Supplementary Materials: Figures

Genome-wide analysis of genetic variations and the detection of rich variants of NBS-LRR encoding genes in common wild rice lines

Hang Yu^{1**}, Muhammad Qasim Shahid^{1**}, Rongbai Li², Wei Li³, Wen Liu^{1,4}, Fozia Ghouri¹, Xiangdong Liu^{1*}

¹ State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China

² State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi

University, Nanning 530004, China

³ College of Agronomy, Guangdong Ocean University, Zhanjiang 524000, China

⁴ Department of Tropical Crops, Guangdong Agriculture Industry Business Polytechnic College, Guangzhou 510507, China

*Corresponding authors: Xiangdong Liu Tel.: +86 20 85280205 Fax: +86 20 85280205

E-mail address: xdliu@scau.edu.cn

**These authors contributed equally to this work

Fig.S1 Inbred lines derived from S24 common wild rice and segregation in thier traits.

(a, b, c) 4th generation of inbred lines derived from S24 grown in the field during early season of 2011. (d)

Plants of 4th generation segregation population of S24 at heading stage.

Fig.S2 Genome-wide distribution of reads mapping coverage in S24 (a), Huaye 3 (b) and Huaye 4 (c)

Fig.S3 Distribution of single nucleotide polymorphisms (SNPs) and insertion and deletions (InDels).

(a) Venn analysis of SNPs and InDels in S24, Huaye 3 and Huaye 4. (b) Frequency of six substitution types of

SNPs. (c) Distribution of InDels in different length.

Fig.S4 Distribution of DNA polymorphisms number and density in common wild rice lines.

 $(a, b) \ Number \ of \ SNPs \ (a) \ and \ InDels \ (b) \ in \ different \ chromosomes. \ (c, \ d) \ Density \ of \ SNPs \ (c) \ and \ InDels \ (d)$

in different chromosomes.

Fig.S5a Distribution of SNPs (blue lines) and InDels (green lines) in 100 kb windows across different

chromosomes in S24.

Fig.S5b Distribution of SNPs (blue lines) and InDels (green lines) in 100 kb windows across different chromosomes in Huaye 3.

Fig.S5c Distribution of SNPs (blue lines) and InDels (green lines) in 100 kb windows across different

chromosomes in Huaye 4.

Fig.S6 Boxplot of DNA polymorphisms density in every 100 kb window.

(a, b, c) Boxplot of SNP density across the 12 chromosome in S24 (a), Huaye 3 (b) and Huaye 4 (c). (d, e, f)

Boxplot of InDel density across the 12 chromosome in S24 (d), Huaye 3 (e) and Huaye 4 (f).

Fig.S7 Venn analysis of common wild rice unique genes detected in S24, Huaye 3 and Huaye 4.

DUF1668	18	1	8	
NAM	18		16	
B_lectin	28		23	
PPR	40		32	
Cyclin_N	23		18	
Pkinase	79		56	
Ribosomal_S12	21		14	
DUF1409	262		160	
LRRNT_2	20		12	
DUF1263	30		17	
RVT_1	2561		1401	
Transposase_24	75		41	
Transposase_28	902		489	
UDPGT	23		12	
Mov34	33		17	
p450	65		33	
PTR2	22		11	
Retrotrans_gag	1722		860	
Peptidase_C48	156		77	
rve	2340		1090	
DUF26	22		10	
PMD	482		219	
RnaseH	984		447	Non-synonymous SNP
LRR_1	76		34	Supervisions SND
Ank	38		17	Synonymous Sivi
DUF3615	36		16	
FAR1	46		20	
NB-ARC	144		62	
RVP_2	207		89	
zf-CCHC	360		147	
DUF390	161		65	
Exo_endo_phos	211		84	
Chromo	211		84	
Transposase_21	801		311	
RVT_2	1191		443	
DUF1618	68		25	
hATC	61		22	
MULE	142		46	
Plant_tran	31		10	
DUF834	100		32	
MuDR	254		81	
DUF223	61		19	
HGWP	35		10	
DUF889	57		16	
F-box	66		18	
0.	% 10% 20% 30% 40% 50%	60% 70%	80% 90% 10	0%

Fig.S9 KEGG pathway of a disease resistance protein RPM1 homologue. The RPM1 homologue was marked

as red color.

Fig.S10 Phylogenetic and MEME analysis of candidate genes and their homologs in the two inbred lines. The serial numbers of homologs in Huaye 3 and Huaye 4 were named as "Or-Chr-NB-18/35-No.". "Or" represents *Oryza rufipogon*, "Chr" represents chromosome, "NB" represents NB-ARC, "18" represents Huaye 3, "35" represents Huaye 4 and "No." represents serial number.

Fig.S11 Sequence logos of MEME motifs

Fig.S12 Brown planthopper (BPH) resistance performance of Huaye 3 and Huaye 4.

(a) Resistance performance of Huaye 3 and Huaye 4 against BPH in epidemic year of 2017. Susceptible variety: Simiaoxuan. (b) The results of brown planthopper resistance assay of Huaye 3 by artificial inoculation. CK: Taichuang Native 1 (TN1). (c) Resistance performance of Huaye 4 against BPH in 2015. Susceptible varieties: Simiaoxuan and 4001-1.