terminus)	A − <mark>LEHGD V</mark> RLSYGE A3	LDLRATRLARHLVSL
M3	AERIARLLEAALESLPGAKTVG C4 (C-terminus)	DIDL-MDEAARRVLAEWGQHPRAY C4-A4 linker	DVTR-PVTALLDGAAPDAT. A4 (N-terminus)	A <mark>VVGPDGQSISYR</mark> E A3	L D R R A E R V A R H L R Q L
DuplM3	AAHLGRILQAIAEE PELHTSI C4 (C-terminus)	LPL-LSNEERRLYADLNRTERRY C4-A4 linker	TGR TLPELFERQAORTPDAT. A4 (N-terminus)	A <mark>VVGPDGQSISYR</mark> A4	
M4	AAHLGRLLQALAEE PELHTSI C5 (C-terminus)	LPL-LSNEERRLYADLNRTERRY C5-A5 linker	TGR TLPELFERQAQRTPDVV A5 (N-terminus)	A - <mark>LEHQGE</mark> TRTYRQ A4	HEAAEALADRLGAL
DupIM4	VAHLQVLFADAVAH PEKRLSI C5 (C-terminus)	C5-A5 linker	PTRHVPAHRFVEEHAERTPDVV. A5 (N-terminus)	A - <mark>LEHQGETRTYRO</mark> A5	HEAAEALADRUGAL
M5	VAHLQVLFADAVAH PEKRLSI C6 (C-terminus)	LAL - LPEQERGVVAAFTQGRLVA C6-A6 linker	PTRHVPAHRFVEEHAERTPDAT. A6 (N-terminus)	A - LELGQERLTYGE A5	LNRRANRAAHQLIAM
DuplM5	VRQLTGFITRLAAE PRSKVVI C6 (C-terminus)	VDL - LGAEERARLTP RAPEAA C6-A6 linker	PSEP - AVHEVIAAQAAKTPDAL. A6 (N-terminus)	A - LELGQERLTYGE A6	LNRRANRAAHQLIAM
M6	VRQLTGFITRLAAE PRSKVVI C3 (C-terminus)	C3-A3 linker	PSEP - AVHEVIAAQAAKTPTAT. A3 (N-terminus)	A - VEAEDGTLTYAA A3	L E A R A K A V A Q A L V Q R
M1_B_M3	AERIGRILELAIQSLUDAKHLGE C4 (C-terminus)	C4-A4 linker	SGAE - PVHALLARMA PEAT A4 (N-terminus)	ALVDANGERLSYRE A4	L D A R A E R V A R H L R Q L
M1_B_M4		F S I - V S Q D E R R L L AD I N R T E R A Y	PTH TUPELFARQUQTSIGTT.	Α LVDVDEQTL SYRE	L D A R A E R V A Q H L S QM
SrfA-C	K SQLLTAIQQLIQN PDQPVS1	TINL - VDDREREFLL TGLNPPAQA	HETK - PLTYWFKEAVNANPDAP	A - LTYSGQTLSYRE	
В	CP1 (C-terminus)	CP1-C2 linker	C2 (N-terminus)		
M1	R T F F A S P T V A G L V T A V Q Q Q R C CP2 (C-terminus)	R P G V A A V D F T G P M E R P E R I P L CP2-E2 linker	SSSQERLWIVDRIEETRAPIN C2 (N-terminus)	VIPLVL RLRGPL	HHEALRLSLDA IVQ
DupIM2	RQLFEHQTIADLARVASSTQ CP2 (C-terminus)	I - NAEQGLVTGS APL CP2-E2 linker	S S S Q E R L W I V D R I E E T R A P I Y E2 (N-terminus)	VIPLVL RLRGPL	HHEALRLSLDA <mark>IV</mark> Q
M2	RQLFEHQTIADLARVASSTQ CP5 (C-terminus)	P5-C6 linker	TPIQH WFFDQNRA - GPQHF C6 (N-terminus)	NMAVMLDVEPGI	DLAALRGALEAVER
M5	SALFEQPTLTALAAVIAAKEA CP6 (C-terminus)	A PQLPPLVRLTSPGD - CP6-TE linker	R - PLSFAQERLRFLAELE C6 (N-terminus)	G Q S A A Y N I P F A F	TLRGSLDEAALRRS
DuplM6	VSLFRNPTPAQLTAVLRTENA CP6 (C-terminus)	ANSPLVPLTPEAHALMAAGAA CP6-TE linker	NPNRTP - SFAQERLRFLAELE TE (N-terminus)	G Q S A A Y N I P F A F	TLRGSLDEAALRRS
MG			NENETENIXIVECCCTEV		F GLOBOGLOGD V P P

Fig. S9 Protein alignment of the fusion regions for the duplication of biosynthetic domains in the A-type pathway. The 'fusion site' (F-site) for the construction of DuplM1, DuplM3, DuplM4 and DuplM5 locates at the N-terminus of A domain. (A) alignment of the fusion regions in DuplM1, DuplM3, DuplM4 and DuplM5, in which domain set was duplicated in A_n -CP_n-C_{n+1} unit. (B) alignment of the fusion regions in DuplM2 and DuplM6 the fusion sites locate at the N-terminus of the E2 domain and the TE domain, respectively. The respective regions in the native modules (M1-M6) and the previously identified F-site in B-type pathway (M1_B_M4) after a proposed module duplication event serve as references.³ The respective regions were aligned with the surfactin synthetase subunit SrfA-C (PDB:2VSQ).

Fig. S10 Protein alignment of the fusion regions for the deletions of biosynthetic domains in the A-type pathway. (A) alignment of the fusion regions in DelM1, DelM3, DelM4 and DelM5, in which domain set was deleted in A_n -CP_n-C_{n+1} unit. The 'fusion site' (F-site) for the construction of the deletions locates at the C-terminus of C domain. (B) alignment of the fusion region in DelM2. Due to the E domain downstream of the CP₂ domain, the A₂-CP₂ unit was deleted in the case of DelM2 deletion, which is in analogy to the naturally occurred A₄-CP₄ deletion in D-type pathway (Cy1_D_C4-C5). The respective regions in the native modules (M1-M6) and the previously identified F-site in C-type pathways (Mh1_C_M5 and Mv1_C_M5) after a proposed module deletion event serve as references.³ The respective regions were aligned with the surfactin synthetase subunit SrfA-C (PDB:2VSQ).

The constructs with DuplM1 (pSynMch25), DuplM2 (pSynMch26), DuplM3 (pSynMch27) and DuplM6 (pSynMch28), as well as constructs with DelM1 (pSynMch29), DelM2 (pSynMch30), DelM3 (pSynMch31), DelM4 (pSynMch32) and DelM5 (pSynMch33), were transferred into *M. xanthus* DK1622 *AmchA-tet*. The production of myxochromides was analyzed by UPLC-MS. *M. xanthus* DK1622 *AmchA-tet*::pSynMch25, *M. xanthus* DK1622 *AmchA-tet*::pSynMch26 and *M. xanthus* DK1622 *AmchA-tet*::pSynMch28 produced only myxochromide A. Six mutants of *M. xanthus* DK1622 *AmchA-tet*::pSynMch27 were checked, five of them produced myxochromide B as major products and myxochromide A as minor products, while one mutant (*M. xanthus* DK1622 *AmchA-tet*::pSynMch27-2#) produced only myxochromide A (Fig. S11). Production of myxochromide D was detected in *M. xanthus* DK1622 *AmchA-tet*::pSynMch32, and myxochromide C was detected in *M. xanthus* DK1622 *AmchA-tet*::pSynMch32, and myxochromide C was detected in *M. xanthus* DK1622 *AmchA-tet*::pSynMch32 (Fig. S12).

Fig. S11 HPLC-MS analysis of myxochromide production in *M. xanthus* mutants with module duplication. Extracted ion chromatograms (EICs) for $\pm 0.02 \text{ m/z}$ corresponding to the $[M+H]^+$ ions of myxochromides are shown. Myxochromides A were detected in *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch25 (A), *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch25 (A), *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch27 (C), *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch27 (C), *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch27-2# (D), *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch28 (E). The MS/MS analysis of the peaks with m/z ($[M+H]^+$) of 860.49376 in A, B and D suggested them as A₃-Abu in which the Ala of myxochromide A is supposed to be replace by aminobutyric acid (Abu), similar with the case observed in previously reported myxochromide S-Abu.³ Myxochromide B was detected in C; B₃ ($[M+H]^+ = 959.56398$) and B₄ ($[M+H]^+ = 973.57673$).

Fig. S12 HPLC-MS analysis of myxochromide production in *M. xanthus* mutants with module deletion. Extracted ion chromatograms (EICs) for $\pm 0.02 \text{ m/z}$ corresponding to the $[M+H]^+$ ions of myxochromides are shown. **A**, *M. xanthus* DK1622 Δ mchA-tet::pSynMch32; D₂ ($[M+H]^+ = 737.42423$), D₃ ($[M+H]^+ = 749.42404$), D₄ ($[M+H]^+ = 763.43837$). **B**, *M. xanthus* DK1622 Δ mchA-tet::pSynMch5 was set as reference; **C**, *M. xanthus* DK1622 Δ mchA-tet::pSynMch33; C₃ ($[M+H]^+ = 775.43860$), C₄ ($[M+H]^+ = 789.45437$). **D**, *M. xanthus* DK1622 Δ mchA-tet::pSynMch4 was set as reference.

4.5 Verification of M. xanthus mutants by Southern blot

The chromosomal integration of expression constructs harboring the duplicated encoding sequences of modules 1, 2, 3 and 6 (DuplM1, DuplM2, DuplM3 and DuplM6) in *M. xanthus* mutants was analyzed by Southern blot. M. xanthus DK1622 AmchA-tet served as negative control, M. xanthus DK1622 AmchA-tet::pSynMch2 (with one copy of A-type mch cluster) was set as reference, and pSynMch25~pSynMch28 served as positive control. Genomic DNA of M. xanthus DK1622 AmchA-tet, M. xanthus DK1622 AmchA-tet::pSynMch2, M. xanthus DK1622 AmchA-tet::pSynMch25 (DuplM1), M. xanthus DK1622 AmchA-tet::pSynMch26 (DuplM2), M. xanthus DK1622 AmchA-tet::pSynMch27 (DuplM3) and M. xanthus DK1622 AmchA-tet::pSynMch28 (DuplM6) were extracted by phenol/chloroform/isoamyl alcohol. Genomic DNA was digested with NcoI (DuplM1, DuplM3 and references) or Eco47III (DuplM2, DuplM6 and references) and was separated by 1% TAE agarose gel at 25 V for 20 hours. 1.5 ng DIG labeled DNA Molecular Weight Marker VII (Roch) was loaded in parallel. The gels were incubated twice in denaturation solution (0.5 M NaOH and 1.5 M NaCl) with 15 min for each time, and were then washed twice (15 min for each) in neutralizing solution (1 M Tris/HCl and 1.5 M NaCl, pH 7.5) after short wash in MilliQ water. After 30 min equilibration in 20× SSC buffer (3 M NaCl and 300 mM trisodium citrate, pH 7.0), DNA was transferred to a positively charged nylon membrane (Roche Applied Science) by capillary blotting for overnight. Afterwards, membranes were briefly soaked in 2× SSC buffer and baked at 80 °C for 2 hours. For hybridization, the membranes were prehybridized in hybridization buffer (DIG Easy hybrid granules, Roche) in roller bottle, gently shaking at 42 °C for 2 hours. DIG labelled nucleotide probes, generated by PCR DIG Labeling Mix (Roche) and targeting on each duplicated module, were then added to hybridization buffer to the final concentration 12 ng/mL and the hybridization was performed at 42 °C overnight. After two washes (5 min for each) in 2× SSC including 0.1% SDS and two washes (15 min for

each) in $0.5 \times$ SSC including 0.1% SDS at 68 °C, membranes were equilibrated in maleic acid buffer (150 mM NaCl, 100 mM maleic acid, pH 7.5) and then incubated in blocking solution (1% Blocking Reagent (Roche Applied Science) in maleic acid buffer) for 1 hour at room temperature with gentle shaking. Anti-digoxigenin-AP Fab fragments (Roche Applied Science) was then added to the blocking solution and gently shook at room temperature for 30 min. Membranes were subsequently washed twice in maleic acid buffer and detection buffer (100 mM NaCl, 100 mM Tris-HCl pH 9.5). Several drops of CDP-Star chemiluminescent substrate (Roche Applied Science) were added to the surface of the membranes and chemiluminescence was detected by documentation device.

As shown in Fig. S13, two copies of module 1, 2, 3 and 6 encoding fragments were detected in *M. xanthus* DK1622 *AmchA-tet*::pSynMch25 (DuplM1), *M. xanthus* DK1622 *AmchA-tet*::pSynMch26 (DuplM2), *M. xanthus* DK1622 *AmchA-tet*::pSynMch27 1# (DuplM3) and *M. xanthus* DK1622 *AmchA-tet*::pSynMch28 (DuplM6), respectively. In *M. xanthus* DK1622 *AmchA-tet*::pSynMch27 2# (DuplM3) producing only myxochromide A, only one copy of module 3 encoding fragment was detected.

Fig. S13 Southern blot analysis of chromosomal integration of duplicated domain set-encoding fragments in *M. xanthus* mutants. Blotting results for the DuplM1 in *M. xanthus* DK1622 *AmchA-tet*::pSynMch25 (A), DuplM2 in *M. xanthus* DK1622 *AmchA-tet*::pSynMch26 (B), DuplM3 in *M. xanthus* DK1622 *AmchA-tet*::pSynMch27 (C) and DuplM6 in *M. xanthus* DK1622 *AmchA-tet*::pSynMch28 (D) are shown. The sizes of expected fragments are illustrated. *M.x., M. xanthus* DK1622 *AmchA-tet* was set as negative control; *M.x.*::pSynMch2, reference with one copy of A-type *mch* cluster; pSynMch25~pSynMch28, plasmids were set as positive control.

5. Structure elucidation of novel hybrid myxochromides

5.1 Cultivation of heterologous production strains and isolation of myxochromides

The heterologous producers *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch8 (Myxochromides AS) and DK1622 $\Delta mchA$ -tet::pSynMch11 (Myxochromides SC) were cultivated in 18 L (18× 1 L) and the producers *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch14 (Myxochromides SA), *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch15 (Myxochromides SB) and *M. xanthus* DK1622 $\Delta mchA$ -tet::pSynMch16 (Myxochromides SD) were cultivated in 9L (10× 1 L) CTT medium including 2% XAD-16 resin for 5-6 days at 30 °C and 180 rpm.

For the isolation of myxochromides AS, SA and SC, cells and XAD-16 Amberlite adsorber resin were harvested by centrifugation at 10,500 rpm and 4 °C for 15 min and were extracted five times with 1 L methanol and acetone (1:1). The organic solvents were removed under reduced pressure and the residues were extracted five times with 200 mL of ethyl acetate. After removal of the solvent, the crude extracts were dissolved in up to 10 mL methanol for subsequent separation via reverse phase HPLC. A Dionex UltiMate 3000 system equipped with a Luna 5 μ m C18(2) 100Å column (250 × 10 mm, Phenomenex) was used. At constant flow rate (5.0 mL/min), the following multi-step gradient was applied for isolation of myxochromides AS₄ and SC₄ (A: deionized water, B: acetonitrile): 0-5 min 10-45% B, 5-30 min 45-65% B, 30-40 min 65-80% B, 40-41 min 80-10% B, 41-47 min 10% B. Myxochromide SC₄ was further purified by applying the following modified gradient (A: deionized water, B: acetonitrile): 0-5 min 10% B, 5-50 min 10-95% B, 50-55 min 95% B, 55-56 min 95-10% B, 56-60 min 10% B. For separation of myxochromide SA, the following modified gradient was applied (A: deionized water, B: acetonitrile): 0-4 min 5% B, 4-8 min 5-65%, 8-41 min 65-95% B, 41-43 min 95% B, 43-45 min 95-5% B, 45-51 min 5% B).

For the isolation of myxochromides SB and SD, cells and XAD adsorber resin were placed in a glass column over glass wool and a sand layer. Myxochromides were extracted by pouring 600 mL n-hexane, 900 mL dichloromethane, 600 mL ethyl acetate, 600 mL acetone and 600 mL methanol through the packed column. The fractions were concentrated and analyzed for target myxochromides via HPLC-MS. Separation was performed on a Dionex UltiMate 3000 system using a Waters BEH C18 (100×2.1 mm, 1.7 µm) column. At a flow rate of 0.6 mL/min, the following gradient was applied (A: deionized water + 0.1% formic acid, B: acetonitrile + 0.1% formic acid): 0-0.5 min 5% B, 0.5-18.5 min 5-95% B, 18.5-20.5 min 95% B. Full scan mass spectra were acquired in positive ESI mode in a range from 200-2000 m/z. After removal of the solvent, myxochromides were dissolved in 3 mL of methanol for further separation via reverse phase HPLC. Myxochromides SB were purified on a Dionex Ultimate 3000 system equipped with an Eclipse C8 column (250×10 mm, 4 µm) at constant flowrate (5 mL/min) by applying the following gradient (A: deionized water, B: acetonitrile): 0-2 min 5% B, 2-10 min 5-65% B, 10-30 min 65-70% B, 30-31 min 70-95% B, 31-34 min 95 % B, 34-35 min 95-5% B, 35-38 min 5% B. Myxochromides SD were purified on a Dionex UltiMate 3000 system equipped with a Jupiter column $(250 \times 10 \text{ mm}, 4 \text{ }\mu\text{m})$ at constant flow rate (5 mL/min) by applying the following modified gradient (A: deionized water, B: acetonitrile): 0-2 min 5% B, 2-10 min 5-66% B, 10-30 min 66-68% B, 30-31 min 68-95% B, 31-34 min 95% B, 34-35 min 95-5% B, 35-38 min 5% B.

UV traces were recorded by a diode array detector (DAD) with specified wave lengths (210, 300 and 410 nm) with myxochromides showing good UV absorption at 410 nm. Retention times (R_t) and yields of the isolated compounds are shown in Table S9.

Mutant strain	Isolated compound	R _t [min]	Yield [mg]			
DK1622 <i>AmchA-tet</i> :::pSynMch8	Myxochromide AS ₄	27.6	4.5			
DK1622 AmchA-tet::pSynMch14	Myxochromide SA ₃	18.9	7.2			
DK1622 AmchA-tet::pSynMch15	Myxochromide SB ₄	23.0	7.5			
DK1622 AmchA-tet:::pSynMch10	Myxochromide SC ₄	39.2	0.5			
DK1622 AmchA-tet::pSynMch16	Myxochromide SD ₃	19.6	0.7			

Table S9 Retention times and total amounts of hybrid myxochromides isolated in this study.

5.2 Structure elucidation of hybrid myxochromides

Structure elucidation of myxochromide AS₄, myxochromide SA₃, myxochromide SB₄, myxochromide SC₄ and myxochromide SD₃ was achieved using 1D and 2D NMR spectroscopy as well as HR-MS data. NMR spectra were acquired in CD₃OD at a Bruker Ascend 700 or 500 MHz spectrometer equipped with a 5 mm TXI cryoprobe. 1D ¹H and 2D ¹H⁻¹H COSY, HSQC, HMBC (and if necessary) ROESY spectra were recorded using standard pulse programs. Carbon chemical shifts were extracted from 2D NMR data. NMR spectroscopic data are listed in the Tables S11, S13, S15, S17 and S19. HR-ESI-MS data were obtained on a Bruker Maxis 4G mass spectrometer. Full scan mass spectra were acquired in a range from 150-2500 *m/z* in a positive mode. HR-ESI-MS data of hybrid myxochromides are shown in Table S10.

$\begin{tabular}{ccc} Compound & Formula & [M+H]^+ calc. & [M+H]^+ exp. \end{tabular}$						
Myxochromide AS ₄	$C_{38}H_{52}N_6O_8$	721.39194	721.39373	2.48		
Myxochromide SA ₃	$C_{48}H_{69}N_7O_9$	888.52295	888.52409	1.28		
Myxochromide SB ₄	$C_{54}H_{80}N_8O_{10}\\$	1015.62267	1015.62390	1.21		
Myxochromide SC ₄	$C_{46}H_{66}N_6O_8$	831.50149	831.50222	0.88		
Myxochromide SD ₃	$C_{44}H_{64}N_6O_8$	791.47019	791.47051	0.40		

Table S10 HR-ESI-MS data of isolated hybrid myxochromides

For the assignment of the absolute configuration, Marfey's method based on amino acid derivatization was applied.⁷ 0.1-0.3 mg of pure compound was hydrolyzed with 37% HCl (0.2 mL) in a 1.5 mL glass vial for 3 days at 110 °C. The hydrolysate was evaporated to dryness and dissolved in H₂O (100 µL). A 50 µL aliquot was supplemented with 1N NaHCO₃ (20 µL) and 1% 1-fluoro-2,4-dinitrophenyl-5-*L/D*-leucinamide (*L*-FDLA or *D*-FDLA) solution in acetone (20 µL), and the mixtures were heated to 40 °C for 8 h at 700 rpm. After cooling down to room temperature, the solutions were neutralized with 2N HCl (20 µL), evaporated to dryness and the derivatized amino acids were dissolved in 300 µL acetonitrile. An amino acid standard mix (Sigma Aldrich) as well as *N*-Me-*L*-Threonine (Sigma Aldrich) were derivatized via the same procedure and all samples were analyzed on a Dionex Ultimate 3000 RSLC system coupled to a Bruker Maxis 4G mass spectrometer. Separation was performed using a Waters BEH C18, 100×2.1 mm, 1.7 µm d_p column. At a flow rate of 0.6 mL/min, the following gradient was applied (A: deionized water + 0.1% formic acid, B: acetonitrile + 0.1% formic acid): 0 min 5% B, 0-1 min 5-10% B, 1-15 min 10-35% B, 15-22 min 35-55% B, 22-25 min 55-80% B, 25-26 min 80% B, 26-26.5 min 80-5% B, 26.5-31 min 5% B. Full scan mass spectra were acquired in a range from 100-1000 *m/z*.

5.2.1 Structure of myxochromide AS₄

Structure elucidation of myxochromide AS₄ was achieved using 1D ¹H and 2D ¹H-¹H COSY, HSQC and HMBC spectra (Fig. S15). Carbon chemical shifts were extracted from 2D NMR data. NMR spectroscopic data are listed in Table S11. The ¹H NMR spectrum exhibited signals corresponding to five α -CH protons (δ_H 3.8-5.6), four CH₃ groups (δ_H 1.3-1.7) and two CH₂ groups (δ_H 2.0-2.3) together with a *N*-Me group (δ_H 3.29, 3H, s). Moreover, a number of downfield signals belonging to the unsaturated polyketide side chain (δ_H 5.8-7.3) and a CH₃ signal (δ_H 1.04, 3H, t) were observed. 2D NMR data revealed the presence *N*-Me-threonine, glutamine, alanine and a polyene side chain. Amino acid sequence was established by means of key HMBC correlations and final structure was elucidated as shown in Fig. S14. For the assignment of the absolute configuration of myxochromide AS₄, hydrolysis and Marfey analysis of the obtained amino acids,⁷ was applied as described above. The chromatograms obtained from HPLC-MS analysis are illustrated in Fig. S16 and stereochemical assignments are illustrated in Table S12. Comparison of the retention times and masses of derivatized standard amino acids and the hydrolyzed lipopeptide revealed that all amino acids of the myxochromide AS₄ peptide core show *L*-configuration, while glutamine was converted to glutamic acid during hydrolysis. This correlates with the assumption that in the underlying hybrid pathway, the condensation domain of module 3 specifically

processes the *L*-configured aminoacyl donor (${}^{L}C_{L}$ domain), although the presence of an epimerization domain in module 2 of the assembly line points to the incorporation of *D*-Ala into this position of the peptide core.

Fig. S14 Structure of myxochromide AS_4 showing selected COSY (bold line) and key HMBC (arrow) correlations.

Moiety			Position	δ_{C}^{a}	$\delta_H^{\ b}(J \text{ in Hz})$	HMBC ^c
<i>L</i> -Ala (1)			1	173.2		
			2	53.0	3.77, <i>q</i> (7.3)	1, 3, 4
			3	15.3	1.65, <i>d</i> (7.3)	1, 2
<i>L</i> -Ala (2)			4	173.7		
			5	51.6	3.82, <i>q</i> (7.0)	4, 6,7
			6	14.9	1.39, <i>d</i> (7.0)	4, 5
<i>L</i> -Ala (3)			7	176.6		
			8	51.1	4.03, <i>q</i> (7.3)	7, 9,10
			9	16.1	1.32, <i>m</i>	7, 8
N-Me-L-Thr	10	171.1				
	11	59.5	5.55, <i>d</i> (4.2)	1',10, 12, 19		
	12	74.0	5.46, <i>m</i>	13, 14		
	13	16.5	1.26, <i>d</i> (6.5)	11, 12		
	19	35.0	3.27, <i>s</i>	1', 11		
<i>L</i> -Gln	14	170.9				
	15	51.9	4.67, <i>dd</i> (3.2, 9.6)	1, 14, 16, 17		
	16a	27.8	1.93, <i>m</i>	15, 17, 18		
	16b		2.04, <i>m</i>			
	17a	31.9	2.26, <i>m</i>	14, 16		
	17b		2.32, <i>m</i>			
	18	178.2				
Side chain	1'	170.6				
	2'	119.7	6.57, <i>d</i> (14.6)	1'		
	3'	145.2	7.29, <i>dd</i> (11.4, 14.6)	1', 2', 5'		
	4'	138.4	6.52, <i>m</i>			
	5'	141.8	6.69, <i>m</i>			
	6'-14'	d	d			

Table S11 NMR spectroscopic data of myxochromide AS₄.

15'	135.1	6.24, <i>m</i>	
16'	130.9	6.12, <i>m</i>	15', 18'
17'	138.1	5.79, <i>m</i>	15', 18', 19'
18'	26.7	2.14, <i>m</i>	16', 17', 19'
19'	13.7	1.02, <i>t</i> (7.2)	18'

 $\frac{d}{d}$ acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD₃OD at δ 49.15 ppm. $\frac{d}{d}$ acquired at 500 MHz, referenced to solvent signal CD₃OD at δ 3.31 ppm. $\frac{d}{d}$ proton showing HMBC correlations to indicated carbons. $\frac{d}{d}$ overlapped signals.

Fig. S15 (continued on next page)

Fig. S15 (continued on next page)

Fig. S15 (continued on next page)

Fig. S15 NMR spectra of myxochromide AS₄.

Fig. S16 Analysis of the absolute configuration of myxochromide AS₄. Extracted ion chromatograms (EIC) for $\pm 0.05 \ m/z$ corresponding to the $[M+H]^+$ ions of derivatized amino acids, which are present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with *D*-FDLA reagent. B: Standard amino acid mix derivatized with *D*-FDLA reagent. B: Standard amino acid mix derivatized myxochromide AS₄ derivatized with *D*-FDLA reagent. D: Hydrolyzed myxochromide AS₄ derivatized with *D*-FDLA reagent. C: Hydrolyzed myxochromide AS₄ derivatized with *D*-FDLA reagent. D: Hydrolyzed myxochromide AS₄ derivatized with *D*-FDLA reagent. C: Hydrolyzed myxochromide AS₄ derivatized with *D*-FDLA. C: Same sample as in C analyzed for the *N*-Me-*L*-threonine *D*-FDLA derivative. H: Same sample as in D analyzed for the *N*-Me-*L*-threonine *L*-FDLA derivative.

as EDI A dominating	L-aa s	L-aa standards		hydrolysate	Assigned
aa-FDLA derivative	R _t [min]	$m/z [M+H]^+$	R _t [min]	m/z [M+H] ⁺	configuration
Glu-D-FDLA	14.3	442.1578	14.3	442.1563	т
Glu-L-FDLA	13.3	442.1579	13.3	442.1574	L
Ala-D-FDLA	16.7	384.1520	16.7	384.1517	т
Ala-L-FDLA	14.3	384.1524	14.3	384.1518	L
Ala-D-FDLA	16.7	384.1520	16.7	384.1517	т
Ala-L-FDLA	14.3	384.1524	14.3	384.1518	L
Ala-D-FDLA	16.7	384.1520	16.7	384.1517	т
Ala-L-FDLA	14.3	384.1524	14.3	384.1518	L
N-Me-Thr-D-FDLA	14.4	428.1782	14.3	428.1774	т
N-Me-Thr-L-FDLA	12.9	428.1786	12.8	428.1776	L

Table S12 Analytical data of detected amino acid derivatives and assignment of the absolute configuration of the amino acids in myxochromide AS_4 .

5.2.2 Structure of myxochromide SA₃

Structure elucidation of myxochromide SA₃ was achieved using 1D ¹H and 2D ¹H-¹H COSY, HSQC and HMBC spectra (Fig. S18). Carbon chemical shifts were extracted from 2D NMR data. NMR spectroscopic data are listed in Table S13. The COSY spectrum supported by HSQC and HMBC data showed presence of spin systems corresponding to N-Me-threonine, glutamine, alanine, proline and leucine residues as well as a polyene side chain. Amino acid sequence was established by means of key HMBC correlations and final structure was elucidated as shown in Fig. S17. For the assignment of the absolute configuration of myxochromide SA₃, Marfey analysis of the obtained amino acids⁷ was applied as described above. The chromatograms obtained from HPLC-MS analysis are illustrated in Fig. S19 and stereochemical assignments are illustrated in Table S14. Comparison of the retention times and m/z values of derivatized standard amino acids and the hydrolyzed lipopeptide revealed the presence of a D-configured leucine residue (C16) in myxochromide SA₃. The amino acids alanine (C2), proline (C5), another leucine (C10), N-Me-threonine (C22) and glutamine (C26), which was converted to glutamic acid during hydrolysis, were found to be L-configured. These findings demonstrate that the epimerization domain of module 2 in the underlying hybrid assembly line is not specific for alanine, but also accepts the more bulky leucine residue. The downstream condensation domain from module 3 originating from the A-type mch pathway is obviously a ^DC_L-type domain, thereby processing the D-configured dipeptide intermediate.

Fig. S17 Structure of myxochromide SA_3 showing selected COSY (bold line) and key HMBC (arrow) correlations.

Moiety	Position	$\delta_C^{\ a}$	$\delta_H^{\ b}(J \text{ in Hz})$	HMBC^{c}
<i>L</i> -Ala	1	172.9		
	2	52.1	3.84, <i>q</i> (7.3)	1, 3, 4
	3	15.8	1.56, <i>d</i> (7.3)	1, 2
L-Pro	4	174.3		
	5	63.5	4.00, <i>dd</i> (9.6, 6.9)	4, 6, 9
	ба	29.8	1.89, <i>m</i>	5,7
	6b		2.24, <i>m</i>	5,7
	7a	26.4	2.02, <i>m</i>	6, 8
	7b		2.16, <i>m</i>	6, 8
	8a	47.8	3.55, <i>m</i>	7
	8b		3.74, <i>m</i>	7
L-Leu	9	172.0		
	10	52.1	4.40, <i>m</i>	9, 11, 12, 15
	11a	38.0	1.51, <i>m</i>	10

Table S13 NMR spectroscopic data of myxochromide SA₃.

	11b		1.56, <i>m</i>	10	
	12	25.8	1.53, <i>m</i>	10, 11, 13, 14	
	13	23.4	0.98, <i>d</i> (6.9)	11, 12, 14	
	14	23.4	0.98, <i>d</i> (6.9)	13	
D-Leu	15	174.8			
	16	51.7	4.78, <i>t</i> (7.5)	15, 18, 21	
	17a	40.4	1.49, <i>m</i>	18, 19, 20	
	17b		1.57, <i>m</i>	18, 19, 20	
	18	25.9	1.52, <i>m</i>		
	19	22.6	0.94, <i>m</i>	20	
	20	22.6	0.94, <i>m</i>	19	
N-Me-L-Thr	21	169.0			
	22	60.7	5.57, <i>d</i> (3.3)	1', 21, 23	
	23	72.2	5.73, <i>m</i>	24, 25	
	24	16.3	1.09, <i>d</i> (6.6)	21, 22	
	30	35.2	3.21, <i>s</i>	1', 22	
L-Gln	25	171.5			
	26	54.0	4.51, <i>dd</i> (8.4, 8.1)	1, 25, 27, 28	
	27a	28.8	1.80, <i>m</i>	29	
	27b		2.34, <i>m</i>	29	
	28a	32.1	2.23, <i>m</i>	29	
	28b		2.32, <i>m</i>	29	
	29	177.2			
Side chain	1'	170.9			
	2'	120.0	6.60, <i>d</i> (14.7)	1'	
	3'	144.8	7.35, <i>dd</i> (14.7, 11.5)	1'	
	4'	131.3	6.49, <i>m</i>		
	5'-15'	d	d	d	
	16'	133.1	6.14, <i>m</i>		
	17'	131.1	5.75, <i>m</i>	18'	
	18'	18.2	1.78, <i>d</i> (6.6)	17'	
^{<i>a</i>} acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD ₃ OD at δ 49.15 ppm. ^{<i>b</i>} acquired at 500 MHz, referenced to solvent signal CD ₃ OD at δ 3.31 ppm. ^{<i>c</i>} proton showing HMBC correlations to indicated carbons. ^{<i>d</i>} overlapped signals.					

Fig. S18 (continued on next page)

Fig. S18 (continued on next page)

Fig. S18 (continued on next page)

Fig. S18 NMR spectra of myxochromide SA₃.

Fig. S19 Analysis of the absolute configuration of myxochromide SA₃. Extracted ion chromatograms (EIC) for $\pm 0.05 \ m/z$ corresponding to the $[M+H]^+$ ions of derivatized amino acids, which are present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with *D*-FDLA reagent. B: Standard amino acid mix derivatized with *D*-FDLA reagent. B: Standard amino acid mix derivatized with *L*-FDLA reagent. C: Hydrolyzed myxochromide SA₃ derivatized with *D*-FDLA reagent. D: Hydrolyzed myxochromide SA₃ derivatized with *L*-FDLA reagent. C: Hydrolyzed myxochromide SA₃ derivatized with *D*-FDLA reagent. C: Hydrolyzed myxochromide SA₃ derivatized with *L*-FDLA reagent. C: Same sample as in D analyzed for the *L*-glutamic acid *L*-FDLA derivative. G: Standard solution of *N*-Me-*L*-threonine derivatized with *D*-FDLA. H: Standard solution of *N*-Me-*L*-threonine *D*-FDLA derivative. J: Same sample as in D analyzed for the *N*-Me-*L*-threonine *D*-FDLA derivative. J: Same sample as in D analyzed for the *N*-Me-L-threonine *L*-FDLA.

Table S14 Analytical data of detected amino acid derivatives and assignment of the absolute configuration of the amino acids in myxochromide SA₃.

oo EDI A dominating	L-aa s	L-aa standards		Peptide hydrolysate		
aa-rDLA derivative	t _R [min]	$m/z [M+H]^+$	t _R [min]	$m/z [M+H]^+$	configuration	
Glu-D-FDLA	14.3	442.1578	14.3	442.1576	т	
Glu-L-FDLA	13.3	442.1579	13.3	442.1570	L	
Ala-D-FDLA	16.7	384.1520	16.7	384.1515	т	
Ala-L-FDLA	14.3	384.1524	14.3	384.1511	L	
Pro-D-FDLA	16.2	410.1675	16.2	410.1676	т	
Pro-L-FDLA	14.5	410.1675	14.5	410.1673	L	
Leu-D-FDLA	21.1	426.1989	21.1	426.1993	т	
Leu-L-FDLA	17.8	426.1988	17.8	426.1986	L	
Leu-D-FDLA	21.1	426.1989	17.8	426.1993	D	
Leu-L-FDLA	17.8	426.1988	21.1	426.1982	D	
N-Me-Thr-D-FDLA	14.4	428.1782	14.4	428.1786	T	
N-Me-Thr-L-FDLA	12.9	428.1786	12.9	428.1785	L	

5.2.3 Structure of myxochromide SB₄

Structure elucidation of myxochromide SB₄ was achieved using ¹H and 2D ¹H-¹H COSY, HSQC, HMBC and ROESY spectra (Fig. S21). Carbon chemical shifts were extracted from 2D NMR data. NMR spectroscopic data are listed in the Table S15. The ¹H NMR spectrum closely resembled to that of myxochromide SA₃. In addition to the common structural parts, analysis of 2D NMR spectra corroborated the presence of an additional leucine residue compared to myxochromide SA₃. Key HMBC and ROESY correlations established the amino acid sequence and finalized its planar structure as depicted in Fig. S20. Length of the polyene side chain was deduced based on the HR-MS data and molecular formula. For the assignment of the absolute configuration of myxochromide SB₄, hydrolysis and Marfey analysis of the obtained amino acids,⁷ was applied as described above. The chromatograms obtained from HPLC-MS analysis are illustrated in Fig. S22 and stereochemical assignments are illustrated in Table S16. Comparison of the retention times and masses of derivatized standard amino acids and the hydrolyzed lipopeptide revealed that one of the three leucine residues (C10, C16 and C22) from myxochromide SA_3 has D configuration. The remaining leucine residues as well as the amino acids alanine (C2), proline (C5), N-Me-threonine (C28) and glutamine (C32), which was converted to glutamic acid during hydrolysis, were found to be L-configured. According to the domain organization of the underlying hybrid assembly line, which harbors an epimerization domain in module 2, the D-configured leucine was assigned to C22. This also correlates with the structure of myxochromide SA3 and identifies the condensation domain of module 3 originating from the B-type *mch* pathway as a ${}^{D}C_{L}$ domain.

Fig. S20 Structure of myxochromide SB_4 showing selected COSY (bold line), ROESY (dashed arrow) and key HMBC (arrow) correlations.

				-	
Moiety	Position	δ_{C}^{a}	$\delta_{H}^{b}(J \text{ in } \mathbf{Hz})$	HMBC ^c	ROESY ^{d, e}
<i>L</i> -Ala	1	174.5			
	2	50.3	4.26 m	1,3	
	3	15.5	1.42 d (7.4)	1,2	
L-Pro	4	174.0			
	5	63.6	4.11 <i>m</i>	4, 6a/b,7a/b	10
	6a	30.5	1.90 <i>m</i>	4,5,7a/b	
	6b	30.5	2.35 m	4, 5,7a/b	
	7a	25.9	2.05 m	5,6a/b,8a/b	
	7b	25.9	2.13 <i>m</i>	5,6a/b,8a/b	
	8a	48.3	3.68 m	6a/b,7a/b	10
	8b	48.3	3.85 m	6a/b,7a/b,9	10
L-Leu	9	174.0			
	10	49.6	$4.95 dd^{(f)}$	9,11,12,15	8a/b, 5
	11a	41.3	1.51 <i>m</i>	10,12	
	11b	41.3	1.64 <i>m</i>	10,12	
	12	25.8	1.65 <i>m</i>	13,14	
	13	21.2	0.99 m	11,12,14	
	14	23.5	0.95 m	11,12,13	

Table S15 NMR spectroscopic data of myxochromide SB₄.

L-Leu	15 16	174.4 54.5	4.27 m	15,17a/b,18,21
	17a	41.8	1.65 m	19,20
	l'/b	41.8	1.76 m	19,20
	18	25.9	1.74 <i>m</i>	
	19	21.1	0.91 d (6.1)	17a/b
	20	23.1	1.01 <i>m</i>	17a/b
D-Leu	21	174.1		
	22	52.6	4.68 m	21,23a/b,24
	23a	44.3	1.59 m	22,24,25,26
	23b	44.3	1.44 <i>m</i>	22,24,25,26
	24	25.7	1.52 m	
	25	22.8	0.94 <i>m</i>	23a/b,24,25
	26	22.8	0.94 <i>m</i>	23a/b,24,25
N-Me-L-Thr	27	168.6		
	28	61.0	5.57 d (3.5)	1´,27,29,36
	29	71.0	5.83 m	30,31
	30	16.2	1.09 <i>d</i> (6.6)	27,28,29
	36	35.5	3.23 s	1´,28
<i>L</i> -Gln	31	170.7		
	32	55.4	4.12 m	31,33,34
	33a	28.5	1.92 m	32,34,35
	33b	28.5	2.16 <i>m</i>	32,34,35
	34a	31.9	2.29 m	32,33a/b,35
	34b	31.9	2.53 m	32,33a/b,35
	35	177.4		
Side chain	1'	170.8		
	2'	120.0	6.69 <i>d</i> (14.9)	1′,3′
	3'	145.0	7.36 dd (14.5,11.2)	1´,2´,4´
	4'	138.4	6.55 m	5
	5'	141.6	6.72 <i>m</i>	3´,4´
	6′-14′	f	f	
	15'	135.1	6.24 <i>m</i>	17´
	16'	130.9	6.12 dd (9.8,15.0)	17′
	17'	138.1	5.79 m	15´,18´,16´
	18'	26.5	2.14 <i>m</i>	16´,17´,
	19′	13.6	1.02 <i>t</i> (7.4)	18´,17´

^{*a*} acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD₃OD at δ 49.15 ppm. ^{*b*} acquired at 500 MHz, referenced to solvent signal CD₃OD at δ 3.31 ppm.

^{*c*} proton showing ROESY correlations to indicated protons.

^{*e*} acquired at 500 MHz, referenced to solvent signal CD₃OD at δ 3.31 ppm.

^foverlapped signals.

^{*g*} correlation obtained from HMBC spectra in (CD₃)₂SO (data not shown).

Fig. S21 (continued on next page)

Fig. S21 NMR spectra of myxochromide SB₄.

Fig. S22 Analysis of the absolute configuration of myxochromide SB₄. Extracted ion chromatograms (EIC) for $\pm 0.05 \ m/z$ corresponding to the $[M+H]^+$ ions of derivatized amino acids, which are present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with *D*-FDLA reagent. B: Standard amino acid mix derivatized with *D*-FDLA reagent. B: Standard amino acid mix derivatized myxochromide SB₄ derivatized with *D*-FDLA reagent. D: Hydrolyzed myxochromide SB₄ derivatized with *D*-FDLA reagent. C: Hydrolyzed myxochromide SB₄ derivatized with *D*-FDLA reagent. D: Hydrolyzed myxochromide SB₄ derivatized with *D*-FDLA reagent. C: Hydrolyzed myxochromide SB₄ derivatized with *D*-FDLA derivative with *D*-FDLA derivative. H: Same sample as in **D** analyzed for the *N*-Me-*L*-threonine *L*-FDLA derivative.

Table S16 Analytical data of detected amino acid derivatives and assignment of the absolute configuration of the amino acids in myxochromide SB_4 .

aa-FDLA	L-aa standards		Peptide l	nydrolysate	Assigned
derivative	t _R [min]	$m/z [M+H]^+$	t _R [min]	$m/z [M+H]^+$	configuration
Glu-D-FDLA	14.3	442.1578	14.3	442.1572	L
Glu-L-FDLA	13.3	442.1579	13.3	442.1582	
Ala-D-FDLA	16.7	384.1520	16.7	384.1513	L
Ala-L-FDLA	14.3	384.1524	14.3	384.1525	
Pro-D-FDLA	16.2	410.1675	16.2	410.1672	L
Pro-L-FDLA	14.5	410.1675	14.5	410.1676	
Leu-D-FDLA	21.1	426.1989	21.1	426.1986	L
Leu-L-FDLA	17.8	426.1988	17.8	426.1985	
Leu-D-FDLA	21.1	426.1989	21.1	426.1986	L
Leu-L-FDLA	17.8	426.1988	17.8	426.1985	
Leu-D-FDLA	21.1	426.1989	17.8	426.1991	D
Leu-L-FDLA	17.8	426.1988	21.1	426.1988	
N-Me-Thr-D-FDLA	14.4	428.1782	14.4	428.1775	L
N-Me-Thr-L-FDLA	12.9	428.1786	12.9	428.1779	

5.2.4 Structure of myxochromide SC₄

Structure elucidation of myxochromide SC₄ was achieved using 1D ¹H and 2D ¹H-¹H COSY, HSQC, HMBC and ROESY spectra (Fig. S24). Carbon chemical shifts were extracted from 2D NMR data. NMR spectroscopic data are listed in Table S17. The COSY spectrum supported by HSQC and HMBC data showed presence of spin systems corresponding to N-Me-threonine, glutamine, proline and leucine residues as well as a polyene side chain. Amino acid sequence was established by means of key HMBC and ROESY correlations and final structure was elucidated as shown in Fig. S23. For the assignment of the absolute configuration of myxochromide SC_4 , hydrolysis and Marfey analysis of the obtained amino acids,⁷ was applied as described above.7 The chromatograms obtained from HPLC-MS analysis are illustrated in Fig. S25 and stereochemical assignments are illustrated in Table S18. Comparison of the retention times and masses of derivatized standard amino acids and the hydrolyzed lipopeptide revealed that one of the two leucine residues (C7 and C13) from myxochromide SC_4 is D-configured. The second leucine residue as well as the amino acids proline (C2), N-Methreonine (C19) and glutamine (C23), which was converted to glutamic acid during hydrolysis, were found to be L-configured. According to the domain organization of the underlying hybrid assembly line, which harbors an epimerization domain in module 2, the D-configured leucine was assigned to C13. This also correlates with the structures of myxochromide SA₃ myxochromide SB₄ and and identifies the condensation domain of module 3 originating from the C-type *mch* pathway as a ^DC_L domain.

Fig. S23 Structure of myxochromide SC_4 showing selected COSY (bold line), ROESY (dashed arrow) and key HMBC (arrow) correlations.

Moiety	Position	$\delta_C{}^a$	$\delta_H^{\ b}(J \text{ in Hz})$	HMBC ^c	ROESY ^{d,e,g}
L-Pro	1	174.2			
	2	63.0	4.34, <i>m</i>	1, 3, 7	7
	3a	32.6	2.18, <i>m</i>	4	
	3b		2.42, <i>m</i>	4	
	4	23.4	2.00, <i>m</i>		
	5a	47.7	3.59, <i>m</i>		
	5b		3.74, <i>m</i>		
L-Leu	6	173.9 ^{<i>f</i>}			
	7	49.7	4.66, <i>m</i>	6, 8, 9	2
	8a	42.5	1.55, <i>m</i>		
	8b		1.62, <i>m</i>		
	9	25.6	1.53, <i>m</i>		
	10	23.3	0.93, <i>m</i>	8, 9	

Table S17 NMR spectroscopic data of myxochromide SC₄.

	11	23.3	0.93, <i>m</i>	8,9
D-Leu	12	173.9 ^{<i>f</i>}		
	13	54.4	4.26, <i>m</i>	12, 14, 15, 18
	14a	40.8	1.39, <i>m</i>	12, 15
	14b		1.75, <i>m</i>	12, 15
	15	25.6	1.53, <i>m</i>	
	16	21.5	0.91, <i>m</i>	15
	17	21.5	0.91, <i>m</i>	15
N-Me-L-Thr	18	170.8		
	19	61.6	5.41, <i>m</i>	18
	20	72.1	5.97, <i>m</i>	
	21	16.8	1.24, <i>d</i> (6.5)	19, 20
	27	34.8	3.40, <i>m</i>	1', 19
<i>L</i> -Gln	22	171.1		
	23	54.4	4.42, <i>m</i>	1, 24, 25
	24a	28.8	2.03, <i>m</i>	26
	24b		2.11, <i>m</i>	26
	25a	31.7	2.22, <i>m</i>	26
	25b		2.22, <i>m</i>	26
	26	176.9		
Side chain	1'	170.8		
	2'	119.8	6.65, <i>d</i> (14.8)	
	3'	144.9	7.34, <i>dd</i> (14.8,11.7)	
	4'	141.8	6.54, <i>m</i>	
	5'-14'	f	f	
	15'	134.9	6.27, <i>m</i>	
	16'	130.7	6.12, <i>dd</i> (15.0, 10.0)	
	17'	138.1	5.79, <i>dt</i> (15.0, 6.7)	15'
	18'	26.6	2.14, <i>m</i>	17', 19'
	19'	13.6	1.02, <i>t</i> (7.4)	18'

^{*a*} acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD₃OD at δ 49.15 ppm.

^b acquired at 700 MHz, referenced to solvent signal CD₃OD at δ 3.31 ppm.

^{*c*} proton showing HMBC correlations to indicated carbons. ^{*d*} proton showing ROESY correlations to indicated protons.

^e acquired at 700 MHz, referenced to solvent signal CD₃OD at δ 3.31 ppm.

^foverlapped signals.

⁸only relevant correlations listed

Fig. S24 (continued on next page)

Fig. S24 NMR spectra of myxochromide SC₄.

Fig. S25 Analysis of the absolute configuration of myxochromide SC₄. Extracted ion chromatograms (EIC) for $\pm 0.05 \ m/z$ corresponding to the $[M+H]^+$ ions of derivatized amino acids, which are present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with *D*-FDLA reagent. B: Standard amino acid mix derivatized with *L*-FDLA reagent. C: Hydrolyzed myxochromide SC₄ derivatized with *D*-FDLA reagent. D: Hydrolyzed myxochromide SC₄ derivatized with *D*-FDLA reagent. D: Hydrolyzed myxochromide SC₄ derivatized with *D*-FDLA reagent. C: Standard solution of *N*-Me-*L*-threonine derivatized with *D*-FDLA derivative. H: Same sample as in D analyzed for the *N*-Me-*L*-threonine *L*-FDLA derivative.

Table S18 Analytical data of detected amino acid derivatives and assignment of the absolute configuration of the amino acids in myxochromide SC_4 .

as EDLA dominativa	L-aa standards		Peptide hydrolysate		Assigned
aa-FDLA derivative	t _R [min]	$m/z [M+H]^+$	t _R [min]	m/z [M+H] ⁺	configuration
Glu-D-FDLA	14.3	442.1578	14.3	442.1572	т
Glu-L-FDLA	13.3	442.1579	13.3	442.1572	L
Pro-D-FDLA	16.2	410.1675	16.2	410.1679	т
Pro-L-FDLA	14.5	410.1675	14.5	410.1668	L
Leu-D-FDLA	21.1	426.1989	21.1	426.1990	т
Leu-L-FDLA	17.8	426.1988	17.8	426.1982	L
Leu-D-FDLA	21.1	426.1989	17.8	426.1981	D
Leu-L-FDLA	17.8	426.1988	21.1	426.1980	D
N-Me-Thr-D-FDLA	14.4	428.1782	14.4	428.1780	T
N-Me-Thr-L-FDLA	12.9	428.1786	12.9	428.1777	L

5.2.5 Structure of myxochromide SD₃

Structure elucidation of myxochromide SD₃ was achieved using 1D ¹H and 2D ¹H-¹H COSY, HSQC and HMBC spectra (Fig. S27). Carbon chemical shifts were extracted from 2D NMR data. NMR spectroscopic data are listed in Table S19. The COSY spectrum supported by HSQC and HMBC data revealed the presence of N-Methreonine, glutamine, alanine and leucine residues as well as and a polyene side chain. Amino acid sequence was established by means of key HMBC correlations and final structure was elucidated as shown in Fig. S26. For the assignment of the absolute configuration of myxochromide SD₃, hydrolysis and Marfey analysis of the obtained amino acids,⁷ was applied as described above. The chromatograms obtained from HPLC-MS analysis are illustrated in Fig. S28 and stereochemical assignments are illustrated in Table S20. Comparison of the retention times and masses of derivatized standard amino acids and the hydrolyzed lipopeptide revealed that one of the two leucine residues (C5 and C11) from myxochromide SD_3 is D-configured. The second leucine residue as well as the amino acids alanine (C2), N-Me-threonine (C17) and glutamine (C21), which was converted to glutamic acid during hydrolysis, were found to be L-configured. This is in accordance with the absolute configurations observed in myxochromides SA₃, SB₄ and SC₄. According to the domain organization of the underlying hybrid assembly line, which harbors an epimerization domain in module 2, the D-configured leucine was assigned to C11. This also correlates with the structures of myxochromide SA₃ myxochromide SB₄ and and identifies the condensation domain of module 3 originating from the D-type mch pathway as a ^DC_L domain.

Fig. S26 Structure of myxochromide SD_3 showing selected COSY (bold line) and key HMBC (arrow) correlations.

Moiety	Position	δ_{C}^{a}	$\delta_H^{\ b}(J \text{ in Hz})$	HMBC ^c
L-Ala	1	172.7		
	2	50.6	4.21 <i>m</i>	1,3,4
	3	18.7	1.37 <i>d</i> (6.7)	1,3
L-Leu	4	174.7		
	5	54.2	4.19 <i>m</i>	4,6a/b,7, 10^e
	6a	40.6	1.58 m	
	6b		1.65 m	
	7	25.9	1.71 <i>m</i>	
	8	23.2	0.99 <i>d</i> (6.3)	6,7,9
	9	21.1	0.91 <i>d</i> (6.5)	6,7,8
D-Leu	10	175.2		
	11	53.1	4.39 m	10,12,13,16
	12a	40.6	1.49 <i>m</i>	11

Table S19 NMR spectroscopic data of myxochromide SD₃.

	12b	40.6	1.60 <i>m</i>	11
	13	25.7	1.56 m	
	14	22.6	0.92 <i>m</i>	12,13,15
	15	22.6	0.92 <i>m</i>	12,13,14
N-Me-L-Thr	16	169.8		
	17	59.5	5.43 m	16,18
	18	72.4	5.52 m	19,20
	19	17.2	1.15 <i>d</i> (6.9)	18,20
	25	35.1	3.02 <i>s</i>	1′,17
<i>L</i> -Gln	20	170.9		
	21	53.9	3.95 m	1,20,22a/b,23a/b
	22a	26.3	2.13 m	20,21,23a/b,24
	22b	26.3	2.25 m	20,21,23a/b,24
	23a	32.1	2.16 m	24
	23b	32.1	2.27 m	24
	24	177.7		
Side chain	1'	170.6		
	2'	120.1	6.59 <i>m</i>	1′,4′
	3'	144.9	7.35 m	1′
	4'	131.5	6.53 <i>m</i>	
	5'-15'	dd	dd	
	16'	133.1	6.15 <i>m</i>	
	17'	131.1	5.75 m	
	18'	18.3	1.78 <i>d</i> (7.1)	17´,16´

^{*a*} acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD₃OD at δ 49.15 ppm. ^{*b*} acquired at 500 MHz, referenced to solvent signal CD₃OD at δ 3.31 ppm. ^{*c*} proton showing HMBC correlations to indicated carbons. ^{*d*} overlapped signals. ^{*e*}HMBC acquired with 2k F1 resolution

Fig. S27 (continued on next page)

Fig. S27 (continued on next page)

Fig. S27 (continued on next page)

Fig. S27 NMR spectra of myxochromide SD₃.

Fig. S28 Analysis of the absolute configuration of myxochromide SD₃. Extracted ion chromatograms (EIC) for $\pm 0.05 \ m/z$ corresponding to the $[M+H]^+$ ions of derivatized amino acids, which are present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with *D*-FDLA reagent. B: Standard amino acid mix derivatized with *D*-FDLA reagent. B: Standard amino acid mix derivatized with *D*-FDLA reagent. C: Hydrolyzed myxochromide SD₃ derivatized with *D*-FDLA reagent. D: Hydrolyzed myxochromide SD₃ derivatized with *D*-FDLA reagent. C: Hydrolyzed myxochromide SD₃ derivatized with *D*-FDLA. C: Same sample as in C analyzed for the *N*-Me-*L*-threonine *D*-FDLA derivative. H: Same sample as in D analyzed for the *N*-Me-*L*-threonine *L*-FDLA derivative.

Table S20	Analytical	data of	f detected	amino	acid	derivatives	and	assignment	of the	absolute	configuration	of
the amino	acids in my	xochror	mide SD ₃ .									

oo EDI A dominating	L-aa s	tandards	Peptide	hydrolysate	Assigned
aa-FDLA derivative	t _R [min]	$m/z [M+H]^+$	t _R [min]	$m/z [M+H]^+$	configuration
Glu-D-FDLA	14.3	442.1578	14.3	442.1575	т
Glu-L-FDLA	13.3	442.1579	13.3	442.1564	L
Ala-D-FDLA	16.7	384.1520	16.7	384.1512	т
Ala-L-FDLA	14.3	384.1524	14.3	384.1519	L
Leu-D-FDLA	21.1	426.1989	21.1	426.1986	т
Leu-L-FDLA	17.8	426.1988	17.8	426.1986	L
Leu-D-FDLA	21.1	426.1989	17.8	426.1982	D
Leu-L-FDLA	17.8	426.1988	21.1	426.1984	D
N-Me-Thr-D-FDLA	14.4	428.1782	14.4	428.1773	T
N-Me-Thr-L-FDLA	12.9	428.1786	12.9	428.1784	L

6. References

- 1 S. C. Wenzel, B. Kunze, G. Höfle, B. Silakowski, M. Scharfe, H. Blöcker and R. Müller, *Chembiochem*, 2005, **6**, 375.
- 2 H. Sucipto, D. Pogorevc, E. Luxenburger, S. C. Wenzel and R. Müller, *Metab. Eng.*, 2017, 44, 160.
- 3 C. Burgard, N. Zaburannyi, S. Nadmid, J. Maier, H. Jenke-Kodama, E. Luxenburger, H. S. Bernauer and S. C. Wenzel, *ACS Chem. Biol.*, 2017, **12**, 779.
- 4 R. Meyer, D. Figurski and D. Helinski, Science (New York, N.Y.), 1975, 190, 1226.
- 5 a) R. H. Durland, A. Toukdarian, F. Fang and D. R. Helinski, *J. Bacteriol.*, 1990, 172, 3859; b) C. M. Thomas, R. Meyer and D. R. Helinski, *J. Bacteriol.*, 1980, 141, 213; c) R. J. Meyer and D. R. Helinski, *Biochim. Biophys. Acta*, 1977, 478, 109.
- 6 J. Fu, S. C. Wenzel, O. Perlova, J. Wang, F. Gross, Z. Tang, Y. Yin, A. F. Stewart, R. Müller and Y. Zhang, *Nucleic Acids Res.*, 2008, **36**, e113.
- 7 R. Bhushan and H. Bruckner, Amino Acids, 2004, 27, 231.