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Supplementary methods

Analytical gel filtration: The gel filtration was carried out at room temperature on an AKTA
FPLC system using a Superdex 200 10/300 GL column (GE Healthcare) pre-equilibrated with
20 mM Tris-HCI (pH 8.0 at 25 °C), 0.5 M KCI and 5 mM 2-mercaptoethanol. The samples
(2 uM wt EcoKMcrA dimer or 4 uM EcoKMcrA-N) were prepared in 0.1 ml of the same
buffer. Elution from the column (flow rate 0.5 ml/min) was monitored by measuring A>».
The calibration line was generated by measuring the elution volumes of a series of standards
of known molecular mass (Gel Filtration Calibration Kit from GE Healthcare). The molecular
weights of proteins were calculated by interpolating its elution volumes onto the calibration
line.

Plasmid and phage DNA cleavage assays. The mixtures contained 0.05 or 0.5 puM wt
EcoKMcrA or its H229A variant and 0.2 or 0.5 ug DNA (reaction volume 25 pul). Reactions
were carried out using supercoiled pACYC184 plasmid; supercoiled pACYC184 M.Hpall
plasmid (M.Hpall methylated DNA); single-stranded M13mp18 DNA (all isolated from either
a dem+ or dem— E. coli strain); supercoiled plasmid pBR322; or phage lambda DNA (isolated
from either Dam+/Dcm+ or Dam-/Dem- E. coli strains). Cleavage was stopped by phenol
extraction. Samples were analyzed by agarose electrophoresis and visualized by ethidium
bromide staining.

Digestion of mixed DNA substrates. The reaction mixture contained 10 pul mixed DNA
(~1 pg total DNA): 0.36 ng phage XP12 DNA, 0.34 ug ShmC containing PCR DNA, 0.35 ug
cytosine containing PCR DNA and 0, 0.5, 1, 2, 4 ul of EcoKMcrA stock (175 uM). Digestion
was performed in a buffer containing 50 mM KCI, 10 mM DTT, 50 mM Tris-HCI pH 8.0
supplemented with 1 mM MnCl, at 37 °C for 1.5 h. The reaction was stopped by the addition
of 5 ul of Protease K for 15 min at 37 °C and then stop solution. Cleavage products were
visualized on 1% agarose gel.

Digestion of oligonucleotides containing multiple modified CCGG sites. The 37 and 52 bp
long oligonucleotides containing two unmodified, hemi- or fully methylated CCGG target
sites were purchased from Genomed (37 X/37 X and 52 X/52 X in Table S1). The reactions
were carried out for 3 h at 37 °C in the buffer containing 50 mM Tris-HCI, pH 8.0, 50 mM
KCl, 0.5 mM MnCl, and 1 mM DTT. After the incubation samples were alkali treated, mixed
with formamide and loaded on 20% Urea-PAGE gel. The DNA size marker was created by
the controlled DNase I digestion of the 37 and 52 bp oligoduplexes.

Phage restriction assay: C2566 E. coli cells carrying either wild type EcoKMcrA or its
H228A, H229A or N-terminal variants (residues 1-174), or REM14, were cultured in 6 ml of
Phage broth+Amp to log-phase and concentrated 10-fold in phage broth+Amp. 0.2 ml cells
and 4 ml soft top agar were used to pour plates on Rich+Amp. The plates were air dried for 15
min. 8 ul of diluted phage Lambda, T4gt (ShmC) and T4 (g5hmC) were spotted onto the cells
lawns, air dried for 10 min and incubated overnight at 37 °C.



Run-off sequencing: Run-off sequencing was carried out as previously described (1), using
the BigDye™ Terminator v3.1 Cycle Sequencing Kit (ThermoFisher/Applied Biosystems),
containing an engineered Taqg DNA polymerase.

Fluorescence measurements: Pyrrolocytosine steady state fluorescence measurements
in solution were performed at 25 °C on a Fluoromax-3 spectrofluorimeter. Excitation
wavelength was 350 nm, emission wavelength was 450 nm (5 nm slits). The samples
contained 0.2 uM hemimodified 12 bp oligoduplex with or without the proteins
(1 uM EcoKMcrA (dimer), 2 uM EcoKMcrA-N monomer) in 20 mM Tris-HCI, pH 8.0, and
100 mM KCI. Measurements were also made with 0.2 pM of the single-stranded
pyrrolocytosine-containing oligonucleotide (corresponding to the modified strand of the 12 bp
oligoduplex).

Cloning, expression and purification of the EcoKMcrA - N.pGamma nickase fusion.
The expression vector for chitin-binding domain (CBD) tagged EcoKMcrA-gHNH and
EcoKMcrA(H252A)-gHNH fusion proteins was made by ligating the synthetic genes into
pTYBI1 plasmid (Ndel and Xhol cut) using the NEB Gibson assembly mix. The C-terminal
gHNH domain corresponded to the previously described attenuated variant of the 76 amino
acid nuclease domain of the N.¢Gamma nickase of Bacillus anthracis (2), which was
connected to EcoKMcrA or EcoKMcrA(H252A) with a six amino acid (GASGAS) linker.
Cells were grown at 37 °C to OD600 of 0.7, induced by the addition of 0.5 mM IPTG. Protein
expression was carried out overnight at 20 °C. The EcoKMcrA-gHNH fusion proteins were
purified by affinity chromatography via a chitin column. Elution was after DTT cleavage at
4 °C overnight. Proteins were concentrated by ultrafiltration, and stored in 20 mM Tris-HCI,
200 mM KCIL, 1 mM DTT, and 50% v/v glycerol, pH 7.5.
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Fig. S1: Catalytic activity of EcoKMcrA in the presence of divalent metal ions.
(A) Reactions of wt EcoKMcrA (0.5 uM dimer) on 0.2 uM radiolabeled oligoduplex DNA
30 5mC/30_ C (DNA sequence shown at the top, ‘M’ designates S5-methylcytosine).
Incubation times in hours are indicated above the gel lanes, divalent metal ions and their
concentrations in mM are shown below gel lanes. Sample ‘0’ is untreated DNA. Approximate
cleavage positions observed in the presence of Mn”" are marked by blue (top strand) or red
(bottom strand) dotted lines. (B) Quantification of 30 5SmC/30 C DNA top strand cleavage
by wt EcoKMcrA at various Mn”" and Zn®" concentrations.
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Fig. S2: Cleavage of hemi-methylated and non-modified oligoduplex:
performed at 37 °C with 0.5 uM wild type EcoKMcrA (dimer) and 10 nM hemimethylated
(30" 5mC/30"_C) or unmethylated (30’ _C/30"_C) oligoduplex DNA in a buffer supplemented
with 0.1 mM Mn*". Top and bottom strand cleavage positions on the gels are marked by blue
and red dotted lines, respectively. Gel lanes ‘S’ contained radiolabeled single-stranded
oligonucleotides that correspond to the 5'-terminal fragments of the respective DNA strands
(sizes in nucleotides are shown on the sides of the gels). The amounts of the top and bottom
strand cleavage products after 3 hours of cleavage are plotted as blue/red arrows along the

oligoduplex sequences.
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Fig. S3
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Fig. S3: Inactivity of EcoKMcrA mutants on oligoduplex DNA. The reactions contained
0.5 uM (dimer) EcoKMcrA mutants and 0.2 uM 30 5SmC/30 C DNA (radiolabel on the
bottom strand) in a reaction buffer supplemented with 0.1 mM MnCl,. Reactions were
performed for up to 4 hours at 37 °C.



Fig. S4
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Fig. S4: In vitro phage and plasmid DNA cleavage by EcoKMcrA. The reactions were
performed on phage A DNA (isolated from either a (dam+, dem+) or (dam—, dem-) E. coli
strain), single-stranded M13mp18 DNA, supercoiled plasmid pACYC184 and supercoiled
plasmid pACYC184 M.Hpall, each plasmid isolated from either a dem+ or dem— E. coli
strain. Gel lane ‘S’ contained DNA size marker. The positions of supercoiled, nicked (one or
multiple nicks), and linear (a single double-strand break) DNA forms are marked as ‘SC’,
‘OC’ and ‘FLL’. pACYC184 (dem+ and dem-—) contained a detectable amount of heavier,
presumably dimeric DNA forms. The reactions contained 0.05 or 0.5 pM wild type
EcoKMcrA, 0.5 uM H229A EcoKMcrA variant and 0.5 pg / 25 ul DNA in a reaction buffer
supplemented with 0.1 mM MnCl,. The incubations were performed at 37 °C.



Fig. S5
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Fig. S5: In vitro phage and PCR DNA cleavage by EcoKMcrA (wt and catalytic mutant)
and control enzymes. The DNA of T4GT7, T4 and lambda phage together with the ShmC
containing PCR products was digested by (A) EcoKMcrA or its active site variant; (B) control
Hpall, MspJI and MIuCI enzymes. Hpall REase is blocked by ShmC modification in the
C/CGG context, MspJI is selective for SmC modified DNA (SmCNNRNY9/) and MIuCI
(/AATT) is unaffected by the presence of cytosine modifications. T4GT7 and lambda DNA is
cleaved by all enzymes which indicates that although the two phages do not by themselves
introduce cytosine modifications, their DNA may contain some cytosines modified in the
C5mCWGG context due to a passage in a dem+ host. T4 DNA contains glucosyl-5hmC
residues that block the activity of EcoKMcrA, MsplJI and Hpall and thus is cleaved only by
the cytosine modification insensitive MIuCI enzyme. ShmC containing PCR DNA is cleaved
by all enzymes but Hpall, as predicted. The EcoKMcrA active site variant retained residual
activity only.



Fig. S6
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Fig. S6: In vitro cleavage of (A) separate and (B) mixed DNA substrates by EcoKMcrA
(wild type and catalytic mutant) and control enzymes. Unmodified PCR DNA (2.1 kb),
ShmC containing PCR DNA (2.9 kb) and 5SmC containing XP12 phage DNA were digested
by EcoKMcrA. Digestion was performed in 50 mM KCI, 10 mM DTT, 50 mM Tris-HCI, pH
8.0 supplemented with 1 mM MnCl, at 37 °C for 1.5 h. Wild type EcoKMcrA cleaved SmC
and 5ShmC containing DNA but not the unmodified PCR product. The H228A active site
variant of EcoKMcrA did not exhibit any activity. The activity of the control enzymes agreed
with their substrate preferences: Hpall endonuclease only cleaved unmodified DNA, whereas
MspJI had very similar cleavage properties to wt EcoKMcrA and cleaved only modified
DNA:s.



Fig. S7
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Fig. S7: Plasmid restriction assay. One of the repeats of the restriction assay of pACYC184
plasmid carrying a chloramphenicol resistance gene was assayed in BL21(DE3) (McrA-)
E. coli cells expressing wt EcoKMcrA, catalytic variants of the enzyme, its N-terminal
fragment lacking the nuclease domain or an unrelated protein (REM14). The plasmid was
either empty or carried a gene for M.Hpall methyltransferase and thus was 5SmC modified in

the C5mCGG sequence context.
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Fig. S8
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Fig. S8: Phage restriction assay. 8 ul of Lambda (C), T4gt (5ShmC) and T4 (g5hmC) phages
were plagued onto the lawns of C2566 (McrA-) E. coli cells expressing either wild type
EcoKMcrA or its catalytic variants (without IPTG induction). Under low expression
conditions catalytically competent EcoKMcrA restricted the ShmC containing T4gt phage
much more efficiently than its inactive variants. The phages containing unmodified or gShmC
modified DNA were unaffected by the presence of the enzyme.
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Fig. S9: EcoKMcrA conformational flexibility. The EcoKMcrA crystals contain a full
dimer in the asymmetric unit. When the C-terminal HNH domains are overlaid (cyan), the
N-terminal domains (orange and yellow) adopt different orientations. According to DynDom
(3) a 150° rotation is required to map one N-terminal domain onto the other. The N-terminal
domains were also separately superposed to show that they adopt the same conformation
(faint yellow).
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Fig. S10
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Fig. S10: Gel filtration of wt EcoKMcrA and its N-terminal fragment EcoKMcrA-N.
(A) The apparent MW of EcoKMcrA determined by gel-filtration (15.55 ml elution volume,
equivalent to 54.4 kDa, blue square) is close to the theoretical mass of EcoKMcrA dimer
(64.5 kDa). (B) The apparent MW of the N-terminal EcoKMcrA fragment EcoKMcrA-N
(17.41 ml elution volume, equivalent to 20.1 kDa, blue square), is a close match to the
theoretical mass of the EcoKMcrA-N monomer (20.6 kDa). The proteins used as MW
standards were ribonuclease A (13.7 kDa), ovalbumin (43 kDa), ferritin (440 kDa), aldolase
(158 kDa).
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Fig. S11: Small-angle X-ray scattering data for apo-EcoKMcrA (red), EcoOKMcrA+DNA
(blue), apo-EcoKMcrA-N (green) and EcoKMcrA-N with DNA (magenta). (A) Scattering
data; (B) Kratky plot, normalized by Rg and I(0) parameters (4); (C) distance distribution
function.
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Fig. S12
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Fig. S12: Comparison of small-angle X-ray scattering data with structure based
predictions for the dimer observed in the crystal or for two-fold symmetric models based
on the conformation of either subunit in the asymmetric unit. The top panel illustrates
the agreement in real space, the bottom panel shows the agreement in reciprocal space.

The ab initio SAXS model of the EcoKMcrA dimer was calculated without imposing two-

fold symmetry restraints.
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Fig. S13: Sequence alignment of the EcoKMcrA N-terminal domain used for the
calculation of the conservation scores presented in Fig. 3. The standard ConSurf (5)
parameters were used to generate the alignment. The conservation scores were very similar
irrespective of whether the full length EcoKMcrA or just its N-terminal domain was used as a

query.
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Fig. S14: DNase I footprint of wt EcoKMecrA. (A) The unmethylated and hemimethylated
DNA oligoduplexes used for DNase I footprinting experiments. ‘M’ marks 5-methylcytosine.
The EcoKMcrA recognition sequence in hemimethylated DNA is marked by a black box;
an equivalent region in unmethylated DNA is marked by a dotted line. The positions protected
from DNase I cleavage by EcoKMcrA are shown in bold font. (B) DNA protection by wt
EcoKMcrA. DNase I footprinting experiment with radiolabeled 5'-terminus of either top (left)
or bottom (right) DNA strand. Gel lanes ‘0’ contained untreated unmethylated DNA, ‘1’ — the
DNA treated with DNase I in the absence of EcoKMcrA, lanes ‘2’ and ‘3’ — the DNA treated
with DNase I in the presence of 0.25 pM and 0.5 uM EcoKMcrA homodimer. Gel lanes ‘Om’,
‘Im’, 2m’ and ‘3m’ contained analogous samples prepared with hemimethylated DNA.
Positions protected from DNase I cleavage upon EcoKMcrA binding are marked by blue (top
strand) or red (bottom strand) dashes. The sequences of the protected regions in the
hemimethylated DNA are shown on the right-hand side of the gels. Asterisks (*) mark top
strand positions distal from the methylated site that are protected on both unmethylated and
methylated DNAs. The bottom strand position G-35, which in hemimethylated DNA becomes
more susceptible to DNase I treatment upon EcoKMcrA binding, is marked by a ‘+’ sign.
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Fig. S15
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Fig. S15: EcoKMcrA-N interaction with pyrrolocytosine containing DNA.
(A) Electrophoretic mobility shift assay performed with unmodified and hemimodified 12 bp
DNA oligoduplexes. The DNA sequence is shown at the top of the panel, ‘X’ designates
unmodified C (oligoduplex 12 C/12 C), 5mC (12 5mC/12 _C), or pyrrolocytosine
(12_pC/12_C). DNA concentration was 0.5 pM, protein concentrations are indicated above
gel lanes. Experiments were performed in a 40 mM Tris-acetate pH 8.3 buffer as described in
Materials and Methods. Positions of free DNA and the specific protein-DNA complex are
marked. (B) Pyrrolocytosine steady state fluorescence measurements in solution.
The ‘EcoKMcrA-N’ and ‘EcoKMcrA’ samples contained the respective protein (1 pM
EcoKMcrA dimer, 2 uM EcoKMcrA-N monomer) and 0.2 puM oligoduplex 12 pC/12 C.
Control sample ‘ds pC’ contained 0.2 puM of the double-stranded oligonucleotide
12 pC/12_C, the sample ‘ss pC’ contained 0.2 uM of the modified (top) 12 pC strand.
The emission intensities of the ‘EcoKMcrA-N’, ‘EcoKMcrA’ and ‘ss pC’ samples were
normalized against the ‘ds pC’ sample and are presented as the average value of 3
independent measurements £SD.
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Fig. S16:

Fig. S16: Electrophoretic mobility shift assay of DNA binding by EcoKMcrA. (A) EMSA
with unmodified, hemi- or fully methylated 30 or 12 bp DNA (central sequences shown on
top; ‘M’ denotes SmC), DNA concentration was 50 nM, concentrations of EcoKMcrA dimer
are indicated above gel lanes. Positions of free DNA and protein-DNA complexes are marked
by blue and red brackets, respectively. The gels were run for 1 h at 5 V/cm. (B) EMSA with a
mixture of radiolabeled 30 bp (30 5SmC/30 5mC) and 12 bp (12 5mC/12 5mC) DNA
oligoduplexes. Concentrations of EcoKMcrA and DNAs are indicated above gel lanes.
The gel was run for 3 h at 5 V/cm. Cartoons depict two types of unbound oligoduplexes (12
and 30 bp) and three types of protein-DNA complexes, containing two 30 bp, two 12 bp, or
one of each DNAs. EcoKMcrA N- and C-terminal domains are depicted as blue hexagons and
red circles, respectively. Bands of the single-stranded forms of the respective oligonucleotides
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Fig. S17:
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Fig. S17: Cleavage of substrates with either one or two target sites for EcoKMcrA
modification binding domain. (A) 37 or 52 (last four lanes) base pair long oligoduplex
DNAs were cleaved by wild type EcoKMcrA or its H229A catalytic mutant.
The oligoduplexes carried two CCGG sites that were either unmodified, hemi- or fully
methylated as indicated on the diagrams above each pair of lanes. One DNA strand was
labelled with **P on the 5’ end. The unmodified duplex was not HPLC purified after synthesis
and therefore shorter DNA oligonucleotides were also present. (B) The sequences of the
oligoduplexes used in (A).
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Fig. S18:
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Fig. S18: Methylation dependent cleavage of YCR/GT consensus sequences by the
EcoKMcrA-gHNH and EcoKMcrA(H252A)-gHNH fusion proteins. (A) The nicking
activity of the fusion proteins on supercoiled pPBR322. (B) Principle of run-off sequencing to
map cleavage sites in a DNA template. The polymerase inserts an adenine 2'-deoxynucleotide
downstream of the last inserted nucleotide when it encounters a strand break. The presence of
an A/T doublet in the sequenced strand indicates a strand break in the bottom strand in the
5'-CCA/GT-3' position. (C) and (D) Actual sequence traces demonstrating methylation
dependent bottom strand cleavage in the vicinity of an M.Hpall methylated CCGG target site
(blue bars). The 5'-CCA/GT-3" cleavage site is compatible with the previously reported
YCG/GT nicking sequence logo (2). OC-nicked, SC-supercoiled plasmid.
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Fig. S19

Fig. S19: Comparison of EcoKMcrA and structurally “similar” I-Dmol (PDB: 1mow)(6)
and T4 MotA (PDB: 5jlt)(7). The top two rows show the structures in two different
orientations, with bound nucleic acids where possible. The meganuclease I-Dmol is a dimer,
but only one protomer is shown. The bottom row illustrates the folds using diagrams
generated by the Pro-origami server (8).
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Fig. S20
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Fig. S20: Comparison of small-angle X-ray scattering data for the EcoKMcrA -
hemimethylated DNA mixture with the predicted complex structure. The protein was
mixed with DNA in one dimer per two DNA duplexes ratio. The top panel illustrates the
agreement in real space, the bottom panel shows the agreement in reciprocal space. The ab
initio SAXS model of the EcoKMcrA-DNA complex was calculated without imposing two-

fold symmetry restraints.
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Supplementary Tables

Table S1: Oligonucleotides used in this study. The CCGG sequence that, if modified, is
recognized by EcoKMcrA is underlined.

Name Sequence Specification
12_C/12_C 5’ -ACCTCXGGTTCC-3’ 12 bp oligoduplexes;
12 5mC/12_C 3" -TGGAGGCCAAGG-5' ‘X’ marks unmodified C, 5mC
12_pC/12_C or pyrrolocytosine.
Used in EMSA and
fluorescence measurements.
30_C/30_C 5/ -AGACCCACGCTCACXGGTTCCAGATTTATC-3’ 30 bp oligoduplexes; ‘X’
30_5mC/30_C 3’ -TCTGGGTGCGAGTGGXCAAGGTCTAAATAG-5' marks unmodified C or 5mC.

30_5mC/30_5mC

Used for EMSA and DNA
cleavage experiments.

T4, 715,76, T7

5’-AGAC-3’
5’-AGACC-3'
5’-AGACCC-3’
5’-AGACCCA-3’

Used as size markers to
monitor top strand cleavage
of the 30-mer oligoduplexes.

B22, B23, B24,
B25, B26, B28

3’ -TGGGTGCGAGTGGCCAAGGTCTAAATAG-5"
3’ -GGTGCGAGTGGCCAAGGTCTAAATAG-5"
3’ -GTGCGAGTGGCCAAGGTCTAAATAG-5"

3’ -TGCGAGTGGCCAAGGTCTAAATAG-5"

3’ -GCGAGTGGCCAAGGTCTAAATAG-5"

3’ -CGAGTGGCCAAGGTCTAAATAG-5’

Used as size markers to
monitor bottom strand
cleavage of the 30-mer
oligoduplexes.

30'_C/30'_C 5’ -GATTTATCAGACCCACGCTCACXGGTTCCA-3" Alternative 30 bp

30'_5mC/30'_C 3’ -CTAAATAGTCTGGGTGCGAGTGGCCAAGGT -5 oligoduplexes used for DNA
cleavage experiments. ‘X’
marks unmodified C or 5mC.

T14' 5’-GATTTATCAGACCC-3' Used as a size marker to
monitor top strand cleavage
of the 30’-mer oligoduplexes

B17' 3’ -GTGCGAGTGGCCAAGGT-5" Used as a size marker to
monitor bottom strand
cleavage of the 30’ -mer
oligoduplexes

50_C/50_C 5’ -CAGATTTATCAGACCCACGCTCACXGGTTCCAGATTTATCGATGGTT 50 bp oligoduplex; ‘X’ marks

50 _5mC/50_C A’;\C'?" unmodified C or 5mC. Used in

iTé?;sTAAATAGTCTGGGTGCGAGTQQQQAAGGTCTAAATAGCTACCAA DNasngootpﬁnﬂng

experiments

37 _X/37_X 5’ -CTAAGCACXGGTGAGAGTGACTCAGTCXGGCTAGTAC-3’ 37 bp oligoduplex, ‘X’ marks

3’ -GATTCGTGGXCACTCTCACTGAGTCAGGXCGATCATG-5" unmodified C or 5mC. Used

for the cleavage assay of
substrates with either one or
two modification sites

52_X/52_X 5’ -CTAAGCACXGGTGAGAGTCACTACCAATAGCATGACTCAGTCXGGCT 52 bp oligoduplex, ‘X’ marks

AGTAC-3'
3’ -GATTCGTGGXCACTCTCAGTGATGGTTATCGTACTGAGTCAGGXCGA
TCATG-5"

unmodified C or 5mC. Used
for the cleavage assay of
substrates with either one or
two modification sites
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Table S2: Parameters of the SAXS data

Samples EcoKMcrA, EcoKMcrA + EcoKMcrA-N, | EcoKMcrA-N +
merged data DNA merged data DNA

Concentration 2,52and 9 1.7 1.3,3.5and 11.2 1.14

range, mg/ml

Guinier range 42-110 62-100 45-200 12-200

(point number)

s range used in
GNOM, nm’'

0.1848-2.5753

0.2380-2.8944

0.1928-2.3174

0.1050-2.7614

Rg reciprocal,
nm

(from Guinier
approximation)

4.19

3.88

3.13

2.09

Rg real, nm
GNOM

3.835+0.01259

4.044 £ 0.02507

2.184 +0.01286

2.128 £0.009277

Dmax, nm
DATGNOM

18.7

13.6

9.1

8.1

Dmax, as
parameter of
GNOM

13.0

13.5

7.5

7.5

1(0) GNOM

3578 +11.82

4860 + 28.59

1247 + 6.513

2944 +7.980

Table S3: Molecular mass determination from SAXS data using various methods

DAMMIF | DAMMIN
DATVC é"f}‘ipg’ﬁ%“};’) SAXSMoW | volume (10) | volume (10)
) (10) (11) (20 averaged | (20 averaged
models) models)

EcoKMcrA 64.7 58.7 77.6 57.43+£0.47 | 74.67+0.61

EcoKMcrA 51.2 41.2 59.1 59.14+0.39 | 55.98+0.42
+DNA

EcoKMcrA-N 21.7 16.8 - 23.68+0.23 | 22.24+0.15

EcoKMcrA-N 19.3 16.8 20.8 21.62+0.13 | 20.08+0.22
+DNA

All molecular masses are given in kDa.




Table S4: Data collection and refinement statistics

Data collection statistics

Space group P2(1)2(1)2(1)
Cell dimensions

a(A) 82.04

b (A) 90.38
c(A) 95.41
Wavelength (A) 1.22021
Resolution range (A) 42 -2.85
Highest shell 42 - 8.4
Lowest shell 3.02-2.85
Total reflections 196068
Unique reflections 17013

Completeness (%)

99.1 (95.2, 96.4)

Multiplicity * 11.5(9.2, 11.4)
Mean I/ol " 21.0 (50.4, 1.82)
R (%) 6.9 (3.8, 135.7)
R(meas) (%)’ 7.2 (4.0, 141.9)
Solvent content (%) 56
B(iso) from Wilson (A% 99.0
Refinement statistics
Protein atoms excluding H 4577
Solvent molecules 51
Reryst (%0) 21.76
Riiee (%) 28.27
RMSD bond lengths (A) 0.007
RMSD angles (°) 1.13
Ramachandran favored region (%) 100.0
Ramachandran allowed region (%) 96.5
Molprobity clashscore 0.7

* Lowest and highest shell in brackets

#5% of reflections were set aside randomly
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