A Cysteine-Based Molecular Code Informs Collagen C-Propeptide Assembly DiChiara, A.S. and co-workers

Page	Contents
S1	Table of Contents
S2–S10	Supplementary Figures
S11–12	Supplementary Tables
S13–16	Supplementary Note

SUPPLEMENTARY FIGURES

			C1 C2	
sponge_ColF1	VNLGSVADVIELHH	KLQHLKSPTGT-	KDSPARS <mark>C</mark> HDLFL <mark>E</mark>	382
Hydra colal(I)	EKNKDTVI-EKLIRLEI	ITQGAQKPDGS-	EYFPAKS <mark>C</mark> KDLKM <mark>C</mark>	1262
Hvdra coll	TEIENNFNNRVKILKS	SVEAYKKPNGS-	KEFPART <mark>CR</mark> DIYA <mark>F</mark>	1213
Hydra col2	EKNKDTVT-EKLTRLEI	VTOGAOKPDGS-	EYFPAKSCKDLKMC	1286
Hydra col3	T.VKI.TKBTOENI.BNENKVWN	VI.DDI.VIKNELGT-I	RMHPATTCRHVFVN	1690
Hydra col5	VDETIKBNIDGEDTMYRVFK	-ADKV-FLGGDGT-1	RDNPARSCLELFOW	1194
Red fire ant $\alpha_1(T)$	FNLKG	SFORT VKPDC-FI	KNSPAKTCRDI.FV-	29
Melluck cl(T)	OVE NI NBUB	ATVET COMPLOS		724
Geo unabin Gollino		AIVAIGGIALGS	KIDIGKNCKDIKID	2262
Sea urchin_collpa		QILLI-KAPQGKA		3302
Sea urchin_Col2Pa	DRTQFQIYLAKFES	SEILSLIEPLGS-	RDQPIRSCKDLFKC	3008
lancelet_ α l(I)	IGKDTKVSDALEAISA	AQIESLKKPTGT-	RKNPARTCVDLALC	217
lancelet_α2(I)	STDIDHLKKLISRVGPAEWTDYFEGEMDRLQG	GIVKTI-VGGPWGT-	AEYPAKT <mark>C</mark> KDLMF <mark>A</mark>	2093
Tunicate_α1(I)	PEGLEEIYAAMETLKQ	ELEMMKEPMGRT	QDNPGRS <mark>C</mark> KDIWL <mark>C</mark>	1177
Tunicate_α2(I)	QPVTSDVGRDPEMMLVLKELTS	SSVEDIKAPRGVS	RKTPARS <mark>C</mark> LDIYL <mark>A</mark>	1225
Lamprey_al(I)	LPYGLVLDASIKALNA	AQVESITSPDGS-	RKHPARS <mark>C</mark> RDLML <mark>C</mark>	1078
Lamprey_a2(I)	GERNLELEASISSLNV	RVENMVSPDGS-	QKNPART <mark>C</mark> RNLKL <mark>C</mark>	992
Shark al(I)	RNRDLEVDTTLKSLSQ	QIENIRSPEGT-	KKNPART <mark>C</mark> RDLKM <mark>C</mark>	1256
Shark a2(I)	SAKDFEVDATLKOLSS	SOIETLLFPEGS-	KKNPART <mark>CR</mark> DLRL <mark>S</mark>	1168
Coelacanth $\alpha 1(I)$	RDRHAEVETTLKSLTH	CIDNIRSPEGT-	RKNPART <mark>CR</mark> DLKMC	1262
Coelacanth $\alpha^2(T)$	TEKDLEVDSTLKVLT	OTESTRTPEGS-1	RKNPARSCRDIRLS	1169
$Frog \alpha^{1}(T)$		OTENT-OSPEGT-I	RKNPARTCRDLKMC	1250
$Frog \alpha^2(T)$	BPKDVEVDATLKSLNN	IOTETTLTPEGS_I	KKNPARTCRDI.RI.S	1156
$H_{\text{Human}} \propto 1(T)$		OTENT DEDECE	PENDADT CRDLINED	1265
Human_cl(I)		QIENIKSFEGS-	RENT ART CRULATE	1160
Human_02(1)	RPRDIEVDATLKSLNP	QIETLLIPEGS-		1109
		4 C	,5	10.0
sponge_COIF1	DNSTSDGYYWIDPNGGCIGDAVKVFC	NFTGGVQQT	ISATKNAG	426
Hydra_colal(I)	HPNVISGEYYIDPSLG <mark>A</mark> NVDKIKVTC	EFYPTASET	CIKPTVSMF	1306
Hydra_col1	YPDSSSGMYYIDPNKGCIDDAIYVHC	NFTKSHDEETKITT	CVYPEKTMS	1262
Hydra_col2	HPNVISGEYYIDPSLG <mark>A</mark> NVDKIKVT <mark>(</mark>	EFYPTASET	CIKPTVSMF	1330
Hydra_col3	NNNSKSGDYWIDPNEG <mark>S</mark> PVDAFLVYC	NASTLET	CIFPKQPLV	1732
Hydra_col5	HLGANTGDYWIDPNEG <mark>S</mark> PDDSVLVHC	NKLTNET	CVYSKNTQI	1236
Red fire ant $\alpha 1(I)$	A-YPDKLSGEYWIDPNEGDIRDAILVYC	DAEKRAT	CILPNPSRSP	73
Mollusk $\alpha 1(I)$	NPDFKDGDYWIDPNGD <mark>S</mark> ALDAVKVFC	RMETLET	CVKPKFIEY	776
Sea urchin CollPa	NVEAESGYYWVDPNLGCOKDAIOVYC	EAETGAT	CVPSTNNVV	3404
Sea urchin Col2Pa	YPEAEDGNYWIDSNEG	VKRGESGSPET	TTPRVDET	3054
lancelet $\alpha_1(T)$	HPTWPSGNYWIDPNOGCTVDAIEVWC	DMKTLET	VYPKPAKV	259
lancelet $\alpha_2(T)$	OPGLKDGYVETDPDGGCTENAFOAF	NETAGGLT		2136
Tunicate al(I)				1225
Tunicate_ai(I)		NE UMMER		1225
Iunicate_d2(1)				12/1
Lamprey_d1(1)	HPEYKSDTGEYWIDPNEGCRADAIKVWC	NMETGES	VNPGMPSL	1122
Lamprey_02(1)	YPDLPSGLYWIDPNEGSKSDAIQVWC	NMETGES	MNADNPS1	1034
Shark_ α 1(I)	HPEWKSGDYWIDPNQG <mark>C</mark> SLDAIRVYC	NLETGET	CVYSSPQSI	1304
Shark_α2(I)	HPEWKSGYYWIDPNQG <mark>C</mark> TQDAIRVF(EFTTGET	CVHASPDII	1211
Coelacanth_α1(I)	HPEWKSGDYWIDPNQG <mark>C</mark> MLDAIKVYC	NMETGET	CVYPTQSSV	1298
Coelacanth_ $\alpha 2(I)$	HPEWSSGFYWIDPNQG <mark>C</mark> TMDAIKVY <mark>(</mark>	DFTNGET	CINANPETI	1210
Frog_α1(Ι)	HSDWKSGEYWIDPNQG <mark>C</mark> ILDAIKVY <mark>C</mark>	NMETGET	CVYPTQNSI	1292
Frog_α2(Ι)	HPDWSSGFYWIDPNQGCTSDSIRVFC	DFSTGET	CIHANPDSI	1198
Human_al(I)	HSDWKSGEYWIDPNQGCNLDAIKVFC	NMETGET	CVYPTQPSV	1307
Human $\alpha 2(I)$	HPEWSSGYYWIDPNOGCTMDAIKVYC	DFSTGET	CIRAOPENI	1211
_ 、 ,	• • • • •		-	
sponge ColF1	DLKSWSGHSIWFSDM-LGGFKLT	YDIS		452
Hydra colg(T)	EKKKWVSOSTDOWKWFNGEISSDSIF	YASO		1337
Hydra coll	VEKDSWPTKI-HTKAORWEVEDH-ELGKIS	SYAAD		1294
Hydra_coll	FKKKWYSOSTDOWKWENGEISSDSIF	VASO		1361
Hydra_col2		veen		1762
Hydra_cors	CUNN VERDNE DOVUMINEUA NNEL	VAME		1265
Hydra_cors	NIMU INF OOF MICE IDNO	MK	т т	1205
Red fire ant_ $\alpha I(1)$	NITH-ITEQUETWLSE-IDNG	-MK	T-T	96
Mollusk_al(I)	RRDRWTKDTTSGQYFMYDVFGKVKQFF	(YDID		807
Sea urchin_CollPa	SNMTWYVGKTKR-AFFSSMHGGDKF#	AYIED		3433
Sea urchin_Col2Pa	SRARWYEGASGSRYITEMGLEKFS	SYEAS		3082
lancelet_α1(I)	PKASWYNGPAKHVWFSESIKGGYQF0	GYTAD		289
lancelet_α2(I)	ASPRSPYKVDNFTWFSEV-EGGFEIE	EYEGD		2165
Tunicate $\alpha 1(I)$	TSKRWPKAQPGDWFSSY-RMGDRFE	EYNTS		1253
Tunicate $\alpha 2(I)$	ENGTHYTGEPGHTYYGEEMTRVEHAI)Y		1298
Lamprey $\alpha 1(I)$	PRKNWWRSQA-ADKKHVWLGETMSPGSQF1	YGDG		1155
Lamprev $\alpha 2(I)$	ARKNWWLKPS-GSKKHVWFGVTMSPDAOFT	YGED		1067
Shark $\alpha 1(T)$	PQKNWYTSKNPKEKKHIWFGESMNGGFOF	GYGADD		1339
Shark $\alpha^2(T)$	ERRNWWISNDAOEKKHIWFGETIKDGAOF	YNEE		1245
Cooleganth al(T)	POKNWYVSKNPKDKKHTWEGETINDGAQF	VGSE		1220
Coolegenth w2(T)	DCKMWAICKNDWUKKAINA CDIMARCO	VNDF		10//
$COETACANTN_{\alpha 2}(1)$	TOWN MARCENDDERAMMERS WEDGED	VCCE		1244
rrog_al(1)	AQANWITSANPREKKHVWFGEAMSDGFQFE	LIGSE		1326
Frog_a2(I)	PQKNWITSKT-KQRKHVWFGETINGGTQIE	SINEE		1231
Human_ α 1(I)	AQKNWYISKNPKDKRHVWFGESMTDGFQFE	SYGGQ		1341
Human_α2(I)	PAKNWIRSSKDKKHVWLGETINAGSQFF	SINVE		1243

	C6	
sponge_ColF1	RSQLQFIRAASRHAVQSFTYKCRNSAAAVIF	R 484
Hydra_cola1(I)	VQLRFLRLNSQFVRQNLTYH <mark>C</mark> LNSHAHNDS	F 1368
Hydra_col1	QSQLTFLGYLSREAYQNVTFHCQNTLVWYDK	Q 1326
Hydra_col2		F 1392 K 1797
Hydra_col5	TPOMKILSLLSTTVROTITFHCKNIPLLRGA	- 1296
Red fire ant $\alpha 1(I)$	YKA-DSNQISFLQLLSKHANQNITYHCKNSVAYFDY	- 131
Mollusk_a1(I)	AYQLKVLQFDSQAARQGVIYH <mark>C</mark> LNSHTYGTR	F 839
Sea urchin_Col1Pa	STQMTFLRLLSTSARQTVTYF <mark>C</mark> KNVQ	- 3459
Sea urchin_Col2Pa	EVQLTFLRLLSTKAHQNVTYHCKNSVAVRDR	Q 3114
lancelet_ α 1(1)		V 321 N 2197
Tunicate $\alpha 1(I)$	IPOFNFLRLLSSOAKORFTYKCVNSIGWENO	0 1285
Tunicate $\alpha 2(I)$	ASQLTFLRLLSSKAKQQVTFFCRNMVAYYDA	s 1330
Lamprey_ α 1(I)	DASQKITYH <mark>C</mark> KNSVAYLDS	R 1191
Lamprey_ $\alpha 2(I)$	BHSTEIQLTFLRLFSTEASQKITYHCKNSVAYQDG	A 1103
Shark $\alpha^2(T)$	HTTPL/WATOLTFLOLISNEASONVTYCKNSIAIMDE	E 1378 E 1284
Coelacanth $\alpha 1(I)$	GSDPADVAIQLTFLRLMSTEASONITYHCKNSIAYMDO	0 1371
$Coelacanth_{\alpha 2}(I)$	SITPKIMATQLAFMRLIANQASQNITYHCKNSIAYMDE	Q 1283
Frog_αl(I)	GSDPADVAIQLTFLRLMATEASQNITYHCKNSVAYMDQ	A 1365
$Frog_{\alpha 2}(I)$	CVTSKDMATQFAFMRLIANHASQNITYHCKNSIAYMDG	Q 1270
Human_ α 1(1) Human_ α 2(T)	GSDPADVAIQLTFLRLMSTERSQNITTHCKNSVAYMDQ	Q 1380 F 1282
numun_02(1)	C7	1202
sponge_ColF1	TQDNKEIAANKVTYDGCKSRP	S 506
Hydra_cola1(I)	GNNRPYVKIMSSDDIEIHTGSHMKNRLKVLQDQCNKKD	N 1407
Hydra_coll	NNDYKKAMKFKGTEDQEFAYSEDKQSMFMPHAVNDECSNMS	K 1368
Hydra_col3	GNNRPIVKIMSSDDIEIHTGSHMKNRLKVLQDQCNKKD	N 1431 N 1839
Hydra col5	K-NTIKFKLDNGAIYHKKMRGVVLKVITDDC	N 1330
Red fire ant_ α 1(I)	GNPIFLSSSDVELVDDQDSKFNYRTLEDGCSSSS	S 3494
Mollusk_a1(I)	TGSTEQALRLMTTSDVELSLDAPSQEQYEVIEDG <mark>C</mark> QERS	A 3154
Sea urchin_CollPa	-E-RKTYRRSLKLLAWNDAE-LSPR-GN-QRLRY-EMI-MDECRLHQ	N 172
lancelet $\alpha_1(T)$	ITVSSKD	N 875 C 361
lancelet $\alpha 2(I)$	TDGYDOAVRLLSNNENVLTYGTPGVKTIYDGCOFAS	P 2234
Tunicate_a1(I)	TGSFDQAIHLLAANDEVLTYGSEHLTVIEDNCKT-G	н 1321
Tunicate_α2(I)	ADNKAQALKLRGFGDAEFTAEGAVGTTYRVLHDG <mark>C</mark> STRP	r 1370
Lamprey_al(I)	AGNLKKALMLQGSSDVEIRAEGNSRFTY-SVLEDGCTTHT	G 1231
Shark (1)	VGNLQQALLLQGSNEMEIRAEGNSKLAYSVLEDGCTMHT	G 1143 C 1418
Shark $\alpha 2(I)$	SGSLKKAVLLLGNSDVELRAEGNSRFTYSVLEDGCTKHT	G 1324
Coelacanth_ α 1(I)	AGNLKKSLLLQGSNEIEIRAEGNSRFTYSVTEDGCTRHT	G 1411
Coelacanth_ α 2(I)	TGNLKKAVMLQGSNDVELRAEGNSRFTFSVLEDG <mark>C</mark> TKHT	S 1323
Frog_αl(I)	TGNLKKALLLQGSNEIEIRAEGNSRFTY-SVVEDGCTQHT	G 1405
Frog_α2(1) Human α1(T)	TGNLKKAILLQGSNDVELRAEGNSRFTFSVLEDGCTQHT	G 1310
Human $\alpha 2(I)$	TGNLKKAVILQGSNDVELVAEGNSRFTY-TVLVDGCSKKT	N 1322
	C8	
sponge_ColF1	VPDAAFVAVETKRVEQLPIRDFASSDIAGQHQEFGFEMGPACFY- 550	
Hydra_colal(I)	QWHKTVFEFSSKITSRLPIVDVAVFDVANVGEQFGIELGPVCFY- 1451	
Hydra_col2	OWHKTVFEFSSKITSRLPIVDVAVFDVANVGEOFGIELGPVCFY- 1472	
Hydra col3	KWRESVFEITSNRLENLPIQDIGVTDIADDGEQFGLLIGPVCFS- 1883	
Hydra_col5	KWQKLVLELSTSKNEILPVIDLGVHGNGITSSEIGVDIGPA <mark>C</mark> FS- 1374	
Red fire ant_ α 1(I)	QWGKSVYEYETKKTTRLPIVDFAPGEVGSESQMFGLEMGPVCFS- 3538	
Mollusk_ α l(I)	EWSQTVINYSTRRNTRLPIVDVAPSDIGGEGQEFGITLGPVCFS- 3198	
Sea urchin Col2Pa	OWHTNRYEVRTNKSELLPLVDVLLFDIGGENOOFGIDVGEVCFS- 919	
lancelet $\alpha 1(I)$	KWSSTVLEYKTKKTTRLPFTDIAPYD	
$lancelet_\alpha 2(I)$	QLDLTVIEINTTATECVPVRDFGVFELDENGQEFGFSVGQV <mark>C</mark> FQ- 2278	
Tunicate_a1(I)	GNGQVVLELRTREVDLLPLFDYKAFDFGTRSQRHGYQLDRVCFSG 1366	
Tunicate_ $\alpha 2(I)$	WURTEIEFETRLVGRMPITDIAPFDIGDADQQFGAKFGPVCFK- 1414	
Lamprey $\alpha 2(1)$	OWGKTVIEYRTPKTSRLPIVDIAPKDVGG9D0EFGVDVGFU- 12/5	
Shark_al(I)	EWGRTVIEYKTMKTSRLPIIDIAPMDVGGADQEFGVEIGPV <mark>C</mark> FL- 1462	
Shark_ $\alpha 2(I)$	EWSKTIIEYRTQKTSRLPFVDIAPMDIGGPEQEFGLDIGPV <mark>C</mark> FK- 1368	
Coelacanth_ α 1(I)	AWGRTVIDYKTTKTSRLPVIDIAPMDVGAPDQEFGIDIGPVCFL- 1455	
COELACANTH $\alpha^2(I)$	WGKTVIEYRTNKPTRIPILDIAPMDIGGADQEFGLDIGPVCFK- 1367	
$Frog \alpha 2(J)$	EWGRTVIEYRTNKPSRLPILDIAPLDIGGDDOEFGLDIGPVCFK- 1354	
Human_ α 1(I)	AWGKTVIEYKTTKTSRLPIIDVAPLDVGAPDQEFGFDVGPVCFL- 1464	
Human_α2(I)	EWGKTIIEYKTNKPSRLPFLDIAPLDIGGADQEFFVDIGPVCFK- 1366	

Supplementary Figure 1 | Full alignments of ancestral collagen-I C-Pro domains.

Alignment of collagen-I C-Pro domains within the chordate lineage. Cys residues are highlighted in yellow. Amino acids previously proposed to be important for salt bridge formation are bolded in red. Amino acids other than cysteine in the conserved cysteine positions are bolded. The collagen recognition sequence is outlined by a black box in sequences where it is present. Amino acids involved in the Ca²⁺ coordination network are marked with a "•" below the alignment. The accession numbers for each sequence are as follows: sponge_ColF1 P18856, hydra_ α 1(I) T2MHG7, hydra_col1 AF525468, hydra_col2 A1XVT1, hydra_col3 A1XVT2, hydra_col5 A1XVT3, sea urchin_Col1Pa M92040, sea urchin_ColP2a M92041, red fire ant_ α 1(I) UniRef90_UPI0005960200, mollusk_ α 1(I) UniRef90_UPI00084B9720, tunicate_ α 1(I) H2YGA7, tunicate_ α 2(I) H2YJN4, lancelet_ α 1(I) AB193827.1, lancelet_ α 2(I) XM_019787639.1, lamprey_ α 1(I) S4R787, lamprey_ α 2(I) S4RDA0, shark_ α 1(I) XM_007910713.1, shark_ α 2(I) XM_007909256.1, coelacanth_ α 1(I) XM_005992184.2, coelacanth_ α 2(I) XM_006011624.2, frog_ α 1(I) NM_001011005.1, frog_ α 2(I) NM_01079250.1, human_ α 1(I) NM_00088.3, and human_ α 2(I) NM_000089.3.

Reducing Coomassie SDS-PAGE

Supplementary Figure 2 | Collagen-I C-Pro purification.

Coomassie staining of a reducing SDS-PAGE gel showing recombinantly prepared, purified samples of wild-type C-Proa1(I), wild-type C-Proa2(I), C2S C-Proa1(I), and S2C C-Proa2(I).

Supplementary Figure 3 | Examples of global fits of the data collected for disulfide-linked homotrimeric C-Pro variants during sedimentation equilibrium analyses in the absence and presence of Ca²⁺.

- (a-b) Single species fits for wild-type C-Proα1(I) and S2C C-Proα2(I) at a single initial concentration and multiple speeds in the absence of Ca²⁺. The fitted single species molecular weights based on a global fit to all the data available for each variant were 88,500 Da and 90,900 Da, respectively (showing only every second data point for clarity).
- (c-d) Examples of global single species fits of the data for wild-type C-Proα1(I) (c) and S2C C-Proα2(I) (d) at several concentrations and speeds (showing only every second data point for clarity) in the presence of Ca²⁺.

Supplementary Figure 4 | Global fits for wild type C-Pro α 2(I) in the absence and presence of Ca²⁺.

- (a) Example global fit to a monomer-dimer equilibrium model for wild-type C-Proα2(I) in the absence of Ca²⁺. The fitted gradient superimposes on the measured data (showing only every second data point for clarity). The contributions of the monomer and dimer species to the total gradient are also shown, based on a fitted equilibrium constant of 6500 M⁻¹. This distribution could be replaced by a single gradient with a molecular weight intermediate to the monomer and dimer, as shown in Fig. 4d.
- (b) Example global fit to a monomer-trimer equilibrium model for wild-type C-Proα2(I) in the presence of 0.5 mM Ca²⁺. The fitted gradient superimposes on the measured data (showing only every second data point for clarity). The contributions of the monomer and trimer species to the total gradient are also shown.

Supplementary Figure 5 | Global fits for C2S C-Pro α 1(I) in the absence and presence of Ca²⁺.

- (a) Example global fit to a monomer-dimer equilibrium model for C2S C-Proα1(I) in the absence of Ca²⁺. The fitted gradient superimposes on the measured data (showing only every second data point for clarity). The contributions of the monomer and dimer species to the total gradient are also shown, based on a fitted equilibrium constant of 76,300 M⁻¹. This distribution could be replaced by a single gradient with a molecular weight intermediate to the monomer and dimer, as shown in Fig. 4e.
- (b) Example global fit to a monomer-trimer equilibrium model for C2S C-Proα1(I) in the presence of 0.5 mM Ca²⁺. The fitted gradient superimposes on the measured data (showing only every second data point for clarity). The contributions of the monomer and trimer species to the total gradient are also shown.

Human Type V Collagen

Supplementary Figure 6 | Topology of 1:1:1 heterotrimers.

The cysteine-based code provides insight into the topology of the 1:1:1 heterotrimers that can form. Given the difference in cysteine patterns between $Col\alpha 2(I)$ and $Col\alpha 3(I)$ of rainbow trout and zebrafish versus $Col\alpha 2(V)$ and $Col\alpha 3(V)$ in humans, the $\alpha 2$ and $\alpha 3$ chains are likely in different orientations relative to the $\alpha 1$ chain, which in all three species maintains cysteine residues in both the C2 and C3 positions.

replicate 1 replicate 2

non-reducing

Supplementary Figure 7 | Uncropped immunoblots for select results

Select immunoblots are shown in the raw, uncropped form for transparency. The immunoblots shown correspond to Fig. 3a (a), Fig. 3b (b), Fig. 3c (c), and Fig. 7d (d).

SUPPLEMENTARY TABLES

Disulfide linkage	Digestion condition	Expected mass (charge)	Observed mass (charge)	Error (ppm)
		957.4489 (+2)	957.4457 (+2)	3.33
04 + 04		638.6352 (+3)	638.6330 (+3)	3.44
01+04	Gluc + Lysc	479.2284 (+4)	479.2269 (+4)	3.04
		383.5843 (+5)	383.5823 (+5)	5.08
		1327.5892 (+2)	1327.5896 (+2)	0.31
$C_{2} + C_{2}$		885.3954 (+3)	885.3944 (+3)	1.13
02 + 03	Gluc + Lysc	664.2985 (+4)	664.2977 (+4)	1.21
		531.6404 (+5)	531.6400 (+5)	0.70
		1310.6386 (+2)	1310.6331 (+2)	4.23
C5 + C8	GluC + LysC	874.0950 (+3)	874.0915 (+3)	4.04
		655.8232 (+4)	655.8195 (+4)	5.69
		1198.8800 (+3)	1198.8787 (+3)	1.11
		899.4120 (+4)	899.4109 (+4)	1.20
C6 + C7	GluC + LysC	719.7312 (+5)	719.7332 (+5)	2.85
		599.9440 (+6)	599.9439 (+6)	0.05
		514.3816 (+7)	514.3812 (+7)	0.83

Supplementary Table 1. Disulfide bonding network of wild-type C-Proa1(I).

Supplementary Table 2. Disulfide bonding network of S2C C-Proα2(I).

Disulfide linkage	Digestion	Expected mass (charge)	Observed mass (charge)	Error (ppm)
<u>Biournao mikago</u>	GluC	724.0294 (+3)	724.0243 (+3)	7.00
C1 + C4	GluC	543.2740 (+4)	543.2710 (+4)	5.49
	GluC	434.8208 (+5)	434.8181 (+5)	6.09
02 + 02	GluC	577.5895 (+3)	577.5933 (+3)	6.64
02 + 03	GluC 577.5895 (+3) 577.593 GluC 433.4441 (+4) 433.446 GluC 839.9301 (+2) 839.928	433.4469 (+4)	6.56	
	GluC	839.9301 (+2)	839.928 (+2)	2.49
C5 + C8	GluC	560.2893 (+3)	560.2884 (+3)	1.67
	GluC	420.4690 (+4)	420.4677 (+4)	2.99
C6 + C7	trypsin	1024.1642 (+3)	1024.1644 (+3)	0.23
	trypsin	768.3751 (+4)	768.3765 (+4)	1.85
	trypsin	614.9016 (+5)	614.9039 (+5)	3.69

Supplementary Table 3. Primers used for site-directed mutagenesis of the indicated C-Pro domains.

Primer Name	Sequence
<i>COL1A1</i> C1265S F	5'- CCGTGACCTCAAGATGTCCCACTCTGACTGGAAG -3'
<i>COL1A1</i> C1265S R	5'- CTTCCAGTCAGAGTGGGACATCTTGAGGTCACGG -3'
COL1A2 S1169C F	5'- CGTGACTTGAGACTCUGCCACCCAGAGTGGAG -3'
COL1A2 S1169C R	5'- CTCCACTCTGGGTGGCAGAGTCTCAAGTCACG -3'
COL2A1 C1306S F	5'-CCCCAACCAAGGCAGCACCTTGGACGC-3'
COL2A1 C1306S R	5'-GCGTCCAAGGTGCTGCCTTGGTTGGGG-3'
<i>COL3A1</i> C1268S F	5'-TTGAGTTCAGGATGGCTGAATTTCAGGTCTCTGC-3'
<i>COL3A1</i> C1268S R	5'-GCAGAGACCTGAAATTCAGCCATCCTGAACTCAA-3'
<i>COL5A1</i> C1645S F	5'-AGTCGGGGTGGCTGAGCTGCAGGTC-3'
<i>COL5A1</i> C1645S R	5'-GACCTGCAGCTCAGCCACCCCGACT-3'
COL5A2 S1319C F	5'-TTGATTGCATCTTCAACACATCCTTGGTTAGGATCAATCC-3'
<i>COL5A2</i> S1319C R	5'-GGATTGATCCTAACCAAGGATGTGTTGAAGATGCAATCAA-3'
<i>COL5A3</i> N1550C F	5'-CGAGCTGCACCGCTGCCACCCGCACCTG-3'
<i>COL5A3</i> N1550C R	5'-CAGGTGCGGGTGGCAGCGGTGCAGCTCG-3'
<i>COL11A1</i> S1613C F	5'-GGGAAGTCAGGATGGCAGAGTTGCAGGTCTTTA-3'
<i>COL11A1</i> S1613C R	5'-TAAAGACCTGCAACTCTGCCATCCTGACTTCCC-3'
COL11A2 C1577S F	5'-AGCTCTGGGTGGCTCAGCTTCAGGTCC-3'
<i>COL11A2</i> C1577S R	5'-GGACCTGAAGCTGAGCCACCCAGAGCT-3'
<i>COL24A1</i> C1551S F	5'-TCCATCTGATACTTTTTGTTCACTGTTAAGTAAATCTTTGCAGATTC-3'
<i>COL24A1</i> C1551S R	5'-GAATCTGCAAAGATTTACTTAACAGTGAACAAAAAGTATCAGATGGA-3'
<i>COL27A1</i> C1696S F	5'-CCATCTTCTGCTCACTGTCCATGAGGTCCCT-3'
<i>COL27A1</i> C1696S R	5'-AGGGACCTCATGGACAGTGAGCAGAAGATGG-3'

Supplementary Table 4. Molecular properties (calculated and measured) of collagen-I C-Pro variants.

	wild-type C-Proα1(I)	Cys1265Ser C-Proα1(I)	wild-type C-Proα2(I)	Ser1169Cys C-Proα2(I)
residues	251	251	252	252
<i>М_S</i> (Da)	27,909	27,893	28,225	28,241
$\overline{\nu}$ (mL/g)	0.723	0.723	0.728	0.728
$\varepsilon (M^{-1} cm^{-1})$	39,420	39,420	43,890	43,890
MALDI-TOF (Da)	29,183	29,174	29,371	29,476

SUPPLEMENTARY NOTE 1

Sequences of Open Reading Frames for C-Pro Domains

Color legend for all plasmids: Pre-protrypsin leader sequence Epitope tag HRV-3C protease cleavage site C-Pro domain

Wild-type PPT.His.C-Proα1(I):

ATGTCTGCACTTCTGATCCTAGCTCTTGTTGGAGCTGCAGTTGCTTACCCATACGATGTTCCAGATTACGC TCACCATCACCATCACCATCTTGAAGTTCTTTTTCAAGGTCCT GATGATGCCAACCATCCACCATCTGAAGAGCCTGAGCCAGCAGAACATCCGGAGCCCAGAGGGC AGCCGCAAGAACCCCGCCCGCACCTGCCGTGACCTCAAGATGTGCCACTCTGACTGGAAGAGTGGAGAG TACTGGATTGACCCCAACCAAGGCTGCAACCTGGATGCCATCAAAGTCTTCTGCAACATGGAGAGCTGGTG AGACCTGCGTGTACCCCACTCAGGCCGAGAGCATGGCCCAGAAGAACTGGTACATCAGCAAGAACCCCAAGG ACAAGAGGCATGTCTGGTTCGGCGAGAGCATGACCGATGGATTCCAGTTCGAGTATGGCGGCCAGGGCT CCGACCCTGCCGATGTGGGCCATCCAGCTGACCTTCCTGCGCCTGATGTCCACCGAGGCCTCCCAGAACA TCACCTACCACTGCAAGAACAGCGTGGCCTACATGGACCAGCAGACTGGCAACCTCAAGAAGGCCCTGC TCCTCCAGGGCTCCAACGAGATCGAGATCCGCGCCGAGGGCAACAGCCGCTTCACCTACAGCGTCACTG TCGATGGCTGCACCGAGTCGAGATCGAGATCCGCGCCGAGGGCAACAGCCGCTTCACCTACAGCGTCACTG TCGATGGCTGCACGAGATCACGGAGCCTGGGGCAAGACAGTGATTGAATACAAAACCACCAAGACCT CCCGCCTGCCCATCATCGATGTGGCCCCCTTGGACGTTGGTGCCCCAGGAACTCGGCTTCGACG TTGGCCCTGTCTGCTTCTGTAA

Wild-type PPT.His.C-Proa2(I):

ATGTCTGCACTTCTGATCCTAGCTCTTGTTGGAGCTGCAGTTGCTGACTACAAAGACGATGACGACAAGC ACCATCACCATCACCATCTTGAAGTTCTTTTTCAAGGTCCT GCTGACCAGGACTATGAAGTTGATGCTACTCTGAAGTCTCTCAACAACCAGGACTCGGCACCCTTCTTACTCC TGAAGGCTCTAGAAAGAACCCAGCTCGCACATGCCGTGACTTGAGACTCAGCCACCCAGAGTGGAGCAG TGGTTACTACTGGATTGACCCTAACCAAGGATGCACTATGGATGCTATCAAAGTATACTGTGATTTCTCTA CTGGCGAAACCTGTATCCGGGCCCAACCTGAAAACATCCCAGCCAAGAACTGGTATAGGAGGCTCCAAGG ACAAGAAACACGTCTGGCTAGGAGAAACTATCAATGCTGGCAGCCAGTTTGAATATAATGTAGAAGGAGT GACTTCCAAGGAAATGGCTACCCAACTTGCCTTCATGCGCCTGCTGGCCAACTATGCCTCTCAGAACATC ACCTACCACTGCAAGAACAGCATTGCATACATGGATGAGAGACTGGCAACCTGAAAAAGGCTGTCATTC TACAGGGCTCTAATGATGTTGAACTTGTTGCTGAGGGCAACAGCAGGTTCACTTACACTGTTCTTGTAGAT GGCTGCTCTAAAAAGACAAATGAATGGGGAAAGACAATCATTGAATACAAAACAAATAAGCCATCACGCCT GCCCTTCCTTGATATTGCACCTTTGGACATCGGTGGTGCTGACCAGGAATTCTTTGTGGACATTGGCCCA GTCTGTTTCAAATAA

PPT.HA C-Proα1(II):

GCAAGACTGTTATCGAGTACCGGTCACAGAAGACCTCACGCCTCCCCATCATTGACATTGCACCCATGGA CATAGGAGGGCCCGAGCAGGAATTCGGTGTGGACATAGGGCCGGTCTGCTTCTTGTAA

PPT.HA C-Proα1(III):

PPT.HA C-Proα1(V):

ATGTCTGCACTTCTGATCCTAGCTCTTGTTGGAGCTGCAGTTGCTTACCCATACGATGTTCCAGATTACGC TGCGGCCGCAGACGGCATGGAAGAGATCTTCGGCTCTCTAACTCTCTGAAGCTGGAGATTGAGCAGAT GAAACGGCCCCTGGGCACGCAGCAGAACCCCGCCCGCACCTGCAAGGACCTGCAGCTCTGCCACCCCG ACTTCCCAGATGGTGAATACTGGGTCGATCCTAACCAAGGATGCTCCAGGGATTCCTTCAAGGTTTACTG CAACTTCACAGCCGGGGGGTCGACATGCGTCTTCCCTGACAAGAAGTCCGAAGGGGCCAGAATCACTTC TTGGCCCAAAGAAAACCCGGGCTCCTGGTTCAGTGAATTCAAGCGTGGGAAACTGCTCTCCTATGTGGAC GCCGAGGGCAACCCTGTGGGGTGTGGTACAGATGACCTTCCTGCGGCTGCTGAGCGCCTCTGCCCACCA GAACGTCACCTACCACTGCTACCAGTCAGTGGCCTGGCAGGACGCAGCGCAGCTACGACAAGG CCCTCCGCTTCCTGGGCTCCCAACGACGAGGAGGATGTCCTATGACAACAACCCCTACATCCGCGCCCTGG TGGACGGCTGTGCTACCAAGAAGGCTACCAGAAGACGGTTCTGGAGATCGACACCCCCAAAGTGGAGC AGGTGCCCATCGTGGACATCATGTTCAATGACTTCGGTGAAGCGTCACAGAAATTTGGATTTGAAGTGGG GCCGGCTTGCTTCATGGGCTAG

PPT.HA C-Proα2(V):

PPT.HA C-Proα3(V):

ATGTCTGCACTTCTGATCCTAGCTCTTGTTGGAGCTGCAGTTGCT<mark>TACCCATACGATGTTCCAGATTACGC</mark>

PPT.HA C-Proα1(XI):

PPT.HA C-Proα2(XI):

PPT.HA C-Proα1(XXIV):

ATGTCTGCACTTCTGATCCTAGCTCTTGTTGGAGCTGCAGTTGCTTACCCATACGATGTTCCAGATTACGC TGCGGCCGCAGAAGAGATATTCAAAACCCTGAACTACCTTAGCAATTTATTGCACAGCATCAAGAATCCTC TTGGCACACGAGATAACCCAGCACGAATCTGCAAAGATTTACTTAACTGTGAACAAAAAGTATCAGATGGA AAATACTGGATTGACCCAAATCTTGGCTGTCCTTCAGATGCCATTGAGGTTTTCTGCAATTTCAGTGCTGG TGGCCAGACATGCTTACCTCCTGTTTCTGTAACAAAGTTGGAGTTTGGAGTTGGGAAAGTCCAGATGAACT TCCTTCATTTACTGAGTTCGGAAGCCACCCATATCATCACCATTCACTGTCTAAACACCCCAAGGTGGACA AGCACACAAACAAGTGGCCCAGGATTGCCTATTGGTTTCAAGGGAATGGCAAGATGGCCAGATTTTTAAAGTAAA CACTCTACTTGAACCTAAAGTGCTTTCAGATGACTGCAAGATTCAAGATGGCAGCTGGCATAAGGCAACAT TTCTTTTTCACACCCAGGAACCTAATCAACTTCCAGTGATTGAAGTACAAAAACTTCCTCATCTCAAAACTG AACGAAAGTATTACATTGACAGCAGTTCTGTATGCTTTCTGTAA

PPT.HA C-Proα1(XXVII):