Supplemental Information

Multi-species activity screening of microcin J25 mutants yields antimicrobials with increased specificity towards pathogenic *Salmonella* species relative to human commensal *Escherichia coli*

Seth C. Ritter, Mike L. Yang, Yiannis N. Kaznessis, Benjamin J. Hackel

Department of Chemical Engineering and Materials Science, University of Minnesota-Twin

Cities, Minneapolis, Minnesota

Supplemental Data and Analysis

Algorithm to measure zones of inhibition

Sizes of zones of inhibition were measured using a custom MATLAB script (see attached code and

example). This script works according to the following pseudocode:

- 1. Import image, downscale and apply a median smoothing to reduce noise
- 2. User selects starting pixel within the colony of the producing bacteria
- 3. Algorithm steps out to adjacent pixels, adding them to the set of colony pixels if their intensity is above some fraction (user defined, default to 0.95) of the average of added colony pixels.
- 4. Pixels which are surrounded by colony pixels are automatically added to the colony pixels and assumed to be image errors or inconsistency in growth region.
- 5. Algorithm then steps out from boundary of colony pixels to add zone of inhibition pixels, adding pixels below some user fraction of the average (default to 1.0).
- 6. Surrounded pixels are added as well
- 7. Program outputs the size of each zone in pixels

Below is an example output:

Supplemental Figure 1. Automated measuring of zones of inhibition

(Top-left) Imported and smoothed image taken by user showing two producer colonies surrounded by zones of inhibition as a result of antimicrobial production. (Top-right) Upon selection of the left producer colony, the algorithm generates the displayed producer colony (size = 531 pixels). (Bottom-left) The algorithm displays the zone of inhibition (size = 807 pixels).

Supplemental Figure 2. Per-residue mutational tolerance.

Displayed are the fractions of sampled mutants (n = 14-18 per site) which retained detectable activity against any of the four targets are presented. The analysis finds that loop positions 11-14 form the continuous set of residues with the highest mutational tolerance. Positions 7 and 9 are known to have a low tolerance for mutation. Pavlova et al showed that mutating positions 7 and 9 reduced RNAP inhibition.

Supplemental Figure 3. Relationship between chemical homology and MccJ25 mutant activity per residue.

Chemical homology, a global relationship of the tendencies of different amino acid substitutions at evolutionarily related sites, was assessed as a predictor of activity of MccJ25 single-mutants. For each position the correlation between activities, against all four pathogenic targets of mutants sampled, and the BLOSUM 90 score associated with the (wild-type, mutant) pair was analyzed.

It is found that 5 of 12 positions tested show a significant Spearman's correlation (p<0.05, Bonferri corrected, dashed line bottom plot. Computed using exact permutation.). Position 2 shows a preference for small amino acids, G2[A,C,S]. Position 3 shows a preference for small amino acids, A3[G,C,S,T], but also supports many others. However, many mutations show differences between the different targets, implying that this interaction may serve to enable some specificity. Though position 5 showed conservation amongst mutations sampled, as well as supporting literature data (Lai and Kaznessis, 2017) (requiring charged residue), only 1 other mutation was tolerated and sampled (H5R), which was insufficient evidence for testing. Position 6 shows a preference for hydrophobic residues, V6[L,I,W,F].

Position 11 shows a preference for hydrophobic residues, V11[I,M,W]. Position 13 shows a small preference for hydrophobic residues, I13[F,W,Y,M,L,V,A], but also tolerates many hydrophilic mutations. Surprisingly, though positions 12 and 14 show a high tolerance for mutation, they don't show a relationship between the BLOSUM90 scores for mutants in reference to wild-type (Glycine). These data could be explained by the lack of a meaningful interaction between residues 12 and 14 of MccJ25 and any proteins in the host involved in transport or activity.

Supplemental Figure 4. Correlation between specificity and chemical homology

Similar to the analysis done in Supplemental Figure 2, the relationship between chemical homology and specificity for each single-mutant was assessed. There is insufficient evidence that chemical homology between wild type and mutant predict the specificity (p > 0.1).

Supplemental Figure 5. Evaluation of commensal E. coli susceptibility to wild-type MccJ25 Commensal *E. coli* isolates were grown overnight to stationary phase in LB. The following day they were diluted 1000x in fresh LB supplemented to 20 vol% sterilized supernatant from a MccJ25 -producing cell line. Their growth was then monitored at 37°C via optical density readings to observe the impact of MccJ25 -containing supernatant on growth. Of the 20 isolates evaluated, 18 showed susceptibility to MccJ25 . The above are averages of 2 replicates per isolate exposed to both MccJ25 (red) and stop-codon mutated MccJ25 (black) supernatant. PUTI 173 and FVEC 272 do not show susceptibility to MccJ25.

Supplemental Figure 6. Screening strategy for multi-mutant MccJ25 library

(A) Colonies of randomly-selected producers of mutants of MccJ25 were transferred to LB-agar platesseeded with SE and IPTG. Following outgrowth, colonies showing zones of inhibition were gathered. (B)Heat-sterilized supernatants produced from the 64 active colonies from (A) were assayed for activity

against pathogenic strains as well as human commensal *E. coli*. In the examples displayed, the orange boxes outline clones that were sequence-verified to be $MccJ25^{113T}$. The differential response in acitivity between STen (left) and two human commensal *E. coli* strains (middle, right) can be seen. (C) Activities of supernatants of candidate producers showing promising specificity modulation in (B) were quantified via dilution-series against all pathogens and human commensal *E. coli*.

Supplemental Figure 7. Assessment of activity of purified MccJ25 and MccJ25^{113T}

MccJ25 (A-C) and MccJ25^{113T} (D-F) were purified from supernatant of expressing cells. Following a 2volume n-butanol extraction, samples were dried and run on RP-HPLC (A, D). All peaks absorbing at 280 nm were collected and evaluated for activity. Only the indicated peaks (closed circles) displayed activity against the *Salmonella* indicator strain. To assess identity, active peaks were freeze-dried under vacuum, resuspended in ultrapure water and evaluated via matrix-assisted laser-desorption ionization mass spectrometry (B, E). The processed form (closed circle) and linear form (open circle) of MccJ25 and MccJ25^{113T} were identified. Previous efforts in the literature have demonstrated that the linear form is not active (Wilson et al., 2003). Water-solubilized purified peptides exhibited activity against *Salmonella* indicator strain in an agar plate assay analogous to Figure 4 (C, F).

Su	oplemental	Table I.	Bacteria	and r	olasmids	used
----	------------	----------	----------	-------	----------	------

Bacterial Strain or Plasmid	Description	Reference or Source			
Producer					
NEB Express 1 ^q	BL21 derivative, no antimicrobial peptides, overexpresses LacI	New England Biolabs			
Patnogenic Targets	10 410100				
Salmonella enterica serovar	#MH9189	Timothy Johnson, Veterinary and Biological			
Enteritiais		Science, University of Minnesota			
Salmonella enterica serovar Tennessee	#ST101	Timothy Johnson, Veterinary and Biological			
		Science, University of Minnesota			
Escherichia coli JJ1887	Urinary tract infection causing	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli O157:H7	#2026	Michael Sadowsky, Biotechnology Institute, University			
		of Minnesota			
Commensal Targets					
Escherichia coli PUTI 53	Human isolate. Sourced sample type: Urine	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli PUTI 102	Human isolate. Sourced sample type: Urine	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli PUTI 105	Human isolate. Sourced sample type: Urine	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli PUTI 166	Human isolate. Sourced sample type: Urine	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli PUTI 169	Human isolate. Sourced sample type: Urine	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli PUTI 173	Human isolate. Sourced sample type: Urine	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli PUTI 276	Human isolate. Sourced sample type: Urine	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli PUTI 336	Human isolate. Sourced sample type: Fecal	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli PUTI 375	Human isolate. Sourced sample type: Fecal	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli PUTI 379	Human isolate. Sourced sample type: Fecal	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli FVEC 272	Human isolate. Sourced sample type: Fecal	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli FVEC 632	Human isolate. Sourced sample type: Fecal	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli FVEC 638	Human isolate. Sourced sample type: Fecal	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli FVEC 744	Human isolate. Sourced sample type: Fecal	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli FVEC 819	Human isolate. Sourced sample type: Fecal	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli FVEC 867	Human isolate. Sourced sample type: Fecal	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli FVEC 964	Human isolate. Sourced sample type: Fecal	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli FVEC 1067	Human isolate. Sourced sample type: Fecal	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli FVEC 1468	Human isolate. Sourced sample type: Fecal	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Escherichia coli FVEC 1617	Human isolate. Sourced sample type: Fecal	J. Johnson, Veterans Affairs Hospital, Minneapolis, MN			
Plasmid					
pJP3	Microcin J25 expression cassette containing	Link group, Princeton (Pan et al., 2010)			
	plamid. McjA under Laco/T5 for controlled				
	induction.				
pJP4	pJP3 variant with XhoI moved downstream	This work			
	and optimized ribosomal binding site				

Supplemental Table II. Sequences for genes and oligonucleotides used

nID4	Ι
p31 4	CCCTTTCGTCTTCACCTCGATCGATCGATCATAAAAAAATTTATTT
Madified mai A symposium appartie	AGTCTCCCCATAAGGAGGTTAACATAATAATGATCAAACATTTTCACTCAACAAACTGTCAAGGGTAAGAAGAATAATGT
Modified hiejA expression cassette	TCCGAGCCCAGCAAAGGGAGTGATTCAGATTAAGAAGGCCGCCTCGCAATTAACGAAGGGCGGGGCGGGC
	AATATTTCGTGGGCATCGGGACCCCAATCTCCTTCTATGGGTAAAAAGCTTAATTAGCTGAGCTTGGACTC
Single site seturation mutagenesis	
single-site saturation mutagenesis	
mejar wD1	
mejaFWD2	
mcjaFWD3	GTAAGAAGAATAATGTICCGAGCCAGCAAAGGGAGTGATTCAGATTAAGAAGAGCGCCT
mcjaFWD4	ICAGATTAAGAAGAGCGCCTCGCAATTAACGAAG
mcjaFWD4_lib_3'_set1	GAATATTTCGTGGGCATCGGGACCCCAATCTCCTTCTATGGGTAAAAGCTTAGCCGACCG
mcjaFWD4_lib_5'_set2	GCGCCTCGCAATTAACGAAGGGCGGTGCTGGTCATGTCCC
mcjaFWD4_lib_3'_set2	ACCCCAATCTCCTTCTATGGGTAAAAGCTTAGCCGACCG
mcjaFWD4_lib_5'_set3	GGCGGTGCTGGTCATGTCCCTGAATATTTCGTGGGCATCG
mcjaFWD_lib_5'_lib2	GCGCCTCGCAATTAACGAAGGGCNNKGCTGGTCATGTCCCTGAATATTTCGTGGGCATCG
mcjaFWD_lib_5'_lib3	GCGCCTCGCAATTAACGAAGGGCGGTNNKGGTCATGTCCCTGAATATTTCGTGGGCATCG
mcjaFWD_lib_5'_lib4	GCGCCTCGCAATTAACGAAGGGCGGTGCTNNKCATGTCCCTGAATATTTCGTGGGCATCG
mcjaFWD_lib_5'_lib5	GCGCCTCGCAATTAACGAAGGGCGGTGCTGGTNNKGTCCCTGAATATTTCGTGGGCATCG
mcjaFWD_lib_5'_lib6	GCGCCTCGCAATTAACGAAGGGCGGTGCTGGTCATNNKCCTGAATATTTCGTGGGCATCG
mcjaFWD_lib_5'_lib7	GCGCCTCGCAATTAACGAAGGGCGGTGCTGGTCATGTCNNKGAATATTTCGTGGGCATCG
mcjaFWD_lib_5'_lib9	GGCGGTGCTGGTCATGTCCCTGAANNKTTCGTGGGGCATCGGGACCCCAATCTCCTTCTAT
mcjaFWD_lib_5'_lib10	GGCGGTGCTGGTCATGTCCCTGAATATNNKGTGGGCATCGGGACCCCAATCTCCTTCTAT
mcjaFWD_lib_5' _lib11	GGCGGTGCTGGTCATGTCCCTGAATATTTCNNKGGCATCGGGACCCCAATCTCCTTCTAT
mcjaFWD_lib_5'_lib12	GGCGGTGCTGGTCATGTCCCTGAATATTTCGTGNNKATCGGGACCCCAATCTCCTTCTAT
mcjaFWD_lib_5'_lib13	GGCGGTGCTGGTCATGTCCCTGAATATTTCGTGGGGCNNKGGGACCCCAATCTCCTTCTAT
mcjaFWD lib 5' lib14	GGCGGTGCTGGTCATGTCCCTGAATATTTCGTGGGCATCNNKACCCCAATCTCCTTCTAT
REV_amplify_10_03_16	CGGTCGGCTAAGCTTTTA
Multi-site saturation mutagenesis	
Lib3s1 Lib13s1	CCTCGCAATTAACGAAGGGCRSCRMCGGACACBTCCCAGAATACTTCRTGGGATMCGSAACCCCAATCTCCTTCTATGG
Lib3s2 Lib13s1	CCTCGCAATTAACGAAGGGCRSCATGGGACACBTCCCAGAATACTTCRTGGGATMCGSAACCCCAATCTCCTTCTATGG
Lib3s1 Lib13s2	CCTCGCAATTAACGAAGGGCRSCRMCGGACACBTCCCAGAATACTTCRTGGGAAYAGSAACCCCAATCTCCTTCTATGG
Lib3s2 Lib13s2	CCTCGCAATTAACGAAGGGCRSCATGGGACACBTCCCAGAATACTTCRTGGGAAYAGSAACCCCAATCTCCTTCTATGG
FWD1	TATAATACTCGAGGCGCCAGTCTCCCCATAAGGAGGTTAACATACAT
FWD2	ACATACATGATCAAAACATTTTCACTTCAACAAACTGTCAAGCGGTAAGAAGAATAATGTT
FWD3	GCGGTAAGAAGAATAATGTTCCGAGCCCAGCAAAGGGAGTGATTCAGATTAAGAAGAGCG
FWD4	GATTCAGATTAAGAAGAGCGCCTCGCAATTAACGAAGGGC
REV	AGCTAATTAAGCTTTTACCCATAGAAGGAGATTGGGGT
Next-generation Sequencing	
TSUA1	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
BarcodeR1	ACACGACGCTCTTCCGATCTCTAGGCGCCTCGCAATTAACGAAG
BarcodeR2	ACACGACGCTCTTCCGATCTCATAGCGCCTCGCAATTAACGAAG
BarcodeR3	ACACGACGCTCTTCCGATCTATATGCGCCTCGCAATTAACGAAG
BarcodeR4	ACACGACGCTCTTCCGATCTTCTAGCGCCTCGCAATTAACGAAG
BarcodeR5	ACACGACGCTCTTCCGATCTTACGGCGCCTCGCAATTAACGAAG
BarcodeR6	
BarcodeR7	ACACGACGCTCTTCCGATCTTGGCGCGCCTCGCAATTAACGAAG
BarcodeR8	
BarcodeC1	AGACGTGTGCTCTTCCGATCACCGCTCAGCTAATTAAGCTTTTA
BarcodeC2	
BarcodeC3	
BarcodeC4	AGACGTGTGCTCTTCCGATCCAGCTAATTAAGCTTTTA
BarcodeC5	
BarcodeC6	
DarcodeC0	
DarcodeC/	
DarcodeCo	
DarcodeCy	
BarcodeC10	
BarcodeU11	
BarcodeC12	AGACGTGTGCTCTTCCGATCTTAACTCAGCTAATTAAGCTTTTA
1 813	CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCG

		Codon		Codon Usage (Nakamura et al., 1999) ^a		Activity vs SE	
Position	Amino Acid	Singletons	Multi- mutant	Singletons	Multi- mutant	Singletons	Multi- mutant
2	Т	ACG	ACC	8.5	14.3	0	1
2	S	TCT	AGC	21.2	15.9	0.8	0
2	А	GCG	GCC	54.9	14.1	0.6	1
2	G	GGT	GGC	14.3	14.3	1	1
3	М	ATG	ATG	8.5	8	0.6	1
3	Ν	AAT	AAC	32.6	19.6	0.5	0
3	Т	ACG	ACC	14.6	25.2	0.7	1
3	D	GAT	GAC	32.6	25.5	0	1
3	А	GCT	GCC	24.4	33.1	1	1
6	L	CTG	CTC	37.4	37.4	0.3	0
6	V	GTC	GTC	14.6	25.2	1	0
6	F	TTT	TTC	30	15.1	0.5	1
11	М	ATG	ATG	13.8	25.5	0.4	1
11	V	GTG	GTG	28.9	18.8	1	1
13	Y	TAT	TAC	37.4	37.4	0.5	1
13	S	TCT	TCC	33.9	33.9	0.5	0
13	Т	ACG	ACA	18.6	8.5	0.5	1
13	Ι	ATC	ATC	14.6	6.1	1	1
14	А	GCG	GCA	37.4	37.4	0.7	0
14	G	GGG	GGA	14.3	8.2	1	1

Supplemental Table III. Codon usage and multi-mutant library activity

^aCodon usage estimated for *Escherichia coli*

It is found that only 50% of inactive singletons from the multi-mutants library can be explained by codon usage differences. The p-values for the grid of comparisons do not support codon usage predicting activities of singletons in the multi-mutant library (p > 0.1).

Supplemental References

- Lai PK, Kaznessis YN. 2017. Free Energy Calculations of Microcin J25 Variants Binding to the FhuA Receptor. J. Chem. Theory Comput. 13:3413–3423.
- Nakamura Y, Gojobori T, Ikemura T. 1999. Codon usage tabulated from the international DNA sequence databases; its status 1999. *Nucleic Acids Res.* **27**:292.
- Pan SJ, Cheung WL, Link AJ. 2010. Engineered gene clusters for the production of the antimicrobial peptide microcin J25. *Protein Expr. Purif.* **71**:200–206.
- Wilson K-A, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, Landick R, Muir T, Severinov K, Darst SA. 2003. Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. *J. Am. Chem. Soc.* **125**:12475–12483.