
The OmicsPLS R Package
Said el Bouhaddani

2018-02-08

The OmicsPLS R package

Welcome to the vignette of the O2PLS package for analyzing two Omics datasets!

Here you can find examples and explanation of the input options and output objects. After installing, help is
found with the ? operator. Try to type ?OmicsPLS for an overview of the package and ?o2m for description
of the main fitting function.

Installing and loading

The easiest way to install the OmicsPLS package is to run install.packages("OmicsPLS"). If the command
did not work, check if there is a package missing. It imports the ggplot2 and parallel package, so these should
be installed first. If still there is an error, try to download the .tar or .zip (for Windows binaries) and install
offline. These two files can be found at the CRAN website at https://cran.r-project.org/package=OmicsPLS.
Also feel free to send an email with the error message you are receiving.

The OmicsPLS package is loaded by running library(OmicsPLS). A message might be printed indicating
that the loadings object is masked from package::stats. This basically means that whenever you type
loadings (which is generic), you’ll get the loadings.o2m variant. This is not a problem usually.

Background

The O2PLS method

The O2PLS method is proposed in (Trygg and Wold 2003):

X = TW > + T⊥W >
⊥ + E

Y︸︷︷︸
Data

= UC>︸ ︷︷ ︸
Joint

+ U⊥C>
⊥︸ ︷︷ ︸

Specific

+ F︸︷︷︸
Noise

It decomposes the variation of two datasets into three parts:

• A Joint part: TW > for X and UC> for Y ,
• A Systematic/Specific/Orthogonal part: T⊥W >

⊥ for X and U⊥C>
⊥ for Y ,

• A noise part: E for X and F for Y .

The number of columns in T , U , W and C are denoted by as n and are referred to as the number of joint
components. The number of columns in T⊥ and W⊥ are denoted by as nX and are referred to as the number
of X-specific components. Analoguously for Y we use nY to denote the number of Y -specific components. The
relation between T and U defines the relationship between X and Y : U = TBT + HUT or T = UBU + HT U .
Although this relationship seems asymmetric, the estimates are symmetric in X and Y . Ideally the number
of components (n, nX , nY) are known beforehand. If not the number of components can be selected with a
data-driven method, for example Cross-Validation.

1

https://cran.r-project.org/package=OmicsPLS

Cross-Validation

In cross-validation (CV) one minimizes a certain measure of error over some parameters that should be known
a priori. In our case we have three parameters to determine a priori: (n, nX , nY). A popular measure is the
prediction error ||Ŷ − Y ||, where Ŷ is a prediction of Y . However the O2PLS method is symmetric in X and
Y , so we minimize the sum of the prediction errors: ||X̂ −X||+ ||Ŷ − Y ||. The idea is to fit O2PLS to our
data X and Y and compute the prediction errors for a grid of values for n, nX and nY . Here n should be a
positive integer, and nX and nY should be non-negative. The ‘best’ integers are then the minimizers of the
prediction error.

Alternative cross-validation approach

We proposed an alternative way for choosing the number of components (Bouhaddani et al. 2016). First
we construct a grid of values for n. For each n in this grid we consider the R2 (coefficient of determination)
between T and U for different nX and nY . If T and U are contaminated with data-specific variation R2 will
be lower, as data-specific variation does not have predictive power. If too many specific components are
removed R2 will also be lower as also joint predictive variation is removed. The maximum R2 is somewhere
in between, yielding maximizers nX and nY . With these two integers we compute the prediction error for
our n that we have kept fixed. We repeat this process for each n on the one-dimensional grid and get our
maximizers. This can provide a speed-up and often yields similar values for (n, nX , nY).

Main functions

Brief overview

The functions in OmicsPLS can be organized as follows

• Cross-validation
• Fitting
• Summarizing & visualizing

For determining the number of components needed two Cross-Validation (CV) approaches are implemented:
a standard approach and a faster alternative approach (see ?crossval_o2m and ?crossval_o2m_adjR2).
After determining the number of components, an O2PLS fit is obtained by running o2m (type ?o2m for the
help page). The results can be inspected mainly by summary for the explained variantions and plot for the
loadings.

Cross-validating

Two approaches for cross-validation are implemented. The standard CV is called by the following command

crossval_o2m(X, Y, a, ax, ay, nr_folds, nr_cores = 1, stripped = TRUE,
p_thresh = 3000, q_thresh = p_thresh, tol = 1e-10, max_iterations = 100)

The first six arguments are mandatory. As in the o2m function, X and Y represent the two data sets. Instead
of single integers we now have vectors of integers a, ax and ay that represent the number of columns. The
number of folds is specified by nr_folds. It is recommended that at least ten folds are used. Too few folds
(but not less than two) result in unreliable estimates. More folds are better, but then the computational
cost is increased. A useful input parameter is nr_cores, the number of cores used, allowing for parallel
computation on all platforms supported by the parallel package (Windows, Linux, OSM). The remaining
arguments are directly passed on to o2m. There is no reason to set stripped=FALSE as this will only slow
down the calculations.

2

The second CV approach is implemented in the function crossval_o2m_adjR2.

crossval_o2m_adjR2(X, Y, a, ax, ay, nr_folds, nr_cores = 1, stripped = TRUE,
p_thresh = 3000, q_thresh = p_thresh, tol = 1e-10, max_iterations = 100)

It has exactly the same arguments as crossval_o2m. For this approach two folds were often enough to
provide good values for n, nx and ny.

Fitting

The fitting function is o2m. It has five mandatory input parameters and more optional parameters. The full
syntax is given by

o2m(X, Y, n, nx, ny, stripped = FALSE, p_thresh = 3000,
q_thresh = p_thresh, tol = 1e-10, max_iterations = 100)

The matrices X and Y are the data, with rows as samples and columns as variables. The variables may be
different, but each row must correspond to the same sample. The integers n, nx and ny are the number
of components. Note that they must be non-negative, moreover n must be positive. The logical stripped
indicates whether a stripped version of o2m should be used. The stripped version omits calculation and
storage of the residual matrices E and F , which are as large as X and Y . The output of generic functions, e.g.
print, plot, summary, remains the same. The integers p_thresh resp q_thresh are the minimum number
of X resp Y variables for which o2m uses a memory-efficient NIPALS algorithm for high-dimensional data. By
default o2m switches if both X and Y have 3000 columns. Note that the NIPALS approach is somewhat slower
if one of the matrices is not high-dimensional (i.e. not many columns). The NIPALS approach is iterative,
and tol (norm of the difference in loading values between two iterations) and max_iterations (maximum
number of iterations) control termination of the algorithm. For many data sets it is sufficient to only specify
the five mandatory arguments.

High dimensional fitting

In the o2m function the calculations of the joint components are based on the SVD of the cross-product X>Y .
This can contain many elements if both matrices have many columns. For example when p = q = 10000
the number of elements in X>Y is pq = 108 In these scenarios fitting the O2PLS method with SVD can be
computationally not feasible. The o2m function can deal with data sets with many columns, by switching to
the NIPALS algorithm (Wold 1973) for calculating the joint components. The NIPALS algorithm avoids the
construction and storage of the covariance matrix X>Y , moreover the NIPALS-based joint components are
equal to the SVD-based PLS components if the number of iterations are large enough (up to sign). In the
case that p or q is not too large, the NIPALS approach is somewhat slower than the SVD approach.

Summarizing

To summarize the fitted variation different values can be reported by running the summary function on the
object fitted with o2m.

summary(object, digits = 3, ...)

The object contains the o2m fit, while digits controls the amount of digits are printed. Among others, the
following is printed.

• The variation of X explained by the joint or specific part is calculated as ||T ||2/||X||2 and ||T⊥||2/||X||2.
Substituting T by U and X by Y yields formulas for Y .

• The variation of Y predicted by X is given by ||TBT ||2/||X||2. Often it is more interesting to look at
the variation of U predicted by T : ||TBT ||2/||U ||2. If only one component is present, this ratio equals
the squared correlation between T and U . Similarly we obtain summary measures for Y .

3

• For assessing the predictive/explanatory power of the joint part of a subset of the observed variables,
we can use the squared loadings as weights, as they sum up to one. The explained variation by the
joint part is ||TW >

S ||2/||X||2 and for the predictive variation relative to U we have ||TBW >
S ||2/||U ||2

for a subset of indices S ⊂ {1, . . . , p}. For Y similar formulas hold.

Visualizing

The OmicsPLS package provides a function for plotting the loadings in each component. It uses on the
{ggplot2} package, but a basic plot is also available if {ggplot2} is not available. The full command for
plotting loadings is

plot(x, loading_name, i, j, use_ggplot2, label, ...)

Here x is the only required object, namely the O2PLS fit. All other input parameters have a default value.
The parameter loading_name represents which of the four parts (X-joint, Y-joint, X-specific or Y-specific)
should be plotted and should be one of "Xjoint", "Yjoint", "Xorth" or "Yorth". The strings may be
abbreviated to e.g. "Xj" (instead of "Xjoint") as long as there is no ambiguity. The positive integers i
and j denote which components to plot against each other. For plotting component i against its index, j
can also be left unspecified. The label parameter can be one of two, either the index number if label
= "number" or the variable names (if present in the data) if label = "colnames". Also here the strings
may be abbreviated to "n" and "c" respectively. Further arguments denoted by ... will be processed by
the plot function of {ggplot2}. Typically parameters like col (label color), size (label size), alpha (label
transparancy) and/or angle (label angle) can be supplied here. The documentation of {ggplot2} contains
much more information on this subject.

Real data example

We illustrate the OmicsPLS package with transcriptomic and metabolomic measurements from a
Finnish population cohort, as part of the DILGOM study. The transcriptomic measurements can be
found at ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) under accession number E-TABM-1036
(E-TABM-1036.processed.1.zip). The metabolite measurements are attached as supplemental material at
(Inouye et al. 2010) (msb201093-sup-0002.zip).

Load the data

Now we download the data and prepare it in the right format (samples as rows and genes as columns) and
give the rows and columns the right names. Note that this code chunk automatically downloads and loads
the transcriptomic data into memory.
set.seed(31*12*2016)
if(!("test.tab" %in% list.files())){

If you didn't download the expression data,
this code will download it to the current directory (getwd())
temp <- tempfile()
download.file(

"http://www.ebi.ac.uk/arrayexpress/files/E-TABM-1036/E-TABM-1036.processed.1.zip",
temp)

rna0 <- read.table(unzip(temp, "test.tab"), sep='\t')
unlink(temp); rm(temp)

} else {
Or if you've downloaded test.tab already we simply load it

rna0 <- read.table("test.tab", sep='\t')

4

http://www.ebi.ac.uk/arrayexpress/

}
rna1 <- t(rna0[-(1:2),-1])
rna2 <- matrix(as.numeric(rna1), nrow = nrow(rna1))
dimnames(rna2) <- list(as.character(unlist(rna0[1,-1])),unlist(rna0[-(1:2),1]))
rna2 <- rna2[order(row.names(rna2)),] # Order rows according to the participant ID

We define a function to pick only the top 100*prop percent of the genes that have highest expression level,
intersected with the top 100*prop percent with highest Inter Quantile Range (see González et al. 2009). We
apply it to our gene expression data, with prop=0.75.
filter_rna <- function(rna=rna, prop = 0.75){

#calculate the maximum of gene expression per each gene and take the top
maxGE <- apply(rna, 2, max)
propGEmax <- quantile(maxGE, prop)
#take the IQR of each gene and take the top genes
IQRGE <- apply(rna, 2, IQR, na.rm=TRUE)
propGEIQR <- quantile(IQRGE, prop)
#selected genes/probes are the intersection of the two previous sets
filter2 <- (intersect(which(maxGE> propGEmax), which(IQRGE> propGEIQR)))
return(filter2)

}
rna3 <- rna2[,filter_rna(rna2)]
rm(rna0)
rm(rna1)

We also download and load the metabolite data and process it to have samples as rows and set the columns
names.
if(!("metabonomic_data.txt" %in% list.files())){

temp <- tempfile()
download.file(

"http://msb.embopress.org/content/msb/6/1/441/DC3/embed/inline-supplementary-material-3.zip",
temp)

metab0 <- read.table(unzip(temp, "metabonomic_data.txt"), header = T)
unlink(temp); rm(temp)

} else {
Or if you've downloaded metabonomic_data.txt already run the next line
metab0 <- read.table("metabonomic_data.txt", header=T)

}
metab1 <- t(metab0[,-1])
colnames(metab1) <- metab0$Metabolite

Missing data imputation

Packages needed

• install.packages("VIM")
• install.packages("missForest")

Note that we have missingness in the metabolite data. The functions in OmicsPLS currently do not support
missing data, as this is a delicate matter. Some diagostics on the missingness in the metabolite data can be
obtained. Firstly we plot a histogram of the missing data. We need the VIM package for this.
VIM::aggr(metab1, col=c('navyblue','red'), numbers=TRUE, sortVars=FALSE,

labels=names(data), cex.axis=.7, gap=3,

5

ylab=c("Histogram of missing data","Pattern"))

We remove participants with 100% missing metabolite measurements, i.e. missing rows.
NAs_in_metab1 <- which(apply(metab1, 1, function(e) sum(is.na(e))/length(e))==1)
metab2 <- metab1[-NAs_in_metab1,]
rna4 <- rna3[-NAs_in_metab1,]

Random Forests can be used to impute missing metabolites. We use the missForest package to do this. It
takes some time, about 8 minutes on a modest i5 laptop, as can be seen from the output.
metab2.imp <- missForest::missForest(metab2, verbose = T)

missForest iteration 1 in progress...done!
estimated error(s): 0.4234906
difference(s): 0.02714137
time: 59.59 seconds
##
missForest iteration 2 in progress...done!
estimated error(s): 0.4189017
difference(s): 0.0005727861
time: 57.07 seconds
##
missForest iteration 3 in progress...done!
estimated error(s): 0.4185268
difference(s): 0.0002720186
time: 56.99 seconds
##

6

missForest iteration 4 in progress...done!
estimated error(s): 0.4203561
difference(s): 0.0002325965
time: 56.94 seconds
##
missForest iteration 5 in progress...done!
estimated error(s): 0.4195952
difference(s): 0.0002338311
time: 57.12 seconds
metab <- scale(metab2.imp$ximp, scale=F)
rna <- scale(rna4, scale = F)

In the last two lines, we took one imputed instance of the metabolite data and centered the columns of the
RNA and metabolite data to have zero mean. We denote them by rna (transcripts) and metab (metabolites).

Inspect the data: descriptives

Packages needed

• install.packages("gplots")

A heatmap of metabolites, before and after imputation is plotted.
gplots::heatmap.2(cor(metab1,use = 'pair'), dendrogram='none', Rowv=F, Colv=F,trace='n',

breaks=seq(-1,1,length.out = 25), col=gplots::bluered)
gplots::heatmap.2(cor(metab,use = 'pair'), dendrogram='none', Rowv=F, Colv=F,trace='n',

breaks=seq(-1,1,length.out = 25), col=gplots::bluered)

They are almost the same, indicating that the correlation structure within metabolites hasn’t changed much.

To get an idea of the latent structure of the data we look at the eigenvalues of the covariance matrix of rna
and metab.
Eigenvalues within RNA
svd(rna, 0, 0)$d[1:6]^2 / sum(rna^2)

[1] 0.19568455 0.12670559 0.09534211 0.05334638 0.03931151 0.03294359
Eigenvalues within Metab
svd(metab, 0, 0)$d[1:6]^2 / sum(metab^2)

[1] 0.37544553 0.21076846 0.10669151 0.04796332 0.03171004 0.02697083
Singular values between RNA and Metab
svd(crossprod(rna,metab),0,0)$d[1:6]

7

[1] 7109.291 3885.623 2453.775 2364.294 1990.450 1226.889

The first two commands calculate relative variances explained by each principal component. Strong latent
structure is indicated by a sharp decline of the relative variances at the first few components. The last
command calculates the singular values of the covariance between the two data sets. Also here, a strong
decline in magnitude indicates strong latent structure in the covariance between the datasets.

Boxplots provide a good summary to compare the distribution of the variables relative to each other.
Properties such as comparable means, variances and symmetry are often good to have. To reduce the number
of boxplots we filter the transcriptomic data to include genes with 95% highest expression and IQR.
boxplot(rna[,filter_rna(rna, .95)])
boxplot(metab)

The distributions are quite symmetric and the scale is comparable across variables in each data set.

Analysis with the OmicsPLS package

Cross-validation

We load the OmicsPLS package and set a seed for the cross-validation. The strategy is to define a relatively
large grid to search on and apply the faster alternative Cross-Validation (Cv) approach to find a solution.
Then on a smaller grid containing these best integers we do a full CV to determine the best choice for the
number of components. The objective function to minimize is the sum of the two prediction errors ||X − X̂||
and ||Y − Ŷ ||.
library(OmicsPLS)

##
Attaching package: 'OmicsPLS'

The following object is masked from 'package:stats':
##
loadings
set.seed(1+1+2016)
CV1 <- crossval_o2m_adjR2(rna, metab, 1:3, c(0,1,5,10), c(0,1,5,10),

nr_folds = 2, nr_cores = 4)

minimum is at n = 2

Elapsed time: 66.87 sec

8

CV2 <- crossval_o2m(rna, metab, 1:2, 0:2, 9:11,
nr_folds = 10, nr_cores = 4)

CV1

MSE n nx ny
1 1.297685 1 1 10
2 1.293595 2 1 10
3 1.323277 3 1 10
CV2

Elapsed time: 187.9 sec

Minimal 10-CV error is at ax=1 ay=10 a=2

Minimum is 1.281668

Following the advice of the last CV output, we select two joint, one transcript-specific and ten metabolite-
specific components. We fit the O2PLS model with default values as follows.
library(OmicsPLS)

##
Attaching package: 'OmicsPLS'

The following object is masked from 'package:stats':
##
loadings
fit = o2m(rna, metab, 2, 1, 10)
fit

O2PLS fit
with 2 joint components
and 1 orthogonal components in X
and 10 orthogonal components in Y
Elapsed time: 1.92 sec

The total runtime of the fit was about 3 seconds. Note that univariate correlation tests would require almost
one million tests to be performed, and does not take into account correlation between metabolites and genes.
Also multivariate linear regression cannot deal with the large amount of variables.

A summary of the results is obtained via
summary(fit)

##
*** Summary of the O2PLS fit ***
##
- Call: o2m(X = rna, Y = metab, n = 2, nx = 1, ny = 10)
##
- Modeled variation
-- Total variation:
in X: 332035.7
in Y: 68381.71
##
-- Joint, Orthogonal and Noise as proportions:

9

##
data X data Y
Joint 0.124 0.410
Orthogonal 0.026 0.062
Noise 0.850 0.528
##
-- Predictable variation in Y-joint part by X-joint part:
Variation in T*B_T relative to U: 0.151
-- Predictable variation in X-joint part by Y-joint part:
Variation in U*B_U relative to T: 0.116
##
-- Variances per component:
##
Comp 1 Comp 2
X joint 25039.63 16203.728
Y joint 18456.89 9555.336
##
Comp 1
X Orth 56637.85
##
Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7
Y Orth 6715.068 3315.059 2055.242 1199.923 1091.131 1103.341 838.014
Comp 8 Comp 9 Comp 10
Y Orth 950.716 570.621 850.223
##
##
- Coefficient in 'U = T B_T + H_U' model:
-- Diagonal elements of B_T =
0.401 0.339

The joint, orthogonal and noise variations are shown as proportions. The two joint components explains
about 12% of the transcriptomic variation and 41% of the metabolite variation, these proportions are 17%
and 24% for the orthogonal part. We also observe that relative to the variation in U , the variation predicted
by T (or equivalently X, transcripts) is 11.6%. Looking relative to the variation in Y (metabolites), the
variation predicted by T (or equivalently X) is 0.116 ∗ 0.41. Similar calculations can be performed for the Y
part.

Plotting

Packages needed

• install.packages("magrittr")
• install.packages("ggplot2")
• install.packages("gridExtra")
• install.packages("stringr")
• install.packages("gplots")
• install.packages("reshape2")

We want to see which (groups of) metabolites and transcripts tend to correlate with each other. To do this
we plot the loadings. The individual loading values per component indicate the relative importance of each
variable to the corresponding component. We plot the two joint loadings against each other to see which
metabolites are most important for each component. To do this we need three packages for convenience:
magrittr for the piping operator, ggplot2 for plotting and gridExtra to put multiple ggplots in one figure.
Also stringr will be needed to extract substrings of column names. The reshape2 package is needed for
reshaping data sets from wide format to long format.

10

library(magrittr)
library(ggplot2)
library(gridExtra)
library(illuminaHumanv3.db)

Warning in rsqlite_fetch(res@ptr, n = n): Don't need to call dbFetch() for
statements, only for queries
Color names
LLmodule <- c("ILMN_1690209",'ILMN_1766551', 'ILMN_1749131', 'ILMN_1688423',

'ILMN_2102670', 'ILMN_1792323', 'ILMN_1899034', 'ILMN_1806721',
'ILMN_1695530', 'ILMN_1726114', 'ILMN_1751625', 'ILMN_1726114',
'ILMN_1753648', 'ILMN_1779043')

LLnr <- which(colnames(rna) %in% LLmodule)
rna_genenames <- select(illuminaHumanv3.db,

keys = colnames(rna)[LLnr],
keytype = "PROBEID", columns = "SYMBOL")[,2]

Warning in rsqlite_fetch(res@ptr, n = n): Don't need to call dbFetch() for
statements, only for queries

Warning in rsqlite_fetch(res@ptr, n = n): Don't need to call dbFetch() for
statements, only for queries
name_col <- 1 + sapply(#First sapply loops over column names

X = colnames(metab),
FUN = function(arg){

crossprod(
c(1, 1, 3, 4, 5), # Weights to be used as categories
sapply(c("VLDL", "LDL", "IDL", "HDL","FA"), # metabolite classes

function(arg2){grepl(arg2, arg)} # compare class of metabolites
)

)
}

)
name_col <- factor(name_col,

levels = c(3,2,4:6,1),
labels = c("VLDL", "LDL", "IDL", "HDL","FA","Other"))

alpmetab <- loadings(fit, "Yjoint", 1:2) %>% # Retreive loadings
abs %>% # Absolute loading values for positive weights
rowSums %>% # Sum over the components
sqrt + (name_col!="Other") # Take square root

######### Plot loadings with OmicsPLS plot method ###
p_metab <- plot(fit, loading_name="Yj", i=1, j=2, label="c", # Plot the loadings

alpha=0) + # set points to be 100% transparant
##################### Add all layers ###

theme_bw() +
coord_fixed(ratio = 1, xlim=c(-.2,.2),ylim=c(-.2,.2)) +
geom_point(# Set color and size

aes(col=name_col, size = I(1+(name_col%in%c("VLDL","HDL"))),
shape = name_col),show.legend = T) +

theme(legend.position="right") +
scale_color_discrete(name="Metabolite\nGroup",

11

labels=c("VLDL", "LDL", "IDL", "HDL","FA","Other")) +
guides(size=F) + scale_shape_discrete(name="Metabolite\nGroup",

labels=c("VLDL", "LDL", "IDL", "HDL","FA","Other")) +
scale_shape_manual(name="Metabolite\nGroup", values=c(15,3,4,17,5,6)) +
labs(title = "Metabolite joint loadings",

x = "First Joint Loadings", y = "Second Joint Loadings") +
theme(plot.title = element_text(face='bold'),

legend.title=element_text(face='bold')) +
geom_hline(yintercept = 0) + geom_vline(xintercept = 0)

alprna <- loadings(fit, "Xjoint", 1:2) %>% raise_to_power(2) %>% rowSums
alprna[-(order(alprna,decreasing=T)[1:10])] = 0
alprna <- sign(alprna)
toprna <- which(alprna>0)
names_rna <- mapIds(illuminaHumanv3.db,

keys = colnames(rna)[toprna],
keytype = "PROBEID",
column = "SYMBOL",
multiVals = 'first')

Warning in rsqlite_fetch(res@ptr, n = n): Don't need to call dbFetch() for
statements, only for queries

Warning in rsqlite_fetch(res@ptr, n = n): Don't need to call dbFetch() for
statements, only for queries
names_rna[which(is.na(names_rna))] <- "?"
######### Plot loadings with OmicsPLS plot method ###
p_rna <- ggplot(data.frame(x = fit$W.[, 1], y = fit$W.[, 2]),

aes(x = x, y = y),
alpha = alprna,
aes(label = NA)) +

##################### Add all layers ###
theme_bw() +
coord_fixed(.8, c(-.15,.15),c(-.15,.15)) +
geom_point(alpha = 0.5, col = 'grey') +
geom_point(data = data.frame(x=fit$W.[LLnr,1],y=fit$W.[LLnr,2]),

shape = 2, col = 2, size = 2) +
geom_text(data = data.frame(x=fit$W.[toprna,1],y=fit$W.[toprna,2]),

hjust = rep(c(1, 0), length.out = length(toprna)),
aes(label = names_rna)) +

labs(title = "Transcript joint loadings",
x = "First Joint Loadings", y = "Second Joint Loadings") +

theme(plot.title = element_text(face='bold')) +
geom_hline(yintercept = 0) + geom_vline(xintercept = 0)

Finally plot both plots in one figure.
grid.arrange(p_metab, p_rna, ncol=2)

12

The genes with highest absolute loading values are most related with the metabolites having highest absolute
loading values on the respective axes. It can be seen that especially VLDL metabolites cluster together in
both axes, indicating that are correlated within both joint components. Moreover in the second component
they tend to be negatively correlated to HDL metabolites. The VLDL metabolites are most correlated
with expression of the HDC gene in the first component. In the second component the VLDL and HDL
metabolites are most correlated with expression of genes involved in defense response and inflammation (e.g.
FCER1A, HDC and DEFA1).

CPU times

Packages needed

• install.packages("microbenchmark")

In OmicsPLS we added an alternative, memory-efficient, fitting algorithm (NIPALS) for high-dimensional
data. This omits storing the whole covariance matrix of size p times q. In case p and q are large, say larger
than 3000 both, storing this becomes a memory intensive operation. To see how long o2m takes to fit, we
consider three scenarios. They are timed with the microbenchmark function.
set.seed(2016^2)
fake_X <- scale(matrix(rnorm(1e2*1e4),1e2)) # 100 x 10000 matrix
fake_Y <- scale(matrix(rnorm(1e2*1e2),1e2)) # 100 x 100 matrix
suppressMessages(

scenario1 <- microbenchmark::microbenchmark(
default=o2m(fake_X, fake_Y, 1, 1, 1),
stripped=o2m(fake_X, fake_Y, 1, 1, 1, stripped=T),
highD = o2m(fake_X, fake_Y, 1, 1, 1, stripped=T, p_thresh=1),
times = 6, unit = 's',control=list(warmup=1))

13

)
scenario1

Unit: seconds
expr min lq mean median uq max neval
default 0.8184800 0.818827 0.8357437 0.8279945 0.8531872 0.8679787 6
stripped 0.8115051 0.832465 0.8529599 0.8490492 0.8765673 0.8991234 6
highD 2.0267014 2.046781 2.1124864 2.0558910 2.2090854 2.2805691 6
cld
a
a
b

First two data sets are generated, having 100 rows. The first data set has 10000 columns, the second data set
has 100 columns. The first row corresponds to an o2m fit with default settings. In the second row a stripped
version of the algorithm is used, i.e. no noise matrices are calculated. For low-dimensional this does not
matter much in CPU time. The last row corresponds to a fit using the NIPALS algorithm, which is only
advantageous for high dimensional data. This version of o2m is somewhat slower.
fake_X <- scale(matrix(rnorm(1e2*2e3),1e2)) # 100 x 2000 matrix
fake_Y <- scale(matrix(rnorm(1e2*2e3),1e2)) # 100 x 2000 matrix
suppressMessages(

scenario2 <- microbenchmark::microbenchmark(
default=o2m(fake_X, fake_Y, 1, 1, 1),
stripped=o2m(fake_X, fake_Y, 1, 1, 1, stripped=T),
highD = o2m(fake_X, fake_Y, 1, 1, 1, stripped=T, p_thresh=1),
times = 6, unit = 's',control=list(warmup=1))

)
scenario2

Unit: seconds
expr min lq mean median uq max neval
default 39.463320 40.318531 40.459705 40.43632 40.680007 41.423723 6
stripped 40.334436 40.373511 41.026917 40.98918 41.706695 41.768499 6
highD 1.078915 1.094818 1.107499 1.11006 1.125557 1.125582 6
cld
b
b
a

Here ‘medium-dimensional’ data sets are generated, having 100 rows and 2000 columns. In this scenario the
NIPALS approach outperforms the ‘default’ approach.
fake_X <- scale(matrix(rnorm(1e2*5e4),1e2)) # 100 x 50000 matrix
fake_Y <- scale(matrix(rnorm(1e2*5e4),1e2)) # 100 x 50000 matrix
o2m(fake_X, fake_Y, 1, 1, 1, stripped=T, p_thresh=1e6)

Error: cannot allocate vector of size 18.6 Gb
o2m(fake_X, fake_Y, 1, 1, 1, stripped=T)

Using high dimensional mode with tolerance 1e-10 and max iterations 100

Power Method (comp 1) stopped after 100 iterations.

Power Method (comp 2) stopped after 100 iterations.

Power Method (comp 1) stopped after 100 iterations.

14

O2PLS fit: Stripped
with 1 joint components
and 1 orthogonal components in X
and 1 orthogonal components in Y
Elapsed time: 15.07 sec
rm(fake_X)
rm(fake_Y)

Here high-dimensional data sets are generated, having 100 rows and 50000 columns. Fitting O2PLS is
perfectly possible with the NIPALS approach, but infeasible with the default approach.

References

Bouhaddani, S. el, J. Houwing-Duistermaat, P. Salo, M. Perola, G. Jongbloed, and H.-W. Uh. 2016.
“Evaluation of O2PLS in Omics data integration.” BMC Bioinformatics 17 Suppl 2 (2):11. https://doi.org/10.
1186/s12859-015-0854-z.

González, I., S. Déjean, P. G. P. Martin, O. Gonçalves, P. Besse, and A. Baccini. 2009. “Highlighting
Relationships Between Heterogeneous Biological Data Through Graphical Displays Based on Regularized
Canonical Correlation Analysis.” Journal of Biological Systems 17 (02):173–99. https://doi.org/10.1142/
S0218339009002831.

Inouye, Michael, Johannes Kettunen, Pasi Soininen, Kaisa Silander, Samuli Ripatti, Linda S Kumpula, Eija
Hämäläinen, et al. 2010. “Metabonomic, Transcriptomic, and Genomic Variation of a Population Cohort.”
Molecular Systems Biology 6 (1). John Wiley & Sons, Ltd. https://doi.org/10.1038/msb.2010.93.

Trygg, J., and S. Wold. 2003. “O2-Pls, a Two-Block (X-Y) Latent Variable Regression (Lvr) Method
with an Integral Osc Filter.” Journal of Chemometrics 17 (1). John Wiley & Sons, Ltd.:53–64. https:
//doi.org/10.1002/cem.775.

Wold, H. 1973. “Nonlinear Iterative Partial Least Squares (NIPALS) Modelling: Some Current Developments.”
In Multivariate Analysis, III (Proc. Third Internat. Sympos., Wright State Univ., Dayton, Ohio, 1972),
383–407. New York: Academic Press.

15

https://doi.org/10.1186/s12859-015-0854-z
https://doi.org/10.1186/s12859-015-0854-z
https://doi.org/10.1142/S0218339009002831
https://doi.org/10.1142/S0218339009002831
https://doi.org/10.1038/msb.2010.93
https://doi.org/10.1002/cem.775
https://doi.org/10.1002/cem.775

	The OmicsPLS R package
	Installing and loading

	Background
	The O2PLS method
	Cross-Validation
	Alternative cross-validation approach

	Main functions
	Brief overview
	Cross-validating
	Fitting
	Summarizing
	Visualizing

	Real data example
	Load the data
	Missing data imputation
	Inspect the data: descriptives
	Analysis with the OmicsPLS package
	Cross-validation
	Plotting
	CPU times

	References

