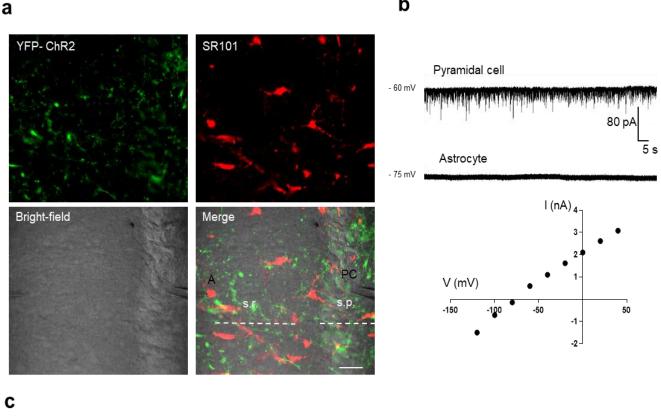

Supplementary information

Astrocytes detect and upregulate transmission at inhibitory synapses of somatostatin interneurons onto pyramidal cells

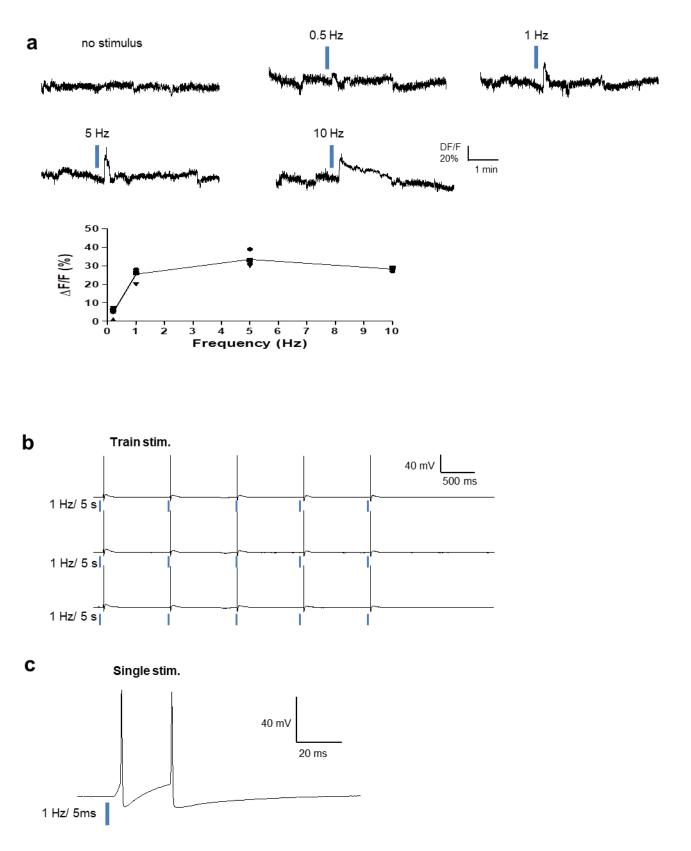
Matos et al.


Matos et al. Supplementary Figure 1

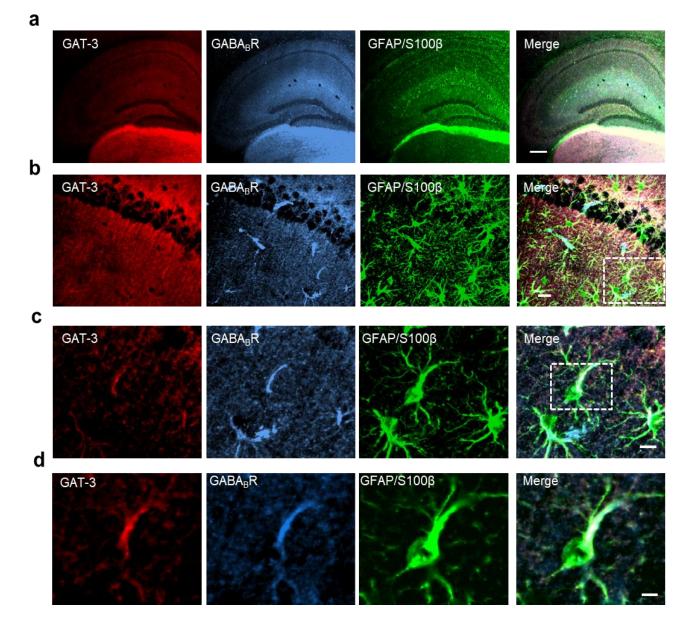
Gabazine

Supplementary Figure 1. Activation of SOM-INs or PV-INs, and inhibition of pyramidal cells, by optogenetic stimulation in SOM-ChR2/EYFP or PV-ChR2/EYFP mice respectively. a Representative depolarizing responses and action potential firing evoked in a SOM-IN by optogenetic stimulation with blue light (pulse duration 0.5-10 ms; 0.1 Hz) during whole-cell current-clamp recordings of YFP-expressing SOM-INs (n = 4) in slices from SOM-ChR2/EYFP mice. b Representative trace with depolarization and action potential firing evoked in a PV-IN by optogenetic stimulation with blue light (0.4ms pulse; 0.1 Hz) during whole-cell current-clamp recording of YFP-expressing PV-INs in slice from PV-ChR2/EYFP mice. c SOM-IPSCs from a representative pyramidal cell evoked by the same optogenetic stimulation (0.5-10 ms pulse; 0.1 Hz) of SOM-INs. d PV-IPSCs recorded in a representative pyramidal cell evoked by optogenetic stimulation (0.4–1 ms pulse; 0.1 Hz) of PV-INs. e-f Traces from representative pyramidal cells showing the reversible block of SOM-IPSCs e and PV-IPSCs f by the GABA_AR antagonist Gabazine (5 µM, red trace), confirming the GABA_AR-mediated inhibition by SOM-INs and PV-INs. g Traces from a representative CA1 pyramidal cell showing the block of spontaneous IPSCs (sIPSCs) after 5 min perfusion with Gabazine.

Matos et al. Supplementary Figure 2


	SOM-elPSC amplitude (pA ± SEM)	sIPSC amplitude (pA ± SEM)	sIPSC frequency (Hz ± SEM)	sIPSC rise tau (ms ± SEM)	sIPSC decay tau (ms ± SEM)	R m (MΩ ± SEM)	V _m (mV ± SEM)
Control	-	57.47 ± 10.04	11.00 ± 1.04	4.00 ± 2.00	15.02± 4.20	192.33± 13.30	61.04± 2.01
SR101	95.10±17.24	52.03±6.07	13.02 ± 3.40	3.48 ± 1.00	14.44± 6.20	196.83± 44.30	60.43± 1.03
P value	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05

Supplementary Figure 2. Identification of astrocytes with SR101 and lack of effect on pyramidal cell spontaneous IPSCs and membrane properties. a Representative images of CA1 stratum radiatum and pyramidale, depicting astrocytes labelled by SR101 (250 nM; red), processes of YFP-positive SOM-INs (green) and cells in bright-field. Images show two simultaneous whole-cell recordings obtained from an astrocyte (A in merged image) and a pyramidal cell (PC in merged image). Scale bar 10 µm. b Representative dual voltage-clamp recordings of a pyramidal cell and an SR101-labelled astrocyte, illustrating the numerous fast GABA_AR-dependent spontaneous IPSCs in the pyramidal cell (upper trace) and the absence of synaptic currents in the astrocyte (lower trace). Below, I-V plot from a hippocampal astrocyte, indicating a linear current-voltage relationship in response to current injections. c Summary table of pyramidal cell IPSCs properties, as well as membrane resistance (R_m) and membrane potential (V_m) , showing no effect of application of SR101 dye (n = 10) (unpaired


b

two-sample Student T-test). A: astrocyte; PC: pyramidal cell; s.p.: *stratum pyramidale*; s.r.: *stratum radiatum*.

Matos et alSupplementary Figure 3

Supplementary Figure 3. Optogenetic stimulation protocols and action potential firing in SOM-INs to evoke Ca^{2+} signals in astrocytes. a Top: Representative Ca^{2+} responses from an astrocyte process evoked by different optogenetic stimulation protocols (5ms pulses at 0-10 Hz for 5 s), showing that 1 Hz protocol was sufficient to elicit large Ca^{2+} responses. Bottom: Graph depicting the Ca^{2+} transients amplitude as a function of optogenetic stimulation frequency (n = 3). b Representative whole-cell current-clamp recordings of SOM-INs, showing the action potential firing evoked in SOM-INs by the optogenetic train stimulation (5ms pulses at 1Hz for 5 sec) used for inducing Ca^{2+} signals in astrocytes (n = 4). c Representative whole-cell current-clamp recording of SOM-INs, showing the depolarizing response evoked in SOM-INs by optogenetic single stimulation (single 5ms pulse at 1Hz).

Matos et al. Supplementary Figure 4

Supplementary Figure 4. GAT-3 and GABA_BR co-localize in astrocytic processes. a Low-magnification immunofluorescence images, depicting hippocampal immunolabelling for GAT-3 (red), GABA_BR (blue) and astrocyte-specific GFAP/S100 β (green), with the merged images at right. Scale bar 100 μ m **b-c** Representative z-stack images at higher magnification from *stratum pyramidale* and *radiatum* regions, showing GABA_BR (blue) and GAT-3 (red) staining co-localized in the GFAP/S100 β -immunoreactive astrocytic processes (green). Boxed region in **b** corresponds to high-magnification images in **c**. Scale bars 20 μ m (**b**), 10 μ m (**c**). **d** Different example of high-magnification image in *stratum radiatum* showing GFAP/S100 β -immunoreactive astrocytic processes (green) with co-localized GABA_BR (blue) and GAT-3 (red) staining. Scale bar 5 μ m.

Figure	Panel	Sample size	p value	Test
<u> -</u>	Ŧ	Vehicle n = 8 DPCPX n = 8 AMP-CP n = 7	p < 0,01 p < 0,01 vs, control ; p > 0,05 vs, DPCPX	One-way ANOVA Tukey's post hoc test
	_ .	AMP-CP n = 7 DPCPX + AMP-CP n = 6	p < 0,01 p < 0,01	Kruskal-Wallis Dunn's post hoc test
2	e	BAPTA 0,1 mM n = 8 BAPTA 20 mM n = 12	p < 0,001	Kruskal-Wallis Dunn's post hoc test
ω	×	Vehicle n = 7 SNAP-5114 n = 8 CGP55845 n = 7	p > 0,05 p < 0,001 p < 0,01 vs, control ; p < 0,05 vs, SNAP- 5114	One-way ANOVA Tukey's post hoc test
		CGP55845 + SNAP-5114 n = 7	p < 0,001 vs, control ; p < 0,01 vs, CGP55845	
4	٩	Vehicle n = 7 SNAP-5114 n = 6 CGP55845 n = 7	p > 0,05 p < 0,01 p > 0,05	Kruskal-Wallis Dunn's post hoc test
	ъ	BAPTA n = 8 BAPTA + (S)-SNAP-5114 n = 8	p < 0,001 p < 0,001 ; p > 0,05 <i>v</i> s, BAPTA	One-way ANOVA Dunn's post hoc test
5	c	(S)-SNAP-5114 n = 6 (S)-SNAP-5114 + DPCPX n = 6	p < 0,001 p < 0,001 ; p > 0,05 vs, (S)-SNAP-5114	One-way ANOVA Tukey's post hoc test
		(S)-SNAP-5114 n = 4	p > 0,05 vs, (S)-SNAP-5114 + №CPA +	Friedman test Dunn's post
	٩	(S)-SNAP-5114 + №CPA n = 4	p < 0,001 vs, (S)-SNAP-5114 ; p < 0,001 vs, (S)-SNAP-5114 + N⁰CPA + DPCPX	
	-f	Vehicle n = 5 N⁰CPA n = 5	p > 0,05 p > 0,05	Wilcoxon signed-rank test
6	f	Vehicle n = 7 DPCPX n = 7 SNAP-5114 n = 6	p > 0,05 p > 0,05 p > 0,05	Friedman test Dunn's post hoc test
7	c	DPCPX n = 7	sIPSC Amp p < 0,05 vs, control	One-way ANOVA Tukey's post hoc test
	-f	AMP-CP n = 7 (each)	p > 0,05	One-way ANOVA Tukey's post hoc test
		(S)-SNAP-5114 n = 7	sIPSC Amp p < 0,01 vs, control sIPSC Freq p < 0,05 vs, control	One-way ANOVA Tukey's post hoc test
	-	20 min post-BAPTA n = 6 (S)-SNAP-5114 n = 6	sIPSC Amp p < 0,001 vs, control sIPSC Freq p < 0,05 vs, control sIPSC Amp p < 0,001 vs, control sIPSC Freq p < 0,05 vs, control	One-way ANOVA Tukey's post hoc test

Supplementary Table 1. Statistical analyses.