

Prenatal screening and diagnostic testing in Ontario: A descriptive analysis of service utilization in the era of cellfree fetal DNA testing

Journal:	CMAJ Open
Manuscript ID	CMAJOpen-2018-0046
Manuscript Type:	Cohort (retrospective)
Date Submitted by the Author:	26-Mar-2018
Complete List of Authors:	Huang, Tianhua; Ontario Prenatal Screening Program, BORN Ontario Dougan, Shelley; Ontario Prenatal Screening Program, BORN Ontario Walker, Mark; University of Ottawa Armour, Christine; Children's Hospital of Eastern Ontario, Ontario Prenatal Screening Program, BORN Ontario Okun, Nan; Mt. Sinai Hospital, Ontario Prenatal Screening Program, BORN Ontario
Keywords:	Genetics, Health services research, Obstetrics and gynecology
More Detailed Keywords:	Prenatal screening, cell free fetal DNA screening, prenatal diagnostic testing, trisomy 21, utilization, uptake rate
	Abstract Background To assess the impact of publicly funded cell-free fetal DNA (cfDNA) screening on the utilization of multiple marker prenatal screening (MMS), cfDNA screening and prenatal diagnostic testing (PND) for fetal chromosomal aneuploidies in Ontario. Methods A retrospective cohort study based on data collected by the Better
Abstract:	Outcomes Registry & Network (BORN) was performed. Descriptive statistics were generated to describe the utilization of MMS, cfDNA screening, and PND. The regional variations in the utilization of MMS and cfDNA screening were assessed by Census divisions and Local Health Integration Networks.
	Results
	The study included 534,210 singleton pregnancies. After cfDNA screening was funded for specific indications, the uptake of MMS increased slightly from 66.5% to 68.1%. The uptake of cfDNA screening among MMS positive women increased substantially from 3.2% to 48.8%. In contrast, PND

among MMS positive women decreased from 54.9% to 30.8%. Follow-up

60% to 75%. Although women ≥40 years are eligible for primary cfDNA

(from 75.7% to 72.2%). After cfDNA screening was funded, the greatest use of cfDNA screening and greatest decline in of PND were seen in women

The changing patterns of uptake of screening and diagnostic tests

with a MMS risk in the range of 1 in 101 to 1 in 200.

women's choices regarding prenatal testing.

SCHOLARONE[™]

Interpretation:

testing (cfDNA/PND) among the MMS positive group increased from under

screening, there was only a small decrease in the use of MMS in this group

demonstrate the significant impact of public policy and funding decisions on

3 4	1	Prenatal screening and diagnostic testing in Ontario:			
5	2	A descriptive analysis of service utilization in the era of cell-free fetal DNA testing			
6 7	-				
8 9	3				
9 10	4	Tianhua Huang, MBBS. PhD, ^{1,2,} Shelley Dougan, MPA, MSc, ¹ Mark Walker, MD, ¹ Christine			
11 12					
13	5	M. Armour, MD, ^{1,3} Nan Okun, MD ^{1,4}			
14 15					
16	6	1. Ontario Prenatal Screening Program, Better Outcomes Registry & Network (BORN) Ontario,			
17 18	7	Ottawa, Ontario, Canada			
19					
20 21	8	2. Genetic Program, North York General Hospital, Toronto, Ontario, Canada			
22	0	2. Genetie Program, North Pork General Prospital, Poronto, Ontario, Canada			
23 24	9	3. Regional Genetics Program, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada			
25	9	5. Regional Genetics Flogram, emilien's flospital of Eastern Ontario, Ottawa, Ontario, Canada			
26 27	10	4. Maternal Fetal Medicine Program, Mt. Sinai Hospital, University of Toronto, Toronto,			
28	10	4. Maternal Fetal Medicine Flogram, Mt. Sinal Hospital, Oniversity of Toronto, Toronto,			
29 30	11	Ontario, Canada			
31					
32 33	12				
34 25					
35 36	13				
37					
38 39	14	Corresponding author: Tianhua Huang			
40 41					
41 42	15	Ontario Prenatal Screening Program, Better Outcomes Registry & Network (BORN) Ontario,			
43 44					
45	16	CHEO Research Institute, CPCR Building, 401 Smyth Road, Ottawa, Ontario, K1H 8L1, Canada			
46 47					
48	17	Tel: 416 756 6288			
49 50	18	E-mail: tianhua.huang@nygh.on.ca			
51	10				
52 53	19				
54					
55 56					
57					
58 59		1			
60		For Peer Review Only			

2 3 4 5	20	Contributor statement:			
6 7	21	Tianhua Huang contributed to conception and design, performed data analysis, interpreted data			
8 9	22	and drafted the article, and agreed to act as guarantors of the work presented in this article. Nan			
10 11 12	Okun, Shelley Dougan and Christine Armour contributed substantially to conception and design,				
13 14	24	interpretation of data, and revised the manuscript. Mark Walker contributed to the interpretation			
15 16	25	of data, revised the manuscript critically. All authors gave the final approval of version to be			
17 18 19	26	published.			
20 21 22 23	27				
24 25 26	28	Short title: Utilization of multiple marker screening, cfDNA screening and diagnostic testing			
20 27 28 29	29				
30 31	30	Key words: Prenatal screening, cell free fetal DNA screening, prenatal diagnostic testing,			
32 33 34	31	trisomy 21, utilization, uptake rate. Funding sources: None			
35 36 37	32	Funding sources: None			
38 39 40 41	33	Conflicts of interest: None declared			
42 43	34				
44					
45 46					
47					
48					
49 50					
50 51					
52					
53					
54					
55 56					
56 57					
57		2			
59					
60		For Peer Review Only			

35	Abstract				
5 6 36 Background 8					
37	To assess the impact of publicly funded cell-free fetal DNA (cfDNA) screening on the utilization				
38	of multiple marker prenatal screening (MMS), cfDNA screening and prenatal diagnostic testing				
39	(PND) for fetal chromosomal aneuploidies in Ontario.				
40					
41	Methods				
42					
43	A retrospective cohort study based on data collected by the Better Outcomes Registry &				
44 Network (BORN) was performed. Descriptive statistics were generated to describe the utili					
 of MMS, cfDNA screening, and PND. The regional variations in the utilization of MMS a cfDNA screening were assessed by Census divisions and Local Health Integration Networ 					
					47
48	Results				
49					
50	The study included 534,210 singleton pregnancies. After cfDNA screening was funded for				
51	specific indications, the uptake of MMS increased slightly from 66.5% to 68.1%. The uptake of				
52	cfDNA screening among MMS positive women increased substantially from 3.2% to 48.8%. In				
53	contrast, PND among MMS positive women decreased from 54.9% to 30.8%. Follow-up testing				
54	(cfDNA/PND) among the MMS positive group increased from under 60% to 75%. Although				
55	women \geq 40 years are eligible for primary cfDNA screening, there was only a small decrease in				
56	the use of MMS in this group (from 75.7% to 72.2%). After cfDNA screening was funded, the				
	 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 				

1 2		
2 3 4	57	greatest use of cfDNA screening and greatest decline in of PND were seen in women with a
5 6	58	MMS risk in the range of 1 in 101 to 1 in 200.
7 8	59	
9 10 11	60	Interpretation:
12 13	61	
14 15	62	The changing patterns of uptake of screening and diagnostic tests demonstrate the significant
16 17	63	impact of public policy and funding decisions on women's choices regarding prenatal testing.
18 19 20	64	
21 22	65	
23 24	66	
25 26 27		
28 29		
30 31		
32 33		
34 35 36		
37 38		
39 40		
41 42		
43 44		
45 46 47		
48 49		
50 51		
52 53		
54 55 56		
57 58		4
59 60		For Peer Review Only

67 Introduction

In Ontario, about 67% of pregnant women had multiple marker screening (MMS) for fetal chromosomal aneuploidies during their pregnancies.¹ MMS incorporates serum biochemical markers, and in most instances, a ultrasound marker nuchal translucency (NT) measured between 11 and 13 weeks gestation. Until recently, the most commonly used screening tests in Ontario have been the Integrated Prenatal Screen (IPS) and the First Trimester Screen (FTS) which has been recently updated to "enhanced" FTS (eFTS). The IPS and FTS provide detection rates (DR) of about 85% with false positive rates (FPR) of 2.5-5%.²³ Although MMS is routinely offered to all pregnant women, there has been substantial variation in overall uptake rate across the province, as well as variation in the MMS test undertaken.⁴ Cell-free fetal DNA (cfDNA) screening is based on sequencing of cell-free fetal DNA in maternal plasma. The test provides a DR of approximately 99% and a FPR of < 0.1% for trisomy 21.⁵ CfNDA for specific aneuploidies became available in Ontario in late 2012 on a private-pay basis. In early 2014, the Ontario Ministry of Health and Long Term Care (MOHLTC) began to fund cfDNA screening for women whose pregnancies were identified to be at increased risk for one of the common aneuploidies including women with a positive MMS result, certain abnormal ultrasound findings or advanced maternal age (≥ 40 years), among other eligibility criteria (Appendix 1). Other jurisdictions have also incorporated cfDNA screening into

87 traditional prenatal screening paradigms,⁶ though there is limited literature describing the effect
88 of the systematic incorporation of cfDNA screening on prenatal screening and diagnostic test

89 utilization at a population level.

1 2		
2 3 4	90	
5 6	91	Before cfDNA screening was publicly funded, women whose MMS result indicated an increased
7 8 9	92	risk for trisomy 21 or 18 were offered genetic counselling and the option of confirmatory
10 11	93	invasive prenatal diagnostic testing (PND), via amniocentesis or chorionic villus sampling
12 13 14	94	(CVS). The introduction of cfDNA screening, with its low FPR and false negative rates, has been
14 15 16	95	shown to reduce the usage of diagnostic testing. ⁷⁸
17 18	96	
19 20 21	97	The current study aims to assess the utilization pattern of MMS and PND prior to, and after
21 22 23	98	cfDNA screening was introduced into a general population setting in Ontario, Canada using data
24 25	99	collected by the Better Outcomes Registry & Network (BORN) Registry.
26 27 28	100	
29 30	101	
31 32	102	collected by the Better Outcomes Registry & Network (BORN) Registry.
33 34 35		
36 37		
38 39 40		
40 41 42		
43 44		
45 46 47		
48 49		
50 51		
52 53		
54 55 56		
57 58		6
59 60		For Peer Review Only

1		
2 3	103	Methods
4		withous
5 6 7	104	
8	105	Datasets
9 10 11	106	
12 13	107	This is a retrospective cohort study based on a secondary analysis of data collected by BORN.
14 15 16	108	BORN is a prescribed registry under the Personal Health Information Protection Act (PHIPA).
17 18	109	The BORN information system (BIS) routinely collects information on pregnancy (including
19 20	110	MMS), labour, birth, and early newborn care from all hospitals, midwifery practices, and
21 22 23	111	prenatal screening centres in Ontario, as well as from Newborn Screening Ontario. The real-time
23 24 25	112	data collection into the BIS began on January 1 2012. In addition, BORN has retrospectively
26 27	113	collected data on all cfDNA screening provided to Ontario residents, as well as data on
28 29 30	114	diagnostic testing from all but one cytogenetic laboratory in Ontario. The study population
30 31 32	115	includes all pregnant women who had a singleton pregnancy and an expected date of delivery
33 34	116	(EDD) between July 1 2012 and March 31, 2016.
35 36	117	
37 38 39	118	To link legacy cfDNA screening and cytogenetic testing data with the BIS records, each cfDNA
40 41	119	screening and cytogenetic record was assigned to a series of BIS identifiers including maternal
42 43	120	person ID, pregnancy ID, birth ID and infant person ID through record matching. The record
44 45 46	121	matching was performed by BORN data analysts and achieved through deterministic and
46 47 48	122	probabilistic matching using maternal and newborns' health care number, date of birth, name,
49 50	123	sex and postal code. Overall, 91.1 % (12,755/13,999) of cfDNA screening and 81.3%
51 52	124	(12,279/15,107) of cytogenetic records could be matched to a pregnancy record in the BIS. In
53 54 55 56 57	125	over 95% of occasions, cfDNA screening and cytogenetic records were matched to a correct
57		7

1 2		
2 3 4	126	pregnancy. Unmatched records were mostly likely miscarriages or terminations before 20 weeks
5 6 7 8 9 10 11 12 13	127	of gestation, as these data points were not systematically captured by BORN during this time
	128	period. As well, they may also be records from non-Ontario patients. Records of MMS, amniotic
	129	fluid alpha-fetoprotein (AFP) testing, cfDNA screening and cytogenetic testing were
	130	subsequently linked with pregnancy records by pregnancy ID. The linked data set was used in
14 15	131	the study.
16 17 18	132	
19 20	133	In Ontario, amniocentesis is the main form of prenatal diagnostic testing. Chorionic villus
21 22	134	sampling is performed in a small number of high risk centres. To maximize ascertainment, the
23 24 25	135	number of amniocenteses in this study was ascertained through a combination of amniotic fluid
26 27	136	AFP records (as AFP was measured on almost all amniotic fluid samples) and cytogenetic
28 29	137	records indicating amniocentesis as the tissue type. As entry of CVS testing as a data point is not
30 31 32	138	systematically collected in the BIS, the use of CVS was based on information collected from
33 34	139	cytogenetic records.
35 36	140	cytogenetic records.
37 38 39	141	
40 41	142	Data analysis
42 43	143	
44 45		
46 47	144	In this study, we used uptake rates to describe the utilization of MMS screening, cfDNA
47 48 49	145	screening and PND. The numerator of uptake rate was number of singleton pregnancies in
50 51	146	Ontario that had a MMS, cfDNA screening or PND. The denominator was singleton pregnancies
52 53	147	in Ontario with a defined character (e.g. all pregnancies, MMS positive pregnancies etc).
54 55 56	148	Expected date of delivery was used to describe date ranges. The regional variations in the
57 58		8
59 60		For Peer Review Only

1 2 3	
4 5 6	
7 8	
9 10 11	
12 13	
14 15 16	
17 18	
19 20 21	
22 23	
24 25 26	
27 28	
29 30 31	
32 33	
34 35 36	
37 38 39	
40 41	
42 43 44	
45 46	
47 48 49	
50 51	
52 53 54	
55 56	
57 58 59	
60	

149	utilization of MMS and cfDNA screening were described by Census division (CD) and Local
150	Health Integration Networks (LHIN). Census division describes provincially legislated
151	geographic areas that are intermediate between the province/territory level and the municipality;
152	they have been established in provincial law to facilitate regional planning and service
153	provision. ⁹ LHINs were established under the Local Health System Integration Act, 2006 for
154	health care services planning, funding and management. There are 49 CDs and 14 LHINs in
155	Ontario. ¹⁰ To assess how women may be using MSS to make decisions, the utilization of cfDNA
156	screening and PND by MSS risk cut-off were also examined.
157	
158	Descriptive statistics were generated to describe the utilization of MMS, cfDNA screening, and
159	PND. The Chi-square test was used to compare the uptake rates of these tests prior and after the
160	introduction of funded cfDNA screening for higher risk pregnancies. The Cochran-Armitage test
161	was used examine the temporal changes in the utilization of these tests.
162	
163	The study was approved by the Research Ethics Board of Children's Hospital of Eastern Ontario.
164	
	9

1		
2 3 4	165	Results:
5 6	166	
7 8 9 10 11 12 13	167	There were 534,210 singleton pregnancies during the study period. 359,066 had a MMS yielding
	168	an overall MMS uptake rate of 67.2%. Figure 1 shows the uptake of MSS by census division and
	169	in the LHINs with lowest and highest MMS uptake rates. There were substantial variations in
14 15	170	different geographic areas in Ontario; from under 30% in North West LHIN to over 83% for
16 17 18	171	Toronto Central LHIN.
19 20 21	172	Over the study period, 11,102 (2.1%) singleton pregnancies underwent cfDNA screening, with a
22 23	173	dramatic increase after funding from 854 in 2013, to 6,298 in 2015. Figure 2 shows the uptake
24 25	174	rate of cfDNA screening by census division among pregnancies with a positive MMS result
26 27 28 29 30 31 32	175	following MOHLTC funding for high risk pregnancies in 2014. Also shown are the LHINs with
	176	the lowest and highest utilization of cfDNA screening following a positive MMS. Again there
	177	are substantial regional variations noted, with a 2.7- fold higher cfDNA screening uptake rate in
33 34	178	Toronto Central LHIN (64.5%) compared to that for North West LHIN (24.2%).
35 36 37	179	
38 39	180	During the study period, 11,261 (2.1%) singleton pregnancies had a PND. There were with
40 41	181	10,312 amniocenteses and 949 CVS. Figure 3 shows key pathways of prenatal screening before
42 43 44	182	and after cfDNA screening was funded. After cfDNA screening was funded, the update rate of
45 46	183	MMS increased slightly (p<0.001). PND among MMS positive women decreased substantially
47 48	184	from 54.9% to 30.8% (p<0.001).
49 50	185	
51 52 53	186	After women age≥40 years became eligible for primary cfDNA screening in 2014. The uptake of
54 55 56	187	cfDNA screening in this age group increased from 2.4% to 33%, yet only 7.2% had primary
57 58		10
59 60		For Peer Review Only

cfDNA screening (data not shown in the figure). This was accompanied by only a small decrease (from 75.7% to 72.2%, p<0.001) in the uptake of MMS in this group.

Figure 4 demonstrates graphically the uptake rates of MMS, cfDNA screening and/or PND among all pregnancies over the study period. CfDNA screening uptake increased from under 1.0% in 2012 to over 4.0% in 2016 (p<0.001). The uptake of PND decreased by over 50\%, and the proportion of women who had a follow up testing (either NIPT screening or PND) more than doubled (p<0.001).

Figure 5 shows the changes in the uptake rates of cfDNA screening and PND in pregnancies with a positive MMS over the study period. There was a steady increase in the uptake of cfDNA screening with a consistent decrease in the uptake of diagnostic testing after cfDNA screening was funded (p<0.01). The proportion of women who had a follow up testing increased from about 60% to 75% (p<0.001).

Table 1 shows the highest uptake of PND was seen in women with a MMS risk ≥ 1 in 10 both before and after cfDNA screening was funded. There was a relatively smaller decrease in the rate of PND as the follow-up test in this group compared to those with lower risk MMS results, The greatest decline in the uptake of PND after funding was seen in women with a MMS risk in the range of 1 in 101 to 1 in 200 (from 51% to 23.5%). This group also had the highest uptake of cfDNA screening (55.1%) and biggest increase in the uptake of a follow-up testing (from 56.3% to 76%).

211 Interpretation:

Our study examined utilization patterns of MMS, cfDNA screening and PND testing in Ontario
and specifically evaluated the impact of publicly funded cfDNA screening on the utilization of
prenatal screening and diagnostic testing.

Over the study period, 67.6% of pregnant women had a prenatal screening test (whether MMS, cfDNA screening or both). Substantial variations were observed in overall uptake rates of prenatal screening across the province. There was a small increase in the overall uptake of MMS, which became more marked after publically funded cfDNA screening was introduced for higher risk pregnancies. Accompanying this trend was a decrease in PND following a positive MMS, with a more marked decline after funding and an increase in the uptake cfDNA screening secondary to a positive MMS. Possible explanations for increased MMS uptake include heightened awareness of screening following advertising of cfDNA screening. Another possible reason is that women were interested in cfDNA screening and underwent MSS to determine if they would be eligible via a positive MMS. Furthermore, a positive test for MSS, followed by a second blood test, cfDNA, may be more appealing than having to have an invasive procedure such as amniocentesis.

45 229

The uptake patterns of cfDNA screening demonstrate the significant impact of public policy and funding decisions on patterns of prenatal testing. The utilization of cfDNA testing increased markedly following funding amongst women age ≥ 40 years and those with a positive MMS result when it became a funded alternative to PND. Interestingly, only 33% of women >40 years

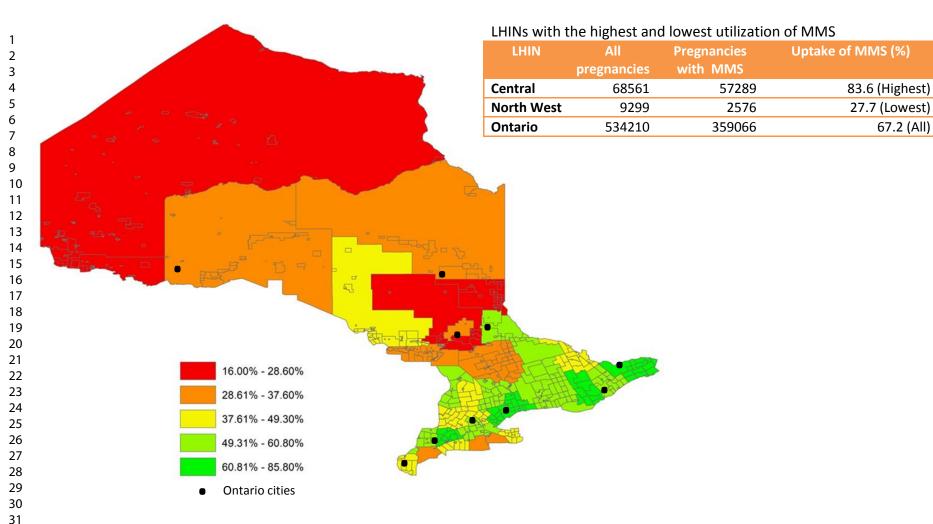
of age had cfDNA screening and only 7.2% had it as a primary screening test. In this study, we were not able to assess any details on counselling provided to pregnant women choosing prenatal testing options. However, these results suggest that previous Canadian policy guidelines to exclude maternal age alone as an indicator for invasive PND¹¹ continues to be operative, with most women aged 40 or older still undergoing MMS first, vs primary cfDNA screening. MMS can provide additional information on pregnancy health that cfDNA alone cannot provide, and thus may have been chosen by providers for that reason. As well, primary providers are challenged by rapidly changing information in this genomic era of prenatal testing and some of the patterns of utilization demonstrated over the study period may reflect delayed incorporation of these newer technologies. Lastly, there have been anecdotal reports of choosing two screens given that women age ≥ 40 years were eligible for both tests. Provincial funding of cfDNA screening has been accompanied by a decreased utilization of PND, with the largest decline among those with a risk for Down syndrome lower than 1 in 50 (e.g. 1 in 100), The uptake of any form of follow-up testing following a positive MMS increased substantially across all MMS risk groups, but especially among women with a MMS risk lower than 1 in 50 where follow-up PND was less likely prior to funded cfDNA This suggests that cfDNA screening as a non-invasive and highly accurate alternative to amniocentesis or CVS is positively regarded by pregnant women, or more likely to be suggested by providers, particularly for women at 'intermediate' or 'lower' risk groups. There is a wide range in reported uptake rates of MMS in studies from different countries and screening programs; from 35.2% in the Netherlands, to about 76.0% in UK and 91.6% in

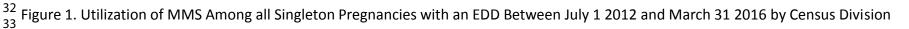
Denmark.^{6 12 13} In Ontario, the overall uptake rate increased from 63% to about 68% over the past 5-7 year period. ¹⁴¹⁵ but regional variations in the uptake of MMS remain. Because MMS is funded for all Ontario residents by the MOHLTC, it is unlikely the variable regional uptake rates were cost-driven as reported by some studies.¹⁵ While we were not able to account for this variation, lower screening rates have been associated with living in a rural area, receiving first-trimester care from a family physician or midwife and being in a lower income quintile in Ontario suggesting there are areas to target for increased awareness and knowledge translation to support patient choice.¹⁴ Multiple recent studies have assessed the impact of cfDNA screening on prenatal screening and diagnostic services.^{678 1617} Because of the variations in prenatal screening tests and policies for cfDNA screening in these studies, it is difficult to directly compare the magnitude of the impacts. However, we have observed some similar patterns in the utilization of these tests in our population compared to others. In a study by Chitty et al. (2016), the proportion of women having a PND following a positive FTS decreased from 60% to 17.8% after the implementation of cfDNA screening. Of women in the same FTS risk group, 74.4% had cfDNA screening. Chan et al. (2015) reported a 45% decline in the rate of refusal of further testing and a one third reduction in PND after a positive MMS following introduction of cfDNA screening. ¹⁶ This marked decline in the utilization of PND following the implementation of cfDNA screening has also been reported by a number of other studies. ^{7 8 17 18 19}

Gil et al. (2015) examined the impact of FTS result on the uptake of cfDNA screening.²⁰ In women with FTS risk ≥1:100, 40% opted for CVS, 57% for cfDNA screening and 3% did not want any further testing. In women with risk between 1:101 to 1:1000, the uptake of cfDNA screening was 91.7%. Similar results were reported by Manegold-Brauer et al. (2015)²¹ In our population, we observed a reduction of PND in all risk groups, with the biggest reduction seen in women with risk between 1:101 and 1:200. Our study only included women with an EDD up to March 31 2016, therefore we cannot comment on more recent trends to determine a more long term view of the impact of funded cfDNA screening on prenatal screening and diagnostic testing. As well, we could not assess factors accounting for variations in uptake; such as lack of informed choice or sub-optimal counseling/access to MMS, cfDNA screening and PND. We were not able to assess how many women were offered prenatal screening tests and then declined, or the indications for cfDNA screening. Further studies are needed to evaluate the referral and utilization patterns as well as costs and effectiveness of MMS, cfNDA and PND. In conclusion, our study described the utilization patterns of MMS, cfDNA screening and PND testing in Ontario prior to and after cfDNA screening was funded by MOHLTC. The results are useful for screening program planning and further analysis on the costs and benefits of different screening strategies. Further studies are warranted to investigate the factors that affect the utilization of MMS, cfDNA screening and PND in order to improve the efficacy and performance of prenatal screening.

2 3 301 Acknowledgements 5 202 Forzono Vocmin perfo

Farzana Yasmin performed record matching for this study. Qun Miao provided expert advices on record linkage and matching. Their expertise and assistants are gratefully acknowledged. The authors would also like to thank Mari Teitelbaum and Ann Sprague for their great support to this project.

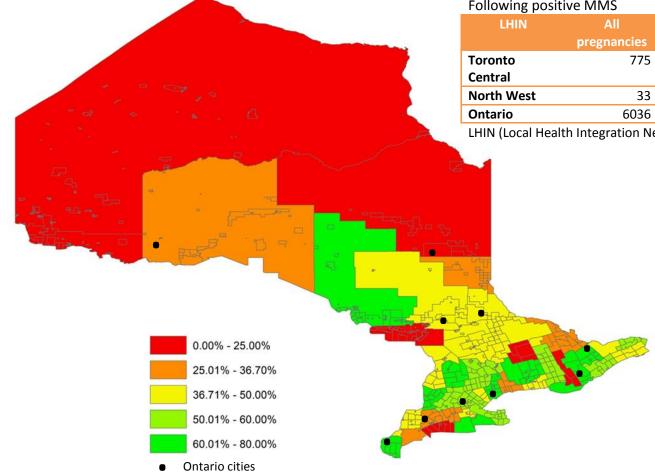

2 3 4	30
5 6 7	30
8 9	30
10 11 12	31
13 14 15	31
16 17	31
18 19 20	31
21 22 23	31
24 25	31
26 27	31
28 29 30	31
31 32	31
33 34 35	31
36 37 38	32
39 40	32
41 42	32
43 44 45	32
46 47 48	32
49 50	32
51 52 53	32
54 55 56 57 58 59	


2 3 4	307	References:
5 6 7	308	1.Prenatal Screening, BORN 2012-2014 Annual Report,
8 9	309	http://bornontario.ca/assets/documents/FINAL%20English%20Jan%202016.pdf. Retrieved
10 11 12	310	February 28, 2018
13 14 15	311	2. Okun N, Summers AM, Hoffman B et al. Prospective experience with integrated prenatal
16 17	312	screening and first trimester combined screening for trisomy 21 in a large Canadian urban center.
18 19 20	313	Prenat Diagn. 2008;28:987-92.
21 22 23	314	3. Huang T, Dennis A, Meschino WS et al. First trimesterscreening for Down syndrome using
24 25	315	nuchal translucency, maternal serum pregnancy-associated plasma protein A, free- β human
26 27	316	chorionic gonadotrophin, placental growth factor, and α -fetoprotein. Prenat Diagn. 2015;35:709-
28 29 30	317	16.
31 32 33	318	4. Prenatal screening rates by LHIN of residency, Born 2014-2016 Biennial Report,
34 35	319	http://www.bornontario.ca/en/about-born/governance/annual-reports/2014-2016-annual-
36 37 38	320	report/facts-from-ontario/. Retrieved February 28, 2018
39 40 41	321	5. Gil MM, Quezada MS, Revello R et al. Analysis of cell-free DNA in maternal blood in
41 42 43	322	screening for fetal aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol
44 45 46	323	2015;45:249-66.
47 48	324	6. Chitty LS, Wright D, Hill M, et alUptake, outcomes, and costs of implementing non-invasive
49 50	325	prenatal testing for Down's syndrome into NHS maternity care: prospective cohort study in eight
51 52 53 54 55 56 57	326	diverse maternity units. BMJ. 2016;354::i3426
58		17

1 2		
3 4	327	7. Williams J 3rd, Rad S, Beauchamp S et al Utilization of noninvasive prenatal testing: impact
5 6 7	328	on referrals for diagnostic testing. Am J Obstet Gynecol. 2015;213:102.e1-6.
8 9	329	8: Larion S, Warsof SL, Romary L et al. Uptake of noninvasive prenatal testing at a large
10 11 12 13	330	academic referral center. Am J Obstet Gynecol. 2014;211:651.e1-7.
13 14 15	331	9. Census division, Statistics Canada. http://www12.statcan.gc.ca/census-
16 17 18	332	recensement/2011/ref/dict/geo008-eng.cfm access on Jan 19, 2017.
19 20	333	10. Local Health System Integration Act, 2006.
21 22 23	334	ttp://www.health.gov.on.ca/en/common/legislation/lhins/default.aspx; accessed Jan 19, 2018
24 25 26	335	11. Chitayat D, Langlois S, Douglas Wilson R; SOGC GENETICS COMMITTEE; CCMG
27 28	336	PRENATAL DIAGNOSIS COMMITTEE. Prenatal screening for fetal aneuploidy in singleton
29 30 31	337	pregnancies. J Obstet Gynaecol Can. 2011;33:736-750.
32 33	338	12. Engels MA, Bhola SL, Twisk JW et al. Evaluation of theintroduction of the national Down
34 35 36	339	syndrome screening program in the Netherlands: age-related uptake of prenatal screening and
37 38 39	340	invasive diagnostic testing. Eur JObstet Gynecol Reprod Biol. 2014;174:59-63.
40 41	341	13. Miltoft CB, Wulff CB, Kjærgaard S et al. Danish Fetal Medicine Study Group. Parental
42 43	342	Decisions about Prenatal Screening and Diagnosis among Infants with Trisomy 21 in a National
44 45 46	343	Cohort with High Uptake of Combined First-Trimester Screening. Fetal Diagn Ther.
47 48 49	344	2017;41:209-214.
50 51	345	14. Hayeems RZ, Campitelli M, Ma X et al Rates of prenatal screening across health care
52 53 54 55	346	regions in Ontario, Canada: a retrospective cohort study. CMAJ Open. 2015;3:E236-43.
56 57		
58 59		18

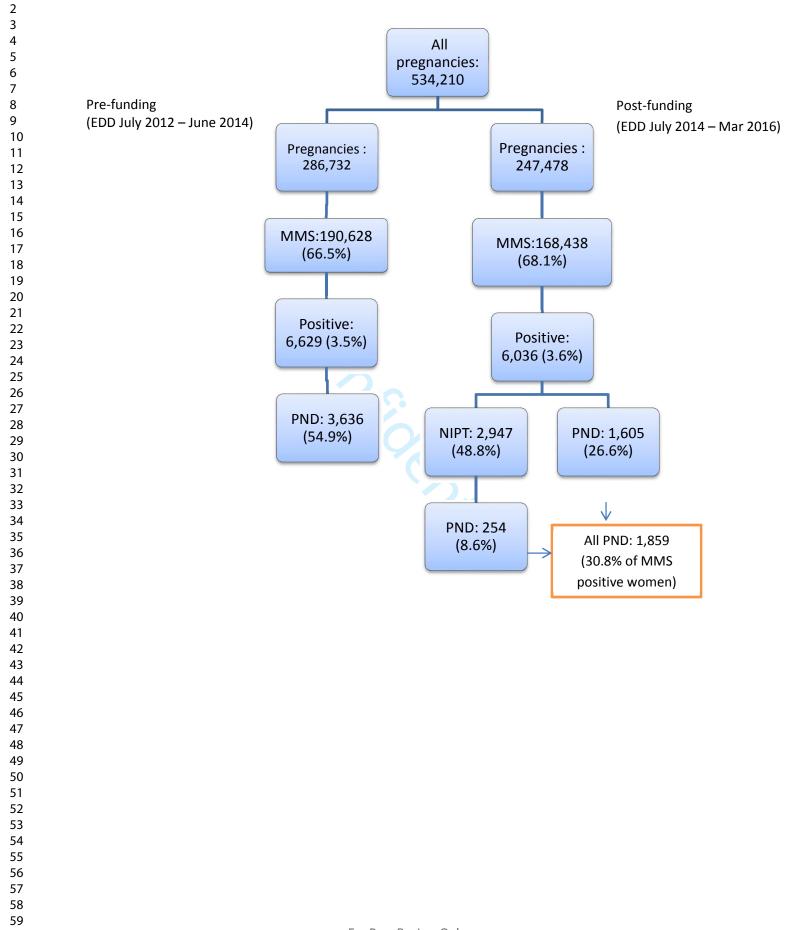
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
21	
22	
22	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
24	
25	
26	
27	
28	
29	
30	
21	
31 32 33 34 35	
32	
33	
34	
35	
36	
37	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

347	15. Okun N, Teitelbaum M, Huang T et al. The price of performance: a cost and performance
348	analysis of the implementation of cell-free fetal DNA testing for Down syndrome in Ontario,
349	Canada. Prenat Diagn. 2014;34:350-6.
350	16. Chan YM, Leung WC, Chan WP et al. Women's uptake of non-invasive DNA testing
351	following a high-risk screening test for trisomy 21 within a publicly funded healthcare system:
352	findings from a retrospective review. Prenat Diagn. 2015 r;35:342-7.
552	mongs nom a redospective review. I renat Diagn. 2015 1,55.542-7.
353	17. Robson SJ, Hui L. National decline in invasive prenatal diagnostic procedures in association
354	with uptake of combined first trimester and cell-free DNA aneuploidy screening. Aust N Z J
355	Obstet Gynaecol. 2015;55:507-10.
250	
356	18. Hui L, Muggli EE, Halliday JL. Population-based trends in prenatal screening and diagnosis
357	for aneuploidy: a retrospective analysis of 38 years of state-wide data. BJOG. 2016;123:90-7.
358	19. Hui L, Hutchinson B, Poulton A et al. Population-based impact of noninvasive prenatal
359	screening on screening and diagnostic testing for fetal aneuploidy. Genet Med. 2017;19:1338-
360	1345.
	· · · · · · · · · · · · · · · · · · ·
361	20. Gil MM, Giunta G, Macalli EA, Poon LC, Nicolaides KH. UK NHS pilot study on cell-free
362	DNA testing in screening for fetal trisomies: factors affecting uptake. Ultrasound Obstet
363	Gynecol. 2015;45:67-73.
364	21. Manegold-Brauer G, Berg C, Flöck A, Rüland A, Gembruch U, Geipel A. Uptake of non-
365	invasive prenatal testing (NIPT) and impact on invasive procedures in a tertiary referral center.
366	Arch Gynecol Obstet. 2015;292:543-8.



For Peer Review Only

LHINs with the highest and lowest utilization of cfDNA screening Following positive MMS


LHIN	All pregnancies	Pregnancies with cfDNA	Uptake of cfDNA (%)
Toronto Central	775	500	64.5 (Highest)
North West	33	8	24.4 (Lowest)
Ontario	6036	2947	48.8 (All)

LHIN (Local Health Integration Networks)

For Peer Review Only

Figure 3. Prenatal screening pathways before and after cfDNA screening was funded. Women who did not have a follow-up testing following a positive MMS were not shown

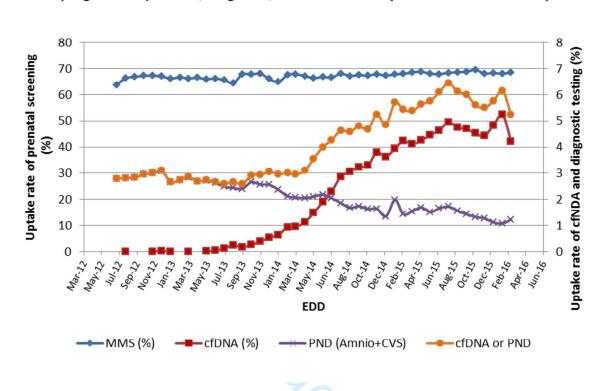
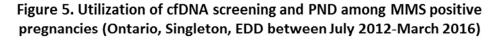
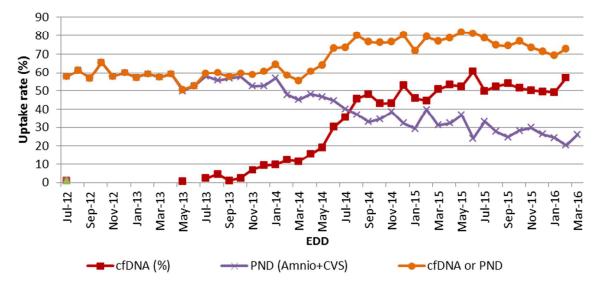




Figure 4. Uptake rates of MMS, cfDNA screening, and PND among all pregnancies (Ontario, Singleton, EDD between July 2012 and March 2016)

Before cfDNA screening was funded # After cfDNA screening was funded ##

MMS risk for Trisomy 21	Uptake of cfDNA screening (%)	Uptake of PND#	Uptake of cfDNA screening or PND testing (%)	Uptake of cfDNA screening (%)	Uptake of PND (%)	Uptake of cfDNA screening or PND testing (%)
≥ 1 in 10	4	67.53	70.19	30.5	54.08	76.07
1 in 11- 1 in 50	6.08	63.07	67.8	44.28	40.47	78.77
1 in 51- 1 in 100	7.98	55.89	62.62	51.13	29.22	77.28
1 in 101- 1 in 200	6.39	50.88	56.26	55.1	23.51	76.28
1 in 201- 1 in 350	3.1	13.07	15.94	25.2	6.02	29.94
1 in 351- 1 in 500	1.35	6.43	7.47	12.5	2.31	14.62
1 in 501- 1 in 1000	1.11	4.1	5.15	9.29	1.64	10.64
1 in 1000- 1 in 5000	0.63	1.97	2.56	5.34	1.01	6.19
< 1 in 5000	0.23	0.65	0.88	2.03	0.45	2.44
All risk group*	0.58	3.25	3.77	4.96	1.89	6.61

* all risk groups plus no MMS result# EDD before July 2014## EDD between July 2014 and March 2016

 1.11
 4.1
 5.15

 0.63
 1.97
 2.56

 0.23
 0.65
 0.88

 0.58
 3.25
 3.77

	Item No	Recommendation	Page Numbe
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of	3
		what was done and what was found	-
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7-9
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	7-8
		of participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed	7
		and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	9
		confounders, and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	7
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	8-9
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8-9
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	9
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	10
-		potentially eligible, examined for eligibility, confirmed eligible,	
		included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	Figure 3
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	10
-		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable	10
		of interest	
		(c) Summarise follow-up time (eg, average and total amount)	N/A
Outcome data	15*	Report numbers of outcome events or summary measures over time	10-11
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted	N/A
	-	······································	

		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were	11 and
		categorized	Table 1
		(c) If relevant, consider translating estimates of relative risk into	
		absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	N/A
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	12-13
Limitations	19	Discuss limitations of the study, taking into account sources of potential	15
		bias or imprecision. Discuss both direction and magnitude of any	
		potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	15
		limitations, multiplicity of analyses, results from similar studies, and	
		other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present	2
		study and, if applicable, for the original study on which the present	
		article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.