A UNIVERSAL GENE EXPRESSION SYSTEM FOR FUNGI

Anssi Rantasalo, Christopher P. Landowski, Joosu Kuivanen, Annakarin Korppoo, Lauri Reuter, Outi Koivistoinen, Mari Valkonen, Merja Penttilä, Jussi Jäntti*, and Dominik Mojzita*

VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland

* To whom correspondence should be addressed. Tel: +358 50 5227846; Fax: +358 20 7227071; Email: jussi.jantti@vtt.fi or Tel: +358 40 3591913; Fax: +358 20 7227071; Email: dominik.mojzita@vtt.fi

Supplementary figures:

Supplementary Figure 1: Alternative SES system (SES-B) and the quantification of its performance in fungal hosts.

Supplementary Figure 2: Constitutive expression enabled by the SES in filamentous fungi; comparison with the widely used CBH1 promoter based expression system in *T. reesei.*

Supplementary Figure 3: Analysis of the intrinsic activation of SES-A-NC system in P. kudriavzevii.

Supplementary Figure 4: Numerical values for the flow cytometry analysis and fluorometry analysis of the strains harboring the SES.

Supplementary Figure 5: Comparison of the SES and established expression tools (native promoters) in selected fungi.

Supplementary Figure 6: Transcription of *cbh1*, sTF, *tef1a* and actin-encoding genes in strains cultivated in bioreactors.

Supplementary Figure 7: Universal SES system for novel hosts.

Supplementary Figure 8: Test of genetic stability of the SES system.

Supplementary tables:

Supplementary Table 1: Parental strains used in this study.

Supplementary Table 2: Candidate core promoter sequences.

Supplementary Table 3: DNA sequences of mCherry, *CBH1* and sTFs.

Supplementary Table 4: Sequences of sTF binding sites.

Supplementary Table 5: Selection markers, integration loci, and length of the integration flanks.

Supplementary Table 6: CRISPR targeting sequences used for crRNA design.

Supplementary Table 7: Primers used for RT-PCR-based analysis of genomic integrations.

Supplementary Table 8: The detector's voltages used in flow cytometry analysis.

Supplementary Table 9: Primers and gene targets used in transcription analysis.

Supplementary Table 10: Z. lentus ACT1 – partial CDS.

Supplementary Table 11: Z. lentus YIP3 – genomic fragment.

Supplementary Table 12: DNA sequences of the established fugal promoters used for comparisons with the SES-A system.

Supplementary Figure 1 Alternative SES system (SES-B) and the quantification of its performance in fungal hosts.

Supplementary Figure 1. Alternative SES system (SES-B) and quantification of its performance in fungal hosts.

- A) Schematic presentation of an alternative version of the SES system (SES-B), including positions of selection markers and genome-integration flanks for the listed species. The An_53301 core promoter (An_533cp) was used for the expression of the sTF (Bm3R1-NLS-VP16). The mCherry expression was controlled by the sTF via the sTF-specific binding sites (BS) positioned upstream of the An_1147651 core promoter (An_114cp). The negative control (NC) lacks the region spanning the core promoter (An_533cp) and a large portion of the sTF. Each cassette was integrated in the specified genomic locus in single copy.
- B) Transcription analysis of the strains. The mCherry transcript levels were compared to the transcript levels of endogenous *TEF* genes in each host. Transcript levels of the sTF are shown on the secondary y-axis. PS denotes the parental strains (without SES). In *S. cerevisiae*, in addition to the SES-B, also a modified version was tested having the *S. cerevisiae*-codon-optimized sTF gene, which is indicated by an asterisk (SES-B*). In *P. pastoris*, only the SES-B* version was used. The transcription of the *UBC6* gene homologs (Supplementary Table 9) in each species were used for normalization. Values and error bars represent the mean and standard deviation from two biological (four technical) replicates.
- C) Analysis of mCherry expression by flow-cytometry. Flow-cytometry was performed on cells (yeast species) or conidia (filamentous fungi). The box plots show the fluorescence intensity (mCherry) normalized by the particle (cell/conidia) size (FSC forward scatter) for ~10,000 cells/conidia from each strain. The horizontal red line (inside the grey box) represents the median value, the grey box represents the interquartile range (IQ range), the bottom line of grey box represents the 25% percentile value, the top line of grey box represents the 75% percentile value. The whiskers in box plot together with the IQ range, represent about 99% of all measured instances (cells/conidia) (for numerical values see Supplementary Fig. 4A). Alternative fluorescence analysis of the strains was performed by quantitative fluorometry (Supplementary Fig. 4B and 4C).

Aspergillus niger (SES_A) sporulation

Trichoderma reesei (SES_A) sporulation

Trichoderma reesei (CBH1 promoter-mCherry) sporulation on cellulose

Supplementary Figure 2

Constitutive expression enabled by the SES in filamentous fungi; comparison with the widely used CBH1 promoter based expression system in *T. reesei*.

SES system confers highly constitutive expression as demonstrated by uniformly distributed mCherry fluorescence in different developmental stages in filamentous fungi: mycelia (arrow with M), conidiophore (arrow with C), and conidia/spores (arrow with S). In contrast, when the mCherry gene was placed under the control of a strong, inducible *cbh1* promoter in *T. reesei*, only mycelia were highly fluorescent and negligible expression was observed in conidia in the cellulase-inducing conditions in presence of cellulose (lower panel).

Supplementary Figure 3

Analysis of the intrinsic activation of SES-A-NC system in P. kudriavzevii.

- A) Schematic presentation of the DNA cassette, containing the SES-A-NC versions with zero to eight sTFbinding sites, used for genome integration in *P. kudriavzevii*. The positions of selection marker (HPH) as well as the integration DNA-flanks (*PDC1* locus) are shown.
- B) Transcription analysis of the strains. The mCherry transcript levels were compared to transcript levels of the endogenous *TEF1* gene. PS denotes parental strain (without SES). The values and error bars represent the mean and standard deviation from two biological (four technical) replicates.
- C) Analysis of the mCherry fluorescence by flow-cytometry measurements of *P. kudriavzevii* strains. The box plots show the same features as in **Fig. 3B**.
- D) Quantitative fluorometry analysis of the strains. The graphs show the fluorescence intensity (mCherry) normalized by the optical density of the cell suspensions used for the fluorometry analysis. The strains of *P*.

kudriavzevii harboring the SES-A_0-8BS versions are also included and these strains correspond to those shown in **Fig. 4B** and **4C**. The values and error bars represent the mean and standard deviation from three biological replicates. The cultivation conditions in (B-D) were identical to those used in the transcription analysis of *P. kudriavzevii* (**Fig. 3A**). The impact of the diverse number of the sTF binding sites on the mCherry production (in absence of the sTF) indicates an intrinsic activation of the expression by an unidentified native TF in *P. kudriavzevii*.

Numerical values (×10 ⁻³) for the flow cytometry analysis (Fig. 3b)					
	PS	SES-A	SES-A-NC	SES-B	SES-B-NC
S. corovisioo	0.3 ± 0.3	28.8 ± 16.7	2.7 ± 1.3	48.2 ± 20.5	1.1 ± 1.1
	(n=9998)	(n=9995)	(n=9992)	(n=9992)	(n=9993)
S. cerevisiae		166.9 ± 35.6* (n=9997)		126.8 ± 32.8* (n=9991)	
Y. lipolytica	0.4 ± 0.4	476.9 ± 91.8	4.1 ± 5.6	407.3 ± 74.4	5.3 ± 4.5
	(n=9987)	(n=9995)	(n=9990)	(n=9994)	(n=9996)
P. kudriavzevii	0.7 ± 0.6	201.5 ± 47.0	16.9 ± 5.4	159.0 ± 57.0	59.2 ± 15.3
	(n=9962)	(n=9982)	(n=9970)	(n=9979)	(n=9979)
P. pastoris	0.3 ± 0.2	235.7 ± 97.5*	0.6 ± 1.0	155.3 ± 89.9*	1.7 ± 1.8
	(n=9832)	(n=9836)	(n=9834)	(n=9837)	(n=9863)
T. reesei	0.3 ± 2.5	750.7 ± 372.3	141.0 ± 145.4	761.5 ± 444.0	34.3 ± 14.3
	(n=9716)	(n=9820)	(n=9779)	(n=9745)	(n=9787)
A. niger	0.6 ± 0.1	884.3 ± 219.4	4.2 ± 13.5	893.1 ± 252.9	9.5 ± 3.8
	(n=9485)	(n=9812)	(n=9397)	(n=9822)	(n=9697)

Β

С

Α

Numerical values of the fluorometry analysis

				-	
	PS	SES-A	SES-A-NC	SES-B	SES-B-NC
S. cerevisiae	41,2 ± 2,3	146,8 ± 5,3 624,6 ± 8,3*	$49,3 \pm 0,8$	218,6 ± 33,6 504,8 ± 36,4*	42 ± 0,8
Y. lipolytica	34,6 ± 1,5	959,2 ± 75,5	$35,5 \pm 9,8$	890,8 ± 32,5	40,6 ± 5,1
P. kudriavzevii	$35,5 \pm 0,9$	716,8 ± 52	230,1 ± 14,2	650,8 ± 57,8	336,0 ± 15,5
P. pastoris	39,5 ± 2,0	1198,0 ± 110,8*	45,4 ± 1,3	683,0 ± 10,5*	50,5 ± 1,4
T. reesei	$34,4 \pm 3,6$	2303 ± 308,6	34,2 ± 5,8	2448,6 ± 35,7	67,3 ± 6,0

Supplementary Figure 4

Numerical values for the flow cytometry analysis and fluorometry analysis of the strains harboring the SES.

Supplementary Figure 4. Numerical values for the flow cytometry analysis and the fluorometry analysis of the strains harboring the SES.

- A) The table shows the mean values with the standard deviations (and number of analysed cells/conidia) of the flow cytometry analysis (shown in Fig. 3B).
- B) Quantitative fluorometry analysis of mCherry expression in the SES-containing yeasts and *T. reesei* strains. This analysis was not conducted for *A. niger*, because the morphology and other specific properties of its mycelia prohibit reproducible sample handling in the fluorometry analysis setup. The graphs show fluorescence intensity (mCherry) normalized by the optical density of the cell/mycelia suspensions. Values and error bars represent the mean and standard deviation from at least three independent cultivations.
- C) The table showing the mean values with the standard deviations of the fluorometry measurements shown in (B). The values with asterisk represent use of the SES systems (SES-A* and SES-B*) in *S. cerevisiae* and *P. pastoris* with *S. cerevisiae*-codon-optimized version of the sTF.

Β

С

Supplementary Figure 5

Comparison of the SES and established expression tools (native promoters) in selected fungi

Supplementary Figure 5. Comparison of the SES-A system with commonly used gene expression tools

- A) Schematic presentation of the DNA-cassettes, including positions of selection markers and genomeintegration flanks, used for testing the established fungal promoters in the listed species. The cassettes tested in *S. cerevisiae* contained: 1) *S. cerevisiae PGK1* promoter; 2) *Y. lipolytica TEF1* promoter; 3) *P. pastoris GAP1* promoter; and 4) *A. nidulans gpdA* promoter. The cassette for *Y. lipolytica* contained its native *TEF1* promoter, the cassette for *P. pastoris* (mCherry gene cloned into the pGAPZ_A vector) contained its native *GAP1* promoter, and the *A. niger* cassette contained the *A. nidulans gpdA* promoter which is frequently used in this organism for heterologous gene expression.
- B) Fluorometry analysis of the yeast strains carrying single-copy genome integrated SES-A/SES-A* cassettes, or the cassettes with the established fungal promoters. PS denotes the parental strains. Values and error bars represent the mean and standard deviation from three independent cultivations.
- C) Transcription analysis of the *A. niger* strains carrying single-copy genome integrated SES-A cassette, or the cassette with the *A. nidulans gpdA* promoter. The mCherry, the *tefA* gene, and the sTF (on the secondary y-axis) transcript levels were analyzed and normalized to signal of the *UBC6* homolog gene transcription. Values and error bars represent the mean and standard deviation from two biological (four technical) replicates.

Supplementary Figure 6

Transcription of *cbh1*, sTF, *tef1a* and actin-encoding genes in strains cultivated in bioreactors.

Time course transcription profiles are shown for parental (PS) and the SES-C-containing strains. Values and error bars represent the mean and standard deviation from two biological (four technical) replicates.

Β

Candida apicola

Supplementary Figure 7 Universal SES system for novel hosts.

Supplementary Figure 7. Universal SES system for novel hosts.

- A) Schematic presentation of the SES cassettes (SES-B+NAT) used for *C. apicola* and *Z. lentus*. The selection marker and mCherry expression was controlled by the sTF (Bm3R1-NLS-VP16). The genome integration flanks are also indicated.
- B) Fluorescent microscopy of the two species harboring the SES-B (+NAT). Uniform mCherry fluorescence signal was observed and the corresponding bright field image is shown for both species. The micrograph acquisition settings and the contrast were adjusted to maximize the visualization of the red fluorescence.
- C) Quantitative fluorometry analysis of the mCherry expression in the yeast strains. The graphs show fluorescence intensity (mCherry) normalized by the number of cells. Values and error bars represent the mean and standard deviation from three independent cultivations. PS denotes parental strain (without SES).

Supplementary Figure 8

Transcription in *A. niger* SES-A

Supplementary Figure 8 Test of genetic stability of the SES system

Supplementary Figure 8. Genetic stability test of the SES-A system in the fungal strains.

- A) Schematic presentation of the cultivations. The 24-hour cultures were diluted each day to a fresh medium (~1:160 for the yeast strains; ~1:20 for the filamentous fungi).
- B) Quantitative fluorometry analysis of mCherry expression in the yeast and *T. reesei* strains. The *S. cerevisiae* and *P. pastoris* strains contained the SES-A* version with the *S. cerevisiae*-codon-optimized sTF. The *Y. lipolytica*, *P. kudriavzevii*, and *T. reesei* strains contained the basic SES-A system (with *A. niger* codon optimized sTF). The analysis was performed in days 1, 3, 5, and 7. The graphs show the fluorescence intensity (mCherry) normalized by the number of cells/mycelia in the suspension. Values and error bars represent the mean and standard deviation from at least three independent cultivations.
- C) Transcription analysis of the *A. niger* strain with the SES-A system. The analysis was performed in days 1, 4, and 7. The mCherry, the *tefA* gene, and the sTF (on the secondary y-axis) transcript levels were analyzed and normalized to signal of the *UBC6* homolog gene transcription. Values and error bars represent the mean and standard deviation from two biological (four technical) replicates.

Supplementary Table 1

Parental strains used in this study.

Organism	Strain	VTT code	Source
Saccharomyces cerevisiae	CEN.PK111-32D	H3891	*
Saccharomyces cerevisiae	CEN.PK102-5B	H3900	*
Saccharomyces cerevisiae	CEN.PK102-3A	H3899	*
Pichia kudriavzevii	ATCC 32196	VTT C-79090T	VTT culture collection
Yarrowia lipolytica		VTT C-00365	VTT culture collection
Pichia pastoris	X-33		Thermo Fisher Scientific
Aspergillus niger	ATCC1015		ATCC
Trichoderma reesei	VTT strain based on M124	M2068	VTT culture collection
Trichoderma reesei	<i>cbh1</i> ::mCherry (native CDS of the <i>CBH1</i> replaced by the mCherry CDS)	M717	VTT culture collection
Candida apicola		VTT-C-87174	VTT culture collection
Zygosaccharomyces lentus		VTT-C-09840	VTT culture collection

*Strains kindly provided by Dr. P. Kötter (Institute of Microbiology, J.W. Goethe University, Germany)

Candidate core promoters tested in *S. cerevisiae* CP-screen (**Fig. 1C**). The shaded sequences (9bp) are regions added to the native core promoter sequences (replacing its original 9bp 3'-end sequence) for screening and cloning purposes. The ATG, start codon of the mCherry coding sequence, is underlined. Sc - *Saccharomyces cerevisiae* origin; An – *Aspergillus niger* origin; Tr – *Trichoderma reesei* origin.

DNA sequen	ces of the selected UCPs and other CPs used for constructing the expression systems
Sc-THI4cp	ATCATGAAATTGATTTTTGATTTTCAATTTATGAACTACCCAGATATATAAATATTGGAATAAATTGTGTATTAAGTAGTCGGGAAATATCT TTTATGTTCTCTTTCTTATCATCTAGAAATAATAAATCACAACCAAAAAAAA
Sc-TEF1cp	CTCTTTCGATGACCTCCCATTGATATTTAAGTTAATAAACGGTCTTCAATTTCTCAAGTTTCAGTTTCATTTTCTTGTTCTATTACAACTTTTT TTACTTCTTGCTCATTAGAAAGAAAGCATAGCAATCTAATCTAAGTTT <mark>TTAATTAAA<u>ATG</u></mark>
Sc-PGK1cp	AAGGGGGTGGTTTAGTTTAGTAGAACCTCGTGAAACTTACATTTACATATATAT
An- 201205cp	TTCTCTTTTCTTAAGAATATGTTCAAAGACTAGGATGGAT
(An_201cp)	
An-53301cp	CGCCCCAAGAGAGCTGAAGATGCTGAGTAGGGTTGTCCAGGCAGCACATATATAAGATGCTTCGTCCCCCCCC
(An_533cp)	
An-	TATAGTACTATTGATTTAGTATTGTTGGTTGGATGTGGCTGGGTAGGTGTGTGT
205017cp	ACTAITITIGAATCACCTCAAACGATACTAITCGCATCTTTGATAAAGATATCAAGAAACCAGAACAATCATTACTACTCTCCATAAGGATATA TATATACTTTACATCTTAATTAAA <u>ATG</u>
(An_205cp)	
An-00850cp	AACCCAAAGTAATAAGTCTGTAGTAATTGGTCTCGCCCTGAATTCCAAACTATAAATCAACCACTTTCCCTCCC
(An_008cp)	ACATTAATTAAA <u>ATG</u>
An-	GGGGCGGAAACTTGAAACTGGACGCCTTGTGAACGGCGTATGTGGTATATAAGGAACCAAGTCCCGCTGTAGTCTTCGGTTCATCAGACC
1114556cp	CAGCACAGCACAGCAACACAACATTACAGCATAGCAAGCA
(An_111cp)	
An-	GCCCTGCAGTGCCTGATCACCTTATCAAGTGGCCAAATATCCCACTATAAAAGGCTTGGGAACCCCTCGTTCTGTCTTACCTTCTATCATCTT
1147651cp	
(An_114cp)	
An-	GGCTACTCGGGTTTTAAAGCCGTCTTAAAAGCCGACACGAATTAGTTATAAAAGACTCTGTACTTGAGCAGGATATTCCTTCATTCTTTCATT
1178623cp	
An-11310cp	AATTCTGCTTCTTTTGCGGGACTCAGGATCAACTGAGTATTTGCGAGCTAGTATAAGTAGCGCGCCTCCCTC
	AAAATTAATTAAAAATG

An-57241cp	AGGTAATGAATATTGGTTGCTGGCGGGCTGATCTTCTCCCCGACACGTCTATATAAACTGGTCACCTTCTGGCCCTTCCTT
An-06590cp	GATTTCTAGAAATTTCTGCCCTTTACTTGCCTTCCCTCTTTGTCAACAAATATAAAGAGACTCCAATTCCCCTTCTCTGATTTCCAACATTTTTC ATTCTCCACTTCAGAACCATCTGAAGGAGCTTGGCTGTCTCGCTTCTTCTTTCCTTTCCTTTACTAACATCCCTACCCCTCCT
An-53540cp	GCGCTGGTCAGCTGGGTCTTCAGCTTACTTTTTCTTCTGATCACGTAGGGTATATCGGTGGAATCTGGGTGGCGAGGAAGCCTGAATCCTC CAACATAAATAGGGCCACTCCCTCTCCCTCTTTTTCTGTAAACAAAC
An- 1141688cp	ACTTGGATGATGAGGAGGTGATCGAGGTCAATGAGGAGAGGGCTTGCAAGTATAAGAAGAGAGCTGCTCGACCAGCAGAATGGATCTTCT TGTTCATCAACCAAGAGTCCAAGGCTTCTTTGTCTGGTTCTATCTCTTCCCGAACTCTTGCTTG
An-07850cp	CCGTCCCCCAGGTTTTGGGTAGAATTGGAATATCATTAGATCTGTCGTCTTATATTGTTTATTTTAGAGAGAG
An-11300cp	GGTGATCTGAAAGGCTCCCGGGTAGTCCAACGTCACTCTGATCGCGTTGTTATATATGTCCTCCGCTCCCTCGCGTTGGCCGTCAACCCTTT AGCACCATATCACGCTTATCGCCATCGTCACTTGTTAACTACAACTCCCTAATAAATTAAACACCCTTCAAAAGGAAAAAAAA
An- 138407cp	GGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGAAC CTTGGGTCTGGCCGGCCGGCCCGCCTCACCGCGAGTACTGGTCCGGCTGGACCTTTCCTTCTG <mark>TTAATTAAA<u>ATG</u></mark>
An-14130cp	GTGGCTCCGGTGTCGGCGCGGGGAGGCTCGCCAACTGCCCGCCAGTCCGTATAAGTTGTAGTTTATACCTCGCTCTCCGCTCAATCG TCCACCTTCTCCGTGCCAGACTATCTTCCCTGCTT <mark>TTAATTAAA<u>ATG</u></mark>
An- 1158310cp	CGGTACGGCAGGGGCACGCGGGGGTAAACATGAGGGGTGGTCTACTATATAAGTCCATCGAGTGATGCACAACGCCAACTACAGCTTCGCA ACACACATATCCCATTAATTGAAAGTTATAGACACATATACTCTACAGATCAGTCAAGTACATCTACCACACCCCCTGAACCCCAACCCCAAA ACTAACAGCA <mark>TTAATTAAA<u>ATG</u></mark>
Tr- 112258cp (Tr_112cp)	CACATCCTTGGAGATCAGTTGCAGTCTATTCATTCAGGCTCAACATATAAAGATGGGATACTTCCAACAGATGATAGTTGTCAAACAACCTC TTTGATCCTACACAATTTGGCCCAAGACACAAGACGCTCACATCTCCTACCTA
Tr- 123236cp (Tr_123cp)	ATCTTACAAAGTTGCTTGGCAGTAAACCGTGCAATGGACACCAGGTATAAAGTCAGTGATATCCTCCCCGAATTCAAAGTTTCATCACCAA GCTCCTCAATCAACTCTACTTGAACAATACTACAAACAACCAAACCTCATTCAACAACTTAATTAAA <u>ATG</u>
Tr- 123989cp	TAAACGGAATGAGCTAGTAGGCAAAGTCAGCGAATGTGTATATATA
Tr- 119989cp	AACAGCCTGCGAGAGCTGGAAGATGAAGAGGGCCAGAAAAAAAGTATAAAGAAGACCTCGATTCCCGCCATCCAACAATCTTTTCCATC CTCATCAGCACACTCATCTACAACCATCACCACATTCACTCAACTCCTC
Tr- 123232cp	GGTCTGGATGAAACGTCTTGGCCAAATCGTGATCGATTGATACTCGCATCTATAAGATGGCACAGATCGACTCTTGATTCACAGACATCCG TCAGCCCTCAAGCCGTTTGCAAGTCCACAAACACAAGCACAAGCATA <mark>TTAATTAAA<u>ATG</u></mark>
Tr-73638cp	CCGGCACAAATCAGGAGCAACAGGCACTGCAAAATGACCTGGCAGTATATATA

Tr-	GAGACGAGGCAAGCTTGATGAGGCCAAATTATCCGTCAACTGTCTTATAAAGGAGCCCATGCCAAACCCCCCCTAAAGACTCAAGAAGCC
123818cp	AAACCTGAACAACCCCAGCACCTGAACAGTCATACAACCCCTCCAAGCCCAAAAGACAACAACTCCTACTAGCTGAAGCAAGAAGTTAA
	TTAAAAATG
-	
Ir-	
123979cp	
Tr-69465cp	GAAAAATGGTGAGGAGATCTGCCTTCGAGTGCGTGTAGAAAAATGTATATAAGGATGTGTTTCACTCAACTTGTCTTAAGAATCGGTTCTC
	TAGCCGCGCTTTCAATTACTTCGAGACTTTCGCTTAAAATCGCCCTGCCATTTAATTAA
Tr-49976cp	TGCCCCTGGCGTTGCAAGCCGCGTACAACTGCCCTTTTACCTAGGTATAAAAGACCTGTAGTAACCAACTACTATTGCAATTCTTCTCACG
	TGGGCATCTATTCGTATCTTACACAAGGGCGCTGCAACTAATTGACTTGATCTTCCATCTCGTGTCTTGCTTG
Tr-	CTGTTAGGCTGTGAGTTATAAAGGTTGATGGATTGGGTCGAGGTTGTCAATGTCAGAGCATCTTACCTCCACGCTTCAATCTTACCTACAC
123946cp	GCTTCCTCTCAATCCTTGAACACCAATTGTTGCTCTAGCGCCTATCCTTCACTCATCACTCGCCTCGTACACTAAACTCTTCATCCCGAACAGA
	CACGGCTTAATTAAAAATG
Tr-79202cp	
	G
Tr-	GGTGAGGCCTCTAACCCCTCTTGAGGAGCGTGGCAGCTTGAAGCTTATAAATAGCCCTTTGTTCTCCCCTAGAAACCTTCCTCTTCTTCTCCC
121350cp	CTTCAAGCAAACACTCCTCACACAAACCACACAACACTCAACTTCTCTTCATTAATTAAAAATG
Tr-	AGTTGTGGTTTTGGTCTCGATTTGGGGGGTATATAAGGCGTGAGGATTCCCGGTTGATGGAATTTGGATTTTCTGTCTTCTCTCTC
123009cp	AAAATCGAGGGTTGCTGAGATACTGTTTCCCGCTTGCTCTATAACTTCTTCTTTTTTTGCTCTTTTGGCCTTTAACGTTCTTGAAGGCGTT
	GGTTTTAATTAAAAATG
11-	ATCACAAACCCAACAACATTTCCAAAGTTTACAACCTCCTTGAACACCCTTTCCCTTGTCAATCGACTTAAATTAAAATG
120311cp	
Tr-	AGCTGGGCTTGAAATCGATCATACTGCAGCCATAAGAGCAAGGGATATAACTAGAAGATGTCTCGAACTCGATAGAGAGAG
107784cp	TCGACGACAAACAACAACAACCAATCTGAGCACGAGACTACAGACAACGCGCATTCGACGGCCTCCATACATCAGAAAACTACTTTCCGCCTTGGA
	TTTAATTAAA <u>ATG</u>
Tr-80980cp	GTAATACCTGAAAGCAAGGAAAAGAGAATTCGCACCGGAGATGGATATAAAAAGCTTGCACTGGTCGCGACAATGAAGGGTCAATCTCA
	GAGCTCATCAGATCACCACCTCGACAACCCTCTCAACATTTTGCCTAGTTGCTTATTCCTAGGCGTACCTTCTCCAATCAAT
	TAATTAAAAATG

DNA sequences of mCherry, *CBH1* and sTFs. The part of the sTF encoding the DNA-binding protein (Bm3R1) is codon-optimized for *A. niger* (A.n.) or *S. cerevisiae* (S.c.). The *cbh1* sequence is identical to the *T. reesei* genome sequence of the gene (contains introns).

Gene	Sequence
mCherry	ATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAAC GGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAAGCCGCCAAGCTGAAGGTGACCAAGGG TGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGGCGACATCCC CGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACC CAGGACTCCTCCCTGCAGGACGGCGAGGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCGCGTAATGCA GAAGAAGACCATGGGCTGGGAGGCCTCCCCGAGGGCGGATGTACCCCGAGGACGGCCCCTGAAGGGCCGCGTAATGCA GAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGAGATGTACCCCGAGGACGGCCCCTGAAGGGCGAGATCAAGCAGAGGC TGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCGCGCCCT ACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGCCGAGGCCGCCA CTCCACCGGCGGCATGGACGAGTTATACAAGTAA
Bm3R1	ATGGAGTCCACCACCACGAAACAAAAAGCTATTTTTTCTGCCTCGCTCCTTCTGTTCGCCGAACGCGGGTTTGACGCCACTACGATG
(A.n.)-NLS-	TCCAGCAGCACGTTAATGCTAAGGTCGCGCGCGCGCGCGC
VP16	GAAGAGTCACGCCTTGCATACCAAAAACTTGTTGAGTTCGTCTGCACCTTCTTTCGAGAGGGACAGAAACAGGGCGTAATTCGAAA CTTGCCCGAGAATGCCCTGATCGCCATCCTATTCGGATCGTTTATGGAGGTCTATGAGATGATCGAAAACGATTATCTCTCTC
Bm3R1	ATGGAATCTACTCCTACTAAGCAAAAAGCCATCTTCTCTGCCTCCTTGTTGTTGTTGTTCGCTGAGAGAGGTTTCGACGCTACCACTATGC CAATGATTGCCGAAAACGCTAAGGTTGGTGCTGGTACTATCTACAGATACTTCAAGAACAAAGAATCCTTAGTTAATGAGTTGTTTC
(S.c.)-NLS-	AACAACACGTCAATGAATTTTTGCAATGTATCGAATCTGGTTTGGCTAACGAAAGAGATGGTTACAGAGACGGTTTCCACCACATC TTCGAAGGTATGGTCACCTTCACCAAGAACCATCCTAGAGCCTTAGGTTTCATCAAGACCCACTCTCAAGGTACTTTTTTGACCGAA
VP16	GAATCCAGATTGGCTTATCAAAAGTTGGTCGAATTTGTCTGTACTTTCTTCAGAGAAAGGTCAAAAGCAAGGTGTCATCAGAAATTT GCCAGAAAACGCTTTGATTGCTATCTTGTTCGGTTCTTTCATGGAAGTCTACGAAATGATTGAAAACGATTATTTGTCTTTGACTGAT GAATTATTAACCGGTGTTGAGGGAATCCTTGTGGGGCTGCCTTGTCTCGTCAATCTGAATTCCCTCCC
LexA-NLS-	ATGAAAGCGTTAACGGCCAGGCAACAAGAGGTGTTTGATCTCATCCGTGATCACATCAGCCAGACAGGTATGCCGCCGACGCGTG
VP16	AATTGTTTCCGGCGCATCAGCGGATTCGTTCCCTAAACGCGGCTGAAGAACATCTGAAGGCGCTGGCACGCAAGGCGTTATTGA AATTGTTTCCGGCGCAACAGCATTCGTCGTTGCTGGCAGGAAGAGAGAG
CDh1	ATGTATCGGAAGTTGGCCGTCATCTCGGCCTTCTTGGCCACAGCCTCAAGCCCGGCCTCGGACTCTGCAATCGGAGACTCACCCG CCTCTGACATGGCAGAAATGCTCGCTGGCTGGCAACGTGGCAACAGCTCAAGACAGGCCCCATGGCCCAACCGAGCCCAACTGGCGCCAACGGCGCCGAA GAACTGCTGTCTGGACGGGCGCCGCCTACGCGTCACGATGGCAACACTTGGAGCCCGACGGGCAACAGCCTCCCATTGCCTTGGCCAACGAGCCC AGTCTGCGCAGAAACAGCTGGCCGCCTACGCCGTCACGCAGGCGACCGAC

Sequences of sTF binding sites. The Bm3R1 binding sites are used in all SES constructs, the LexA binding sites are used in the centromeric plasmid in the *S. cerevisiae* CP screen.

Binding site	Sequence
Bm3R1 ver 1	CGGAATGAACATTCATTCCG
Bm3R1 ver 2	CGGAATGAAGGTTCATTCCG
Bm3R1 ver 3	CGGAATGAACTTTCATTCCG
LexA ver 1	CTGTATGTACATACAG
LexA ver 2	CTGTATATATACAG
LexA ver 3	CTGTATGCGCATACAG
LexA ver 4	CTGTATATATACAG

Selection markers, integration loci, and length of the integration flanks which were used in transformations of different host organisms.

Host organism (SES	Used selection	Integration	Length and target	Length and target
versions and/or	marker	locus	location of 5' integration	location of 3' integration
control-promoter	(selection	(ID/database)	flank	flank
system versions)	condition)			
S. cerevisiae	LEU2	LEU2 (protein	52 bp (-82 to -30 bp	50 bp (+1 to +50 bp
(SES-A, -A*, -A-NC, -B,	(absence of	ID in JGI*: 626)	upstream of start codon)	downstream of stop
-B*, -B-NC, Sc_PGK1p,	Leucine)			codon)
Yl_TEF1p, Pp_GAP1p,				
An_gpdAp)				
P. pastoris (SES-A*, -	ble	AOX promoter	463 bp (-527 to -64 bp	413 bp (-940 to -528 bp
A-NC, -B*, -B-NC)	(100 µg/ml	(protein ID in	upstream of start codon)	upstream of start codon)
	Zeocin)	JGI*: 40209)		
P. pastoris (GAP1p)	ble	GAP promoter	293 bp (-302 to -10 bp	186 bp (-488 to -303 bp
	(100 µg/ml	(protein ID in	upstream of start codon)	upstream of start codon)
	Zeocin)	JGI*: 37283)		
P. kudriavzevii	НРН	PDC1 (gene ID	624 bp (-998 to -374 bp	720 bp (-528 to +192 bp
(SES-A, -A-NC, -A(0-	(500 μg/ml	in EFD**:	upstream of start codon)	downstream of stop
8BS), -A-NC(0-8BS), -	Hygromycin B)	JL09_g917)		codon)
В, -В-NС)				
Y. lipolytica	NAT	ANT1 (protein	755 bp (-1000 to -246 bp	294 bp (+7 to +300
(SES-A, -A-NC, -B, -B-	(400 μg/ml	ID in JGI*:	upstream of start codon)	downstream of stop
NC; YI_TEF1p)	Nourseothricin)	68263)		codon)
A. niger	pyrG	gaaC (protein	1955 bp (-1974 to -20	1692 bp (+165 to 1846
(SES-A, -A-NC, -A(0-	(absence of	ID in JGI*:	upstream of start codon)	downstream of stop
8BS), -B, -B-NC,	uracil)	1158310)		codon)
An_gpdAp)				
T. reesei	НРН	PEP4 (protein	958 bp (-1029 to -69 bp	992 bp (+3 to 995 bp
(SES-A, -A-NC, -B, -B-	(150 µg/ml	ID in JGI*:	upstream of start codon)	downstream of stop
NC)	Hygromycin B)	77579)		codon)
T. reesei	НРН	CBHI (protein	2186 bp (-2184 to +2 bp	1746 bp (+692 to 2438
(SES_C)	(150 µg/ml	ID in JGI*:	upstream of start codon)	bp downstream of stop
	Hygromycin B)	123989)		codon)

C. apicola	NAT	S. cerevisiae	799 bp (-872 to -73 bp	807bp (+4 to 811 bp
(SES-B+NAT)	(200 μg/ml	URA3 homolog	upstream of start codon)	downstream of stop
	Nourseothricin)	***		codon)
Z. lentus	NAT	S. cerevisiae	549 bp (-642 to -93 bp	499 bp (+370 bp of ORF
(SES-B+NAT)	(200 μg/ml	YIP3 homolog	upstream of start codon)	to +291 downstream of
	Nourseothricin)	***		stop codon)

*JGI = Joint Genome Institute's database (<u>http://genome.jgi.doe.gov/programs/fungi/index.jsf</u>) ** EFD = Ensembl Fungi database (<u>http://fungi.ensembl.org/index.html</u>)

*** - no public genome database available

Supplementary Table 6

GaaC targeting sequences used for crRNA design for *A. niger* transformation, and URA3 targeting sequences used for crRNA design for C. apicola transformation.

Target	Sequence
gaaC_1	TGAAGGGTCGAAGAAAGTCA
gaaC_2	GCCAGCGAACAATCCATTCG
gaaC_3	GAATTGCACTCTTCGTACCG
Ca_URA3	GGATATCGGCAGTACTGTGA

Primers used for RT-PCR-based analysis of single copy SES system (or promoter-control system) genome-integration. The RT-PCR signals of mCherry and /or the sTF coding sequences were compared to the signals of reference genes in each transformed SES-strain. In cases of the control promoter strains, only the mCherry coding sequence was used.

Brimer number		ID in		
Filler Hulliber	Target	database	Primer name	Sequence
890	mChorny		mCherry_qPCR_F	GTGATGAACTTCGAGGACGG
891	menerry		mCherry_qPCR_R	TTCAGCCTCTGCTTGATCTC
1366	Pm2P1(An)		An_Bm3R1_qPRC_F	GTCACATTCACAAAGAACCATCC
1367	BIIISKI (A.II.)		An_Bm3R1_qPRC_R	GACCTCCATAAACGATCCGA
1308	Pm2P1(Sc)		Bm3R1_qPCR_F	TCACCAAGAACCATCCTAGAG
1309	ының (э.с.)		Bm3R1_qPCR_R	GAAAGAACCGAACAAGATAGCA
1439	Y. lipolytica actin	protein ID	YI_ACT_qPCR_F	ACTCAATGCCGACACAAAGAC
1440	(reference gene)	in JGI*: 70741	YI_ACT_qPCR_R	TCAGATCCTACATCCAGTACCAG
484	S cerevisiae IPP1	protein ID	Sc_IPP1_qPCR_F	ACTTTGAACCCAATCATCCA
485	(reference gene)	in JGI*: 254	Sc_IPP1_qPCR_R	CACCAACTGCCTTAGTTTCTG
1441	P. kudrigyzevii actin	gene ID in EFD**: JL09_g438	Pk_ACT_qPCR_F	TAACGAAAGATTCAGAGCACCAG
1442	(reference gene)		Pk_ACT_qPCR_R	AGCCAATGCAGTGATTTCCT
1732	P.pastoris IPP1	protein ID in JGI*: 35302	Pp_IPP_qPCR_F	GTAACTGTTTCCCTCACCAC
1733	(reference gene)		Pp_IPP_qPCR_R	CAACAAAGCCATAACACCGA
1784	T.reesei actin	protein ID	Tr_act_qPCR_gDNA_F	GCCTTCTATGTCTCCATCCAG
1785	(reference gene)	in JGI*: 44504	Tr_act_qPCR_gDNA_R	CTCAGCCAGGATCTTCATCAG
480	A nigersdhA	protein ID	An_sdhA_qPCR_gDNA_F	GGTTGTTGACATTAACTCCGA
481	(reference gene)	in JGI*: 53356	An_sdhA_qPCR_gDNA_R	CCACAGTTCATACAAGGCTC
X-67	C. apicola ubc7	***	Ca_UBC7_qPCR_F	GGTGATGACCCAAACATGTATGAG
X-68	homolog (ref. gene)		Ca_UBC7_qPCR_R	AGTGCCCATAATATCTGAGCGA
X-90	Z. lentus act1	***	Zl_ACT1_qPCR_F	GTTACTCGTTCTCGACCACC
X-91	homolog (ref. gene)		ZI_ACT1_qPCR_R	GCTCTGAACCTCTCGTTACC

*JGI = Joint Genome Institute's database (http://genome.jgi.doe.gov/programs/fungi/index.jsf) ** EFD = Gene ID in Ensembl Fungi database (http://fungi.ensembl.org/index.html)

*** - no public genome database available

The detector's voltages which were used for quantification of forward scatter (FSC) and mCherry in flow cytometry analysis.

Organism	FSC voltage	mCherry voltage (V)
	(V)	
S. cerevisiae/Y. lipolytica/P.	43	527
kudriavzevii		
P. pastoris	5	450
T. reesei	110	429
A. niger	43	429

Primers and gene targets used in transcription analysis.

	Universal primers			
Primer number	Target (amplicon length)	ID in database	Primer name	Sequence
890	mCherry		mCherry_qPCR_F	GTGATGAACTTCGAGGACGG
891	(211 bp)		mCherry_qPCR_R	TTCAGCCTCTGCTTGATCTC
1366	Bm3R1 (A.n.)		An_Bm3R1_qPRC_F	GTCACATTCACAAAGAACCATCC
1367	(209 bp)		An_Bm3R1_qPRC_R	GACCTCCATAAACGATCCGA
1308	Bm3R1 (S.c.)		Bm3R1_qPCR_F	TCACCAAGAACCATCCTAGAG
1309	(193 bp)		Bm3R1_qPCR_R	GAAAGAACCGAACAAGATAGCA
		Y. lipol	<i>ytica</i> primers	
Primer number	Target	ID in database	Primer name	Sequence
1483	UBC6	Protein ID in JGI*:	YI_UBC_qPCR_F	GCAGGAAGTATGACATCCAC
1484	(204 bp)	69371	YI_UBC_qPCR_R	TGATGACTGTGCTCTTAGCC
1445	TEF1	Protein ID in JGI*:	YI_TEF_qPCR_F	CGACTCTTTCAACGCTCAGG
1446	(204 bp)	66455	YI_TEF_qPCR_R	GACCATCTTGACAATGGCGG
		S. cerev	visiae primers	
Primer number	Target	ID in database	Primer name	Sequence
1189	UBC6	Protein ID in JGI*:	Sc_UBC6_qPCR_F	ACTTTCCCGTCTGATTATCCA
1190	(201 bp)	2053	Sc_UBC6_qPCR_R	TAATTGATCCTGTCGTGGCT
1419	TEF1	Protein ID in JGI*:	Sc_TEF1_qPCR_F	AACATGATTGAAGCTACCACC
1420	(189 bp)	6442	Sc_TEF1_qPCR_R	GCACAGTACCAATACCACCA
		P. kudric	<i>vzevii</i> primers	
Primer number	Target	ID in database	Primer name	Sequence
1489	UBC6	Transcript ID in	Pk_UBC_qPCR_F	CCTTCATGACTGGAGATGAGAG
1490	90 (207 bp)	EFD**: KGK40836	Pk_UBC_qPCR_R	GTGGATTCGGATTGCTTCTG
1443	TEF1	Transcript ID in	Pk_TEF_qPCR_F	CTTGGATTGTCACACTGCCC
1444	(214 bp)	EFD**: KGK37491	Pk_TEF_qPCR_R	TTTGTCTCATATCTCTGACTGCGA
P. pastoris primers				
Primer number	Target	ID in database	Primer name	Sequence
1730	UBC6	Protein ID in JGI*:	Pp_UBC_qPCR_F	ACCACCGGATCTATAAGCAC
1731	(208 bp)	36033	Pp_UBC_qPCR_R	ATAGCACCTTCAGCAGTATCAG
1728	TEF1	Protein ID in JGI*:	Pp_TEF_qPCR_F	CGAGTTGATTGAGAAGATTGACAG
1729	(201 bp)	36802	Pp_TEF_qPCR_R	GGACTTGATAACACCGACAG

T. reesei primers					
Primer number	Target	ID in database	Primer name	Sequence	
1487	<i>UBC6</i> (207 bp)	Protein ID in JGI*: 77732	Tr_UBC_qPCR_F	CCAACATCCTCGAATGGCAC	
1488			Tr_UBC_qPCR_R	GCTGGGTTGAAGGATTTCGG	
1417	<i>tef1a</i> (193 bp)	Protein ID in JGI*: 46958	Tr_TEF_qPCR_F	AAGTCTACCACCACTGGTCAC	
1418			Tr_TEF_qPCR_R	TTGGGAGTCTCGAACTTCCAG	
1481	Actin Protein ID in JGI	Protein ID in JGI*:	Tr_act_qPCR_F	CAACATTGTCATGTCTGGTGG	
1482	(195 bp)	5 bp) 44504	Tr_act_qPCR_R	CTGCTTGGAGATCCACATCTG	
1479	<i>cbh1</i> (201 bp)	Protein ID in JGI*: 123989	Tr_CBH1_qPCR_F	AGAATGGCGTCACTTTCCAG	
1480			Tr_CBH1_qPCR_R	TTGGCGTAGTAATCATCCCAC	
A. niger primers					
Primer number	Target	ID in database	Primer name	Sequence	
1485	UBC6 Protein ID in JGI*: (204 bp) 1180989	An_UBC_qPCR_F	ATACTCGAATGGCACTACATCCT		
1486		1180989	An_UBC_qPCR_R	ATGCGGGATTAAATGACTTCGG	
1415	tefA	Protein ID in JGI*: 1147607	An_TEF_qPCR_F	CGTCATCATGGGTAAGGAGG	
1416	(181 bp)		An_TEF_qPCR_R	AAGCGTACTTGAAGGAACCC	

*JGI = Joint Genome Institute's database (http://genome.jgi.doe.gov/programs/fungi/index.jsf) ** EFD = Gene ID in Ensembl Fungi database (http://fungi.ensembl.org/index.html)

Z. lentus ACT1 – partial CDS

Supplementary Table 11

Z. lentus YIP3 – genomic fragment (CDS highlighted)

TCTGGAGCGGCGCATCACGGGTGCGGTGCATGGGGGAACCAGCACGTCACCTGAGCGCCCTGATCGGGTGGAACGATCTCTCGGAATCGATTG CCGCCATGACCGACCGGACAGGTTTTCGAAGCTGCTGCAGGACTTGGGTCAAGCCGGTGATCCAGATGAGGCGTTCTCGTCCGTGCCATAC GAGAAGGGATTCAACCTTTTGTTCCACCTGGAACAGGTGGTAGGCGGCAAGCAGCAGTTCGACCCGTTTGTGAGACACTATTTTACCAAGTTT GCCAGGCAGTCGCTGGACACGTTCCAGTTCCTGGACACTTTGTTCGAGTTTTACCGGGACAAGAGAGGGGCACTCGATGGCGTGGACTGGGA GACGTGGCTGTACAGGCCGGGATTGCCTCCAAAGCCGCAGTTCGACACTTCGTTGGCAGACGACGTGTACGCGGTGGCAGAGCGGTGGTTCG ATGCGGCGCACGAGGGGCAGTACGATGGGTTCTCATCCGAGGATCTTGCAAACGTGAGCACTACGCAACTGGTGTTGTTCTTGGACACTTTG GTGCAGGCCAAGCGGCTGGACTGGACCAAGCATACGGATGCCGCTAGACGGCTGCTGGATGTCTATCACGAAAGGGTAGTCGCTCCGCAGA ATGCAGAAATTGTGTTTAGGAAATTTAGGCTACAGGTTGAGGCAAGAATGCAGGAGGCTTACGGGCGTCTGGCACAGTGGTTGGGCACTGTG GGGCGCATGAAGTTCGTGAGGCCAGGTTACCGGCTCCTAAACAGAGTGGACAGACCGCTGGCGTTGGAAACGTTTGCCAAATTCAAAGACAC GATAGGCGCTCTAAGTGTATGTGCAGTGACGGATGCCCCACACCCTACCGCCCTTCGATCCACCGTACTAACTTTTCCTCCCAGCAATTCTC CAATCTCACCGAGAACCTCTCTGTGGAACGCCTCAAGAGCGAGATCCAAAACGTGCAGAGCAAACTCTCCTCCGTGCGCCCACCGCAGGAGTT CTTCAACGTCAAGAACTTTTCCAAACCGCAAAATTTCGCAGAGTTGCAATCTAGGGTCTCCTACAACATCAAGTACTACCAGTCCAACTATGCCC TCATCGTCGGAGCCCTCAGCGTGTACAGCCTCTTGACCAACCTCCTGCTCCTGTTCGTGATAGCACTCGTCGCTGGTGTCGCAGGCATCAG CAGGCTTAGGGGCGAAGACTGGGTGACACCTTTCGGCACGCTGAAGGCCACACAGCTGTACACGGTGCTGCTTTGTGTTACGCTGCCCCTTGG CTTTTTGGCATCTCCCTTCACCACCATCCTGTGGCTCGTGGGCGCCTCCTCCGTCACCGTCATGGGTCACGCCTCCTTCATGGAGAAACCCATCC CCGCCCTGAGTTGGATATTCAAGTGTTCCGAAGCAAATACCGGGGACTCCACCGCTCTCCATCACAGCTATTCAATAGAAATAGAAATGTGTTTC TTTTGGTATAGCTGTCTAGGATCTTCGCACGTGACTTATTTTGTCGAAGTACATACCATCGTTGAACCGGACGTGGTACACTACTGCGTCGGCC TATCTATCCCAATGGAGCTAATCGCTTCATACGTCATTCTTCCGATCTGCGGG

Supplementary Table 12

DNA sequences of the established fugal promoters commonly used for gene expression control. These sequences were used for comparisons with the SES-A system in selected yeast and filamentous fungi species.

Promoter	Sequence
S. cerevisiae	GACTTCAACTCAAGACGCACAGATATTATAACATCTGCATAATAGGCATTTGCAAGAATTACTCGTGAGTAAGGAA
	AGAGTGAGGAACTATCGCATACCTGCATTTAAAGATGCCGATTTGGGCGCGAATCCTTTATTTTGGCTTCACCCTCA
PGK1	TACTATTATCAGGGCCAGAAAAAGGAAGTGTTTCCCTCCTTCTTGAATTGATGTTACCCTCATAAAGCACGTGGCCT
promoter	CTTATCGAGAAAGAAATTACCGTCGCTCGTGATTTGTTTG
promoter	GACTTCCTGTCTTCCTATTGATTGCAGCTTCCAATTTCGTCACACAACAAGGTCCTAGCGACGGCTCACAGGTTTTGT
	AACAAGCAATCGAAGGTTCTGGAATGGCGGGAAAGGGTTTAGTACCACATGCTATGATGCCCACTGTGATCTCCAG
	AGCAAAGTTCGTTCGATCGTACTGTTACTCTCTCTCTTTCAAACAGAATTGTCCGAATCGTGTGACAACAACAGCCTG
	TTCTCACACACTCTTTTCTTACCAAGGGGGGGGGGTGGTTTAGTTTAGTAGAACCTCGTGAAACTTACATTTACATATAT

	ATAAACTTGCATAAATTGGTCAATGCAAGAAATACATATTTGGTCTTTTCTAATTCGTAGTTTTTCAAGTTCTTAGAT
	GCTTTCTTTTTCTCTTTTTTACAGATCATCAAGGAAGTAATTATCTACTTTTTACAACAAATTA
Y. lipolvtica	GAAAAGTCTCTACAAGTAGTCTTGTAAAAACATTCCCCACAGTAACCATCTATATTGCAAAACAATACGACTGCAAT
,,	TGGGGATTGTTGCTCGTATCGCACCCGTACCGTGCCACCGTAACACCCCCCAGACACCAATCACTACGACCGATCCA
TEF1	ACTCCACGTTTCTGCTACCCAGTCTGCTGGCCGGCTTGGCTTTGCGTTTCGCTCCCACACTACACCGTAATACCACGT
promotor	CACTCTCATTGCAGGTTACCCTGCCCGTAGTCGCTCGATCCACCTCCTCCTCTCTCGTGTGTGCAGCAAAGAGGCA
promoter	GAGATGGAGCCCGTATGGTGAGCCGTAGAGTGGAGCGAGGGGGGGG
	GGTATTTTCACAATTGCACCCCAGCCAGACCGATAGCCGGTCGCAATCCGCCACCACAACCGTCTACCTCCCACAG
	AACCCCGTCACTTCCACCCTTTTCCACCAGATCATATGTCCCAACTTGCCAAATTAAAACCGTGCGAATTTTCAAAAT
	AAACTTTGGCAAAGAGGCTGCAAAGGAGGGGGCTGGTGAGGGCGTCTGGAAGTCGACCAGAGACCGGGTTGGCGG
	CGCATTTGTGTCCCAAAAAACAGCCCCAATTGCCCCAATTGACCCCAAATTGACCCAGTAGCGGGCCCAACCCCGGC
	GAGAGCCCCCTTCTCCCCACATATCAAACCTCCCCCGGTTCCCACACTTGCCGTTAAGGGCGTAGGGTACTGCAGTC
	TGGAATCTACGCTTGTTCAGACTTTGTACTAGTTTCTTTGTCTGGCCATCCGGGTAACCCATGCCGGACGCAAAATA
	GACTACTGAAAATTTTTTTGCTTTGTGGTTGGGACTTTAGCCAAGGGTATAAAAGACCACCGTCCCCGAATTACCTTT
	CCTCTTCTTTTCTCTCTCCTCGTCAACTCACACCCGAAATCTTAAGCATTTCCTTCTGAGTATAAGAATCATTCAAA
P. pastoris	TTTTTGTAGAAATGTCTTGGTGTCCTCGTCCAATCAGGTAGCCATCTCTGAAATATCTGGCTCCGTTGCAACTCCGAA
	CGACCTGCTGGCAACGTAAAATTCTCCGGGGTAAAACTTAAATGTGGAGTAATGGAACCAGAAACGTCTCTCCCTT
GAP1	CTCTCTCCTTCCACCGCCCGTTACCGTCCCTAGGAAATTTTACTCTGCTGGAGAGCTTCTTCTACGGCCCCCTTGCAG
promotor	CAATGCTCTTCCCAGCATTACGTTGCGGGTAAAACGGAGGTCGTGTACCCGACCTAGCAGCCCAGGGATGGAAAA
promoter	GTCCCGGCCGTCGCTGGCAATAATAGCGGGCGGACGCATGTCATGAGATTATTGGAAACCACCAGAATCGAATATA
	AAAGGCGAACACCTTTCCCAATTTTGGTTTCTCCTGACCCAAAGACTTTAAATTTAATTTATTT
	AATTGAACAACTAT
A. nidulans	CCTTGTATCTCTACACACAGGCTCAAATCAATAAGAAGAACGGTTCGTCTTTTCGTTTATATCTTGCATCGTCCCAA
_	AGCTATTGGCGGGATATTCTGTTTGCAGTTGGCTGACTTGAAGTAATCTCTGCAGATCTTTCGACACTGAAATACGT
gpdA	CGAGCCTGCTCCGCTTGGAAGCGGCGAGGAGCCTCGTCCTGTCACAACTACCAACATGGAGTACGATAAGGGCCA
promoter	GTTCCGCCAGCTCATTAAGAGCCAGTTCATGGGCGTTGGCATGATGGCCGTCATGCATCTGTACTTCAAGTACACCA
promoter	ACGCTCTTCTGATCCAGTCGATCATCCGCTGAAGGCGCTTTCGAATCTGGTTAAGATCCACGTCTTCGGGAAGCCAG
	CGACTGGTGACCTCCAGCGTCCCTTTAAGGCTGCCAACAGCTTTCTCAGCCAGGGCCAGCCCAAGACCGACAAGGC
	CTCCCTCCAGAACGCCGAGAAGAACTGGAGGGGGGGGGG
	GGAGCGGTGTCAAGAGGATATTCTTCGACTCTGTATTATAGATAAGATGATGAGGAATTGGAGGTAGCATAGCTTC
	ATTTGGATTTGCTTTCCAGGCTGAGACTCTAGCTTGGAGCATAGAGGGTCCTTTGGCTTTCAATATTCTCAAGTATCT
	CGAGTTTGAACTTATTCCCTGTGAACCTTTTATTCACCAATGAGCATTGGAATGAACATGAATCTGAGGACTGCAAT
	CGCCATGAGGTTTTCGAAATACATCCGGATGTCGAAGGCTTGGGGCACCTGCGTTGGTTG
	CTATTGATCATCCGATAGCTCTGCAAAGGGCGTTGCACAATGCAAGTCAAACGTTGCTAGCAGTTCCAGGTGGAAT
	GTTATGATGAGCATTGTATTAAATCAGGAGATATAGCATGATCTCTAGTTAGCTCACCACAAAAGTCAGACGGCGT
	AACCAAAAGTCACACAACACAAGCTGTAAGGATTTCGGCACGGCTACGGAAGACGGAGAAGCCACCTTCAGTGGA
	CTCGAGTACCATTTAATTCTATTTGTGTTTGATCGAGACCTAATACAGCCCCTACAACGACCATCAAAGTCGTATAGC
	TACCAGTGAGGAAGTGGACTCAAATCGACTTCAGCAACATCTCCTGGATAAACTTTAAGCCTAAACTATACAGAATA
	AGATAGGTGGAGAGCTTATACCGAGCTCCCAAATCTGTCCAGATCATGGTTGACCGGTGCCTGGATCTTCCTATAG
	AATCATCCTTATTCGTTGACCTAGCTGATTCTGGAGTGACCCAGAGGGTCATGACTTGAGCCTAAAATCCGCCGCCT
	CCACCATTTGTAGAAAAATGTGACGAACTCGTGAGCTCTGTACAGTGACCGGTGACTCTTTCTGGCATGCGGAGAG
	ACGGACGGACGCAGAGAGAGAGGGCTGAGTAATAAGCCACTGGCCAGACAGCTCTGGCGGCTCTGAGGTGCAGTG