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Supplementary Note 1

The functional interaction between PKG and CDPK4 is conserved in P. berghei gametogenesis. In
P. berghei sexual stages, PKG and CDPK4 are known to have distinct essential functions in a pathway
leading to the release of male gametes in the mosquito midgut, a process called exflagellation. PKG is
required for the mobilisation of intracellular calcium in response to xanthurenic acid!, a molecule
whose levels are high in insects and which is used by the parasite as a signal that it has been ingested
by the mosquito?. Within seconds, CDPK4 acts as a calcium effector that mediates progression into S-
phase of the male gametocyte and assembly of the first mitotic spindle3°. As expected, the cdpk4-
KO/pkg™®2-3xHA clone did not exflagellate (Supplementary Fig. 4A). Complementing this clone with
cdpk4 in its endogenous locus restored exflagellation, although using a 3xHA epitope-tagged allele of
cdpk4 did not. This was surprising since 3xHA tagging CDPK4 in a wild type background reduced
exflagellation only slightly (Supplementary Fig. 4A). Tagging of CDPK4 with the same vector thus had
a more severe impact on exflagellation in the pkg™!°2-3xHA genetic background, when compared to
the wild type background. We concluded that exflagellation recapitulates the gene interaction we
observed in the blood stages, but since CDPK4 is essential for exflagellation, the interaction is revealed
by the hypomorphic allele generated by the presence of the 3xHA tag. The exact cause of the fitness
cost associated with 3xHA tagging of PKG and CDPK4 is unclear and may include alteration of protein

levels, protein localisations, or kinase activities.

C2 targets both PKG and CDPK4 during P. berghei gametogenesis. During exflagellation, one role of
PKG is to mobilise calcium, which is then thought to activate CDPK4!. We used this signalling paradigm
to ask whether C2 targets both kinases, as the inhibitor data from P. falciparum had suggested.
Although the T619Q mutation in PKG rendered mobilisation of calcium resistant to inhibition by C2?,
subsequent exflagellation, which requires CDPK4, remained completely sensitive (Fig. 4B). Since
exflagellation in this line was not blocked by 5 uM of the unrelated PKG inhibitor Compound A (Fig. 4C),

C2 must have a second target. To test whether C2 targets CDPK4 during exflagellation, we tested the



effect of C2 on a line expressing a CDPK45*" g3lele that was previously shown to provide resistance
to bumped kinase inhibitors targeting CDPK4*. When added prior to gametogenesis activation, C2
completely blocked exflagellation of the WT and the CDPK4%%M [ines by inhibiting the initial PKG-
dependent calcium mobilisation®. However, C2 no longer blocked exflagellation of the CDPK4°*4’M |ine
when added 60 seconds after activation, when PKG is no longer required for calcium mobilisation, as
opposed to the 2.34 control (Supplementary Fig. 4E-F). These data confirm that in P. berghei, C2
targets both PKG and CDPK4 during male gametogenesis and lends support to our interpretation of
the pharmacogenetic data suggesting the pkg-cdpk4 interactions extends to P. falciparum asexual

blood stages.

A line expressing the PbPKG™°2-3xHA allele shows reduced calcium mobilisation upon gametocyte
activation. PKG is required for the mobilisation of intracellular calcium in response to xanthurenic
acid®. We thus compared the xanthurenic acid-induced calcium-dependent luminescence response of
P. berghei gametocytes expressing the calcium-sensitive photoprotein GFP-aequorin in the wild type
2.34 control and in the pkg™°%-3xHA line. As observed for PfPKG, the calcium response was
significantly reduced in the line expressing PKG™92-3xHA as compared to its wild type control
(Supplementary Fig. 4G) indicating that the PKG™92-3xHA allele signals less effectively than its wild

type counterpart does.

Supplementary Methods
Gametocyte production. For gametocyte production, parasites were maintained in mice phenyl

hydrazine-treated three days before infection. One day after infection, sulfadiazine (20 mg/L) was
added in the drinking water to eliminate asexually replicating parasites. Microgametocyte
exflagellation was quantified three or four days after infection of mice by adding 4 ul of blood from a
superficial tail vein to 70 ul exflagellation medium (RPMI 1640 containing 25 mM HEPES, 4 mM sodium

bicarbonate, 5% FBS, 100 uM xanthurenic acid, pH 7.8). To calculate the number of exflagellation



centres per 100 microgametocytes, the percentage of RBCs infected with microgametocytes was
assessed on Giemsa-stained smears. For gametocyte purification, parasites were harvested in
suspended animation (SA - RPMI1640 medium containing 25 mM HEPES, 5% FCS, 4 mM sodium
bicarbonate, pH 7.20) and separated from uninfected erythrocytes on a Histodenz cushion made up
from 48% of a Histodenz stock (27.6% w/v Histodenz -Sigma- in 5.0 mM Tris-HCI [pH 7.20], 3.0 mM

KCI, 0.3 mM EDTA) and 52% SA with a final pH of 7.2.

Calcium measurements in P. berghei gametocytes. WT and PKG™2-3xHA gametocytes expressing
the calcium-dependent photoprotein aequorin'?® were separated from uninfected erythrocytes on a
Histodenz cushion. Purified gametocytes were washed 3 times in coelenterazine loading buffer (CLB -
PBS, 20 mM HEPES, 20 mM Glucose, 4 mM sodium bicarbonate, 1 mM EGTA, 0.1% w/v bovine serum
albumin, pH 7.2). Reconstitution was then achieved by shaking ~108 gametocytes, in 0.5 ml CLB,
supplemented with 5 uM coelenterazine for 30 min at 19°C. Loaded gametocytes were washed twice
in CLB and were then suspended in 10 mI RPMI 1640, 5% FBS, 4 mM sodium bicarbonate, pH 7.2. Prior
to activation, the number of gametocytes was determined and for each replicate 100 pl containing
the same number of WT or PKG™-3xHA gametocytes in suspended animation were injected into
the same volume of ookinete medium (RPMI1640, 5 mM NaHCOs, 30 uM xanthurenic acid, pH 7.4) in
a 96-well assay plate of an Orion Il microplate system luminometer. For each sample 50 luminescence
readings were acquired over 35 seconds following activation. To compare WT and PKG™-3xHA

calcium responses, the ratio of the areas under the curve was determined.



Supplementary Figures
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Supplementary Fig. 1. Generation of selection marker-free backgrounds to screen for genetic
interactions in P. berghei. (A-D) Genotyping data for MAP1K-KO/MAP2K-KO, CDPK3-KO, CDPK4-KO

and CDPK6-KO marker-free lines used in this study. The growth rate of MAP1K-KO/MAP2K-KO and



single KOs asexual blood stages are indicated. For CDPK3-KO, CDPK4-KO and CDPK6-KO Southern blots

are shown to confirm gene deletion.
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Supplementary Fig. 2. Fitness score deduced from signature-tagged mutagenesis. Fitness scores for
197 double and triple mutants showing most genes do not interact. Error bars show standard

deviation from the mean from growth rate measurements in three mice.
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Supplementary Fig. 3. Generation and genotyping of P. berghei PKG and CDPK4 transgenic lines. (A-



D) Genetic modification vectors and genotyping data for cdpk4 and pkg mutagenesis in P. berghei.
Oligonucleotides used for PCR genotyping are indicated and agarose gels for corresponding PCR
products from genotyping reactions are shown. For substitutions, chromatogram highlighting the
mutations are also shown. (E) Effect of the complementation of cdpk4 deletion or pkg mutagenesis
with 3xHA tagged wild type alleles of cdpk4 or pkg (error bars show standard deviations from 3
independent infections). (F and G) Genetic modification vectors and genotyping data for cdpk4 and
pkg complementation with non-tagged alleles of cdpk4 and pkg in P. berghei. Oligonucleotides used
for PCR genotyping are indicated and agarose gels for corresponding PCR products from genotyping

reactions are shown. For substitutions, chromatogram highlighting the mutations are also shown.
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Supplementary Fig. 4. The functional interaction between CDPK4 and PKG is conserved to control
P. berghei gametogenesis. (A) Effect of cdpk4 gene deletion and/or pkg mutagenesis as well as
complementation with 3xHA- or non- tagged wild type alleles on the exflagellation of
microgametocytes (error bars show standard deviations from the mean; 6 biological replicates; one-
way ANOVA, ***<0.0001). (B) Effect of C2 on the exflagellation of the control line PKG-3xHA and a line
expressing a C2-resistant PKG™°2-3xHA allele (error bars show standard deviations from the mean; 3
biological replicates; two-way ANOVA, **<0.001, ***<0.0001). (C) Effect of Compound A on the
exflagellation of the control line PKG-3xHA and the C2-resistant PKG™°2-3xHA line (error bars show
standard deviations from the mean; 3 biological replicates, two-way ANOVA, ***<0.0001). (D-F) Effect

of C2 and Compound A on the exflagellation of the wild type control (D) and lines expressing PKG™°2-
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3xHA (E) or CDPK45%M (F) alleles when compounds are added 5 min prior to activation or at 10, 30,
60 or 540 seconds after activation with xanthurenic acid (error bars show standard deviations from
the mean, biological triplicates). (E) Relative luminescence emitted in response to xanthurenic acid
activation in the P. berghei 2.34 control and PKG™-3xHA/CDPK4-KO lines expressing the
GFPaequorin calcium sensor in absence of treatment or in presence of 0.5 uM of the PKG inhibitor
Compound A (error bars show standard deviations from the mean, 3 biological replicates, two-tailed

t-test).
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Supplementary Fig. 5. Generation, genotyping and characterisation of P. falciparum transgenic lines.
(A) Genetic modification vectors and genotyping data for cdpk4 deletion in P. falciparum.
Oligonucleotides used for PCR genotyping are indicated and agarose gels for corresponding PCR
products from genotyping reactions are shown. (B-C) Identification of populations of non-infected red
blood cells, or Vybrant Violet stained intracellular ring and schizont parasites by flow cytometry in
absence (B) or presence of C2 (C). (D) Genetic modification vectors and genotyping data for cdpk4
complementation in P. falciparum. Oligonucleotides used for PCR genotyping are indicated and
agarose gels for corresponding PCR products from genotyping reactions are shown. For the

gatekeeper substitution, a chromatogram highlighting the mutation is also shown.

12



A B C

BIPPO

o

A23187

|

g i

it

T T T T T
0 200 400 0 200 400 0 200 400
Time [sec] Time [sec] Time [sec]

L]

Relative Fluo-4AM fluorescence
™

Relative Fluo-4AM fluorescence

Relative Fluo-4AM fluorescence

—*= Pf3D7 schizonts —=-PfPKG™'®2 schizonts
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the mean; 3 biological replicates, two-tailed t-test).
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Supplementary Fig. 7. Generation, genotyping and characterisation of P. berghei transgenic lines

aiming at investigating the function of CDPK4 substrates and interactors. (A-E) Genetic modification
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vectors and genotyping data for the CDPK4-3xHA line in the 2.33 background (A), GAP40-3xHA and
GAP40%*48/44%A_3yHA lines (B), CDPK1-3xHA line (C), MyoE-3xHA lines (D), and SOC6-3xHA line (E). For
GAP40 substitutions, chromatograms highlighting the mutations are shown. For the MyoE-3xHA
western blot and immunofluorescence analyses of schizonts are shown. Scale bar is 1 um. (F) Scatter
plots showing the relative number of spectral counts recovered from GAP40-3xHA pull downs in the
2.34 and CDPK4-KO backgrounds (left panel) and from MyoE-3xHA pull downs in the 2.34 and CDPK4-
KO backgrounds (right panel). IMC- and glideosome-associated proteins are indicated. Data is from

one biological replicate.
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Supplementary Fig. 8. Sequence analysis of Plasmodium SOC6. (A) Overview of SOC6 structure
highlighting one of the four tandem repeats. The serine residue phosphorylated by CDPK4 is
highlighted in red. (B) Sequence alighments of SOC6 from P. berghei, P. falciparum, P. vivax,
P. chabaudi, and P. yoelii. Tandem repeats are coloured. (C) Electron microscopy analysis of mature
SOC6-KO schizonts, black arrows indicate gaps in the IMC that were more frequently observed in the

transgenic line. Wild type control is shown in Fig. 2G.
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Supplementary Fig. 9. Generation of transgenic lines used for ookinete motility and secretion
assays. (A) Genetic modification vector and genotyping data for celtos-3xHA tagging in P. berghei.
Oligonucleotides used for PCR genotyping are indicated and agarose gels for corresponding PCR
products from genotyping reactions are shown. (B) Genetic modification vector and genotyping data
for cdpk1-AID/HA tagging in P. berghei and insertion of a cassette for the expression of the Tirl protein
under the control of the hsp70 promoter and the 3'UTR of p28. Oligonucleotides used for PCR
genotyping are indicated and agarose gels for corresponding PCR products from genotyping reactions
are shown. (C) Ookinete conversion rate of CelTOS-3xHA and CDPK3-KO/CelTOS-3xHA lines (error bars
are standard deviations from the mean, three independent ookinete cultures, two-tailed t-test). (D)
Genetic modification vector and genotyping data for cdpk3-KO/celtos-3xHA complementation with
cdpk3-3xHA tagging in P. berghei using PlasmoGEM vector PbGEM-084520. Oligonucleotides for cdpk3
locus genotyping are indicated and agarose gels for corresponding PCR products from genotyping

reactions are shown. (E) Complementation of the CDPK3-KO/CelTOS-3xHA line with a CDPK3-3xHA
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allele or with a PlasmoGEM artificial chromosome containing cdpk3 and its UTRs (PbAC02-20d)

restores secretion of CelTOS-3xHA in ookinetes.
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(Supplementary Fig. 10, continued)
Figure 5C
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(Supplementary Fig. 10, continued)
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(Supplementary Fig. 10, continued)

Figure 5F
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Figure 5H
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Supplementary Figure 9E
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(Supplementary Fig. 10, continued)

Supplementary Fig. 10. Western blot source files
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