Ten Quick Tips for
Getting The Most Scientific Value out of Numerical Data

Supporting Information S1 Text

Lars Ole Schwen Sabrina Rueschenbaum

p-Value Hacking in Tip 6

To demonstrate that anyone can find statistically highly significant results, a domain non-
expert (LOS) searched a database for Major League Baseball for significant differences between
subgroups of players, abusing statistical techniques by p-value hacking.

Methods. For this purpose, we filtered the Lahman Baseball Database [41] to include only
US- and Canadian-born players. Then, we grouped the players in five categories: day and
month in the birth date of players, day and month in their death date, and state in which
they were born, all subject to availability of the respective individual data. This resulted
in 2 x (12 x 11) + 2 x (31 x 30) + 60 x 59 = 5664 subgroups of players. 54 numerical data
columns (i.e., up to 54 numerical data values per player) describing different aspects of
player performance were present in the database. The data contained unavailable values
as well as zero values, whose validity we could not determine without further (undesired)
understanding of the data, hence we dropped this data in the further analysis.

In each category, we retrieved data from each data column separately for each group and
checked all distinct groups for significant differences. We had no reason to assume a specific
distribution of the data, normal or otherwise, so we used the Mann-Whitney u test [28] to test
for significant differences in a total of 5664 x 54 = 305856 cases. We finally sorted the results
by p-value in each category. The three pairs of groups with smallest p-values per category
are reported in Table 1.

Implementation. The Python code and data used for p-value hacking are provided as
Supporting Information Data S3.

Assessment of the Results. It seems plausible that there should not be substantial differ-
ences between players who, e.g., eventually died in different months. However, we also
cannot rule out that performance data correlates with the groups at least to some extent. For
instance, players born in January are, on average, slightly older than those born in December,
which might have an impact on some performance measures. Similarly, it is conceivable that



Description Group A Group B approx. p-value
group n  Med IQR group n  Med IQR

Birth Day (L2dist = 2.66 x 10~°)
b-IBB day 11 83 70  18.0 day 27 88 16,5 29.25 1.60x107*
b-IBB  day 24 77 50 210 day 27 88 16.5 29.25 287 x10°*
b-IBB  day 23 75 6.0 16.0 day 27 88 165 2925 292x 1074
Birth Month (L?dist = 6.85 x 103)

b-CS  June 277 9.0 210 Sep. 348 50 140 1.32x107%

-GS June 471 76.0 349.0 Sep. 638 435 2395 1.95x1073

b-IBB Jan. 210 6.0 18.0 June 199 1200 320 210x1073
Birth State (L2dist = 1.91 x 1073)

b-G CA 2182 121.5 404.5 PA 660 330 2170 674x107%

b-G CA 2182 121.5 404.5 MA 1410 52,0 2760 1.54x 1072

-G CA 2167 107.0 363.5 PA 648 33.0 2035 292x1072

Death Day (L2dist = 2.92 x 1073)
b-SH day 9 168 19.5  39.0 day 27 168 6.0 2025 3.02x107°
b-H day 9 248 56.5 363.75 day2y7 250 230 1415 3.95x107°
p-BK day 2 46 1.0 1.0 day 12 37 2.0 20 856x107°
Death Month (L2dist = 7.49 x 1073)
£-GS May 56  27.5 116.0 Oct. 62 113.0 19125 249 x 1073
b-SH April 408 8.0 210 Sep. 363 11.0 290 2.89x1073
b-SH March 402 11.0 27.25 April 408 80 210 356x1073

Table 1: Results of p-value hacking for baseball statistics data. (Med: Median, IQR: inter-
quartile range, L?dist: L? distance between the cumulative distribution function
(CDF) of p-values in category and a uniform CDF according to Eq (1), b-IBB: bat-
ting/intentional walks, b-CS: batting/caught stealing, f-GS: fielding/games started, b-
G: batting/games, {-G: fielding/games, b-SH: batting /sacrifice hits, b-H: batting /hits,
p-BK: pitching/balks, Jan.: January, Sep.: September, Oct.: October, CA: California,
PA: Pennsylvania, MA: Massachusetts)

teams in certain states (which probably tend to have more players from the given state) prefer
certain tactics, which might also lead to differences in the data.

To investigate whether the observed p-values are really random findings or indicate actual
correlations in the data, we further analyzed the distribution of p-values obtained in each
category. If the data considered in these comparisons is fully random, the p-values are
uniformly distributed in [0, 1] [65], so a certain number of small p-values can be expected
without any actually relevant differences between the groups. However, if there is correlation
in the data, there will be more significant differences than for random data and thus smaller
p-values than for a uniform distribution. Hence, we computed the L? difference between the
cumulative distribution function CDF, of the p-values obtained and the identity (CDF of a
uniform distribution). If 0 < p; < --- < py < 1 are the p-values in non-descending order,
this can be computed as

\//O1 (CDF,(x) — x)* ~ %
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This difference is smaller than 0.008 for all five categories (cf. Table 1), indicating that our
seemingly significant results are actually random findings. Only for the results sorted by birth
state, surprisingly low p-values are obtained when comparing the number of games played
by California-born players to those born in other states. We will refrain from speculation
what this might mean.

Discussion. From a statistical point of view, going fishing for significant results by testing
thousands of hypotheses is clearly a form of data dredging or p-value hacking, and thus
scientifically absolutely unacceptable. Using non-parametric testing for the comparison of
individual subsamples, however, is statistically sound and would be a suitable approach if
we were testing single, well-founded hypotheses for the data at hand. Similarly, comparing
the CDFs of the p-values to those of a uniform distribution seems to be suitable for verifying
that our “highly significant results” are probably actually random findings, except for the
results for the birth state category with very small p-value.

The least one should do when testing multiple hypotheses is using Bonferroni correc-
tion [66], dividing the basic significance level by the number of hypotheses tested. In our case,
we need to consider the five categories from Table 1 separately, since they are of different size.
This would translate the standard significance level of 0.05 to 0.05/(31-30)-1/5 ~ 1.08 x 10>
for birth/death day (approximately, as not every month has 31 days), 0.05/(12-11) -1/5 =
7.58 x 107> for the birth/death month categories, and 0.05/ (60 - 59) - 1/5 ~ 2.83 x 10~° for
the birth state category. In this case, only the findings in the birth state category remain
significant, confirming that the “highly significant results” are probably just random findings.
Still, Bonferroni correction should not be used as an excuse to go fishing in the dark for
significant results.
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