
Cell Metabolism, Volume 28

Supplemental Information

The Mitochondrial-Encoded Peptide MOTS-c Translocates to the Nucleus to Regulate Nuclear Gene Expression in Response to Metabolic Stress Kyung Hwa Kim, Jyung Mean Son, Bérénice A. Benayoun, and Changhan Lee

Figure S1, Related to Figure 1. MOTS-c is a nuclear peptide encoded in the mitochondrial genome. (**A**) Subcellular distribution pattern of MOTS-c by immunoblotting (equal amounts of total protein loaded for C, N, M) in resting HepG2 cells. (**B**) Immunofluorescence staining for endogenous MOTS-c in resting HepG2 cells. Nucleus is outlined by white dashed lines. Representative images shown (n=3). Cells were co-stained with DAPI (nucleus) and mitotracker red (mitochondria). W: whole cell lysate, C: cytosol, N: nucleus, M: mitochondria. (**C**) Immunoblot of endogenous MOTS-c from nuclear extracts of resting HepG2 cells. Antibody specificity to MOTS-c was confirmed by neutralizing peptide competition. Lamin B1 and histone H2B were used as nuclear loading controls. (**D**) Localization of exogenously treated FITC-MOTS-c peptide (1 μ M) in C2C12 myoblasts by confocal microscopy. (**E**) Oxygen consumption rate (OCR), normalized to relative protein concentration, of HEK293 cells that were stably transfected with empty vector (EV) or MOTS-c vectors (WT, YIFY mutant, RKLR mutant) (n=15). WT: wild-type MOTS-c, YIFY: ₈YIFY₁₁>₈AAAA₁₁ mutant MOTS-c, and RKLR: ₁₃RKLR₁₆>₁₃AAAA₁₆ mutant MOTS-c. Scale bar, 10 μ m. Error bars represent mean ± s.e.m. ****p*<0.001 by Student's *t*-test.

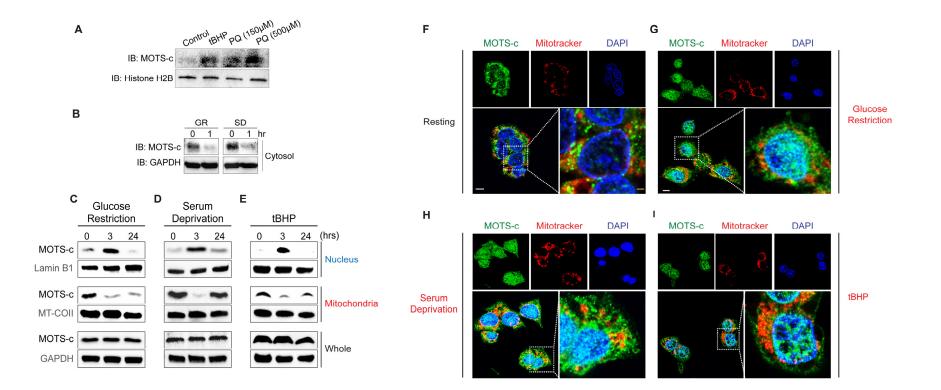


Figure S2, Related to Figure 2. MOTS-c translocates to the nucleus in response to metabolic stress. (A) MOTS-c levels in the nucleus with and without tBHP (150 μ M) or paraquat (PQ) at the indicated concentrations. (B) Cytosolic MOTS-c levels detected by immunoblotting with and without GR or SD (1 hr). 50 ug of protein was loaded and the membrane was blotted with 2 ng/uL of MOTS-c antibody (final concentration) and exposed for 4 minutes to detect cytosolic MOTS-c. (C-I) Spatial and temporal assessment of MOTS-c localization in HepG2 cells after glucose restriction (GR; 0.5 g/L), serum deprivation (1% FBS), and *tert*-butyl hydrogen peroxide (tBHP; 100 μ M) by (C-E) subcellular fraction immunoblots and (F-I) immunofluorescence microscopy. Subcellular fractions were purified at 0, 3, and 24 hours post-stress, and confocal microscopy images were acquired 3 hours post-stress. Representative images shown (n=3). Cells were co-stained with DAPI (nucleus) and mitotracker red (mitochondria). Scale bar, white: 10 μ m, yellow: 2 μ m.

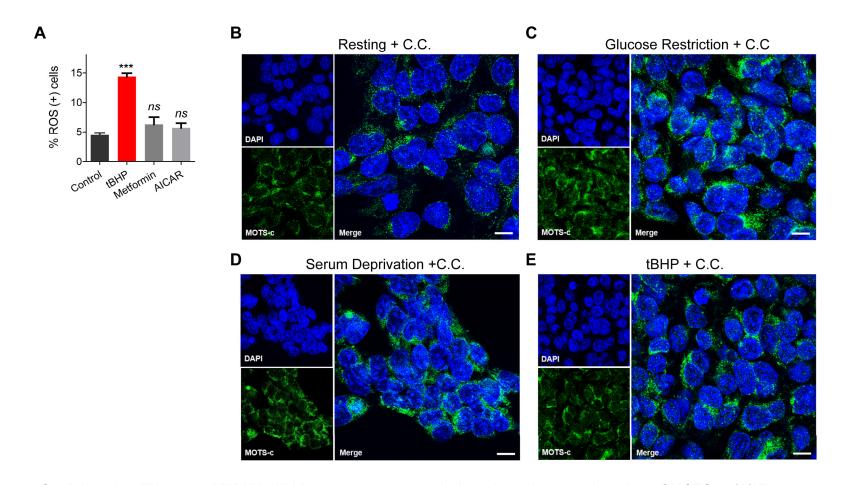


Figure S3, Related to Figure 3. AMPK inhibition prevents stress-induced nuclear translocation of MOTS-c. (A) Flow cytometry based on DHE to assess time-dependent reactive oxygen species (ROS) production in response to a 1-hour treatment with tBHP (100 μ M), metformin (5mM), and AICAR (2mM) in HEK293 cells (n=4). (B-E) The level of nuclear MOTS-c by immunofluorescence microscopy in (B) resting HEK293 cells and after one hour of (C) GR, (D) SD, (E) tBHP (100 μ M) co-treated with compound C (10 μ M), an AMPK inhibitor, for 30 minutes prior to stress. Representative images shown (n=3). Cells were co-stained with DAPI (nucleus). Error bars represent mean ± s.e.m. ****p*<0.001 by Student's *t*-test. Scale bar, 10 μ m.

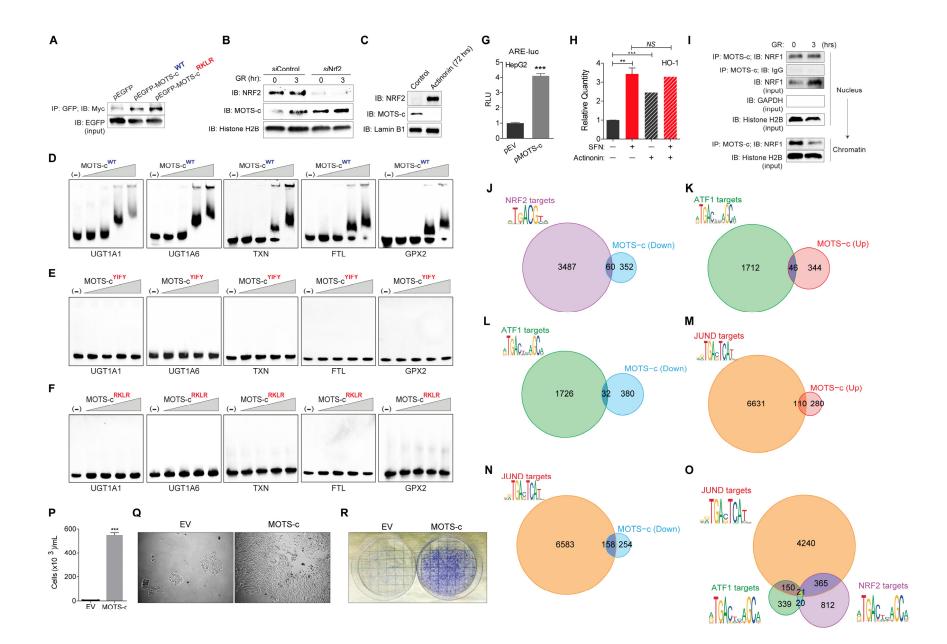


Figure S4, Related to Figure 4. MOTS-c interacts with NRF2 and binds to DNA fragments containing consensus ARE sequences. (A) Co-immunoprecipitation of EGFP-MOTS-c (WT and RKLR mutant) and Myc-tagged Nrf2 (Myc-Nrf2) in HEK293 cells determined by immunoblotting. (B) MOTS-c levels in nuclear extracts in response to GR (3 hrs) with and without *NRF2* knockdown using siRNA. (C) NRF2 levels in nuclear extracts with and without actinonin treatment (100 μ M; 72 hours), which depletes MOTS-c (Lee et al., 2015). (D-F) EMSA analysis of ARE motifs in several Nrf2 target genes by incubation with (D) WT, (E) YIFY mutant MOTS-c, or (F) RKLR mutant MOTS-c peptide at 0, 0.5, 1.5, 3, and 6 μ g. WT: wild-type MOTS-c, YIFY: ₈YIFY₁₁>₈AAAA₁₁ mutant MOTS-c, and RKLR: ₁₃RKLR₁₆>₁₃AAAA₁₆ mutant MOTS-c. Representative images are shown (n=3). (G) ARE luciferase reporter activity on cells transfected with pEV or pMOTS-c in HepG2 cells. Firefly luciferase activity was normalized to *Renilla* luciferase activity (n=4). (H) qRT-PCR analysis of HO-1 expression in response to the sulforaphane (SFN; 10 μ M) and actinonin (150 μ M) in HEK293 cells (n=3). (I) Co-immunoprecipitation of MOTS-c and NRF1 from nuclear extracts and chromatin extracts derived thereof of HEK293 cells after GR (3 hrs) determined by immunoblotting. (J-O) RNA-seq-derived Venn diagrams of genes upregulated by MOTS-c and *bona fide* target genes as indicated (n=6). (P-R) HEK293 cells stably transfected with MOTS-c plasmid (or EV) underwent GR+SD for 4 days and allowed to recover for 7 days in complete media. Survival was assessed by (P) live cell counts using trypan blue exclusion, (Q) phase contrast images, and (R) crystal violet staining of cells (n=6). Error bars represent mean ± s.e.m. **p<0.01, ***p<0.01 by Student's *t*-test.

Real-time PCR primer sequences

Gene Name	Forward primer	Reverse primer	Reference
HO-1	CTCAAACCTCCAAAAGCC	TCAAAAACCACCCCAACCC	[(Reichard et al., 2007)]
NQO-1	TGCAGCGGCTTTGAAGAAGAAAGG	TCGGCAGGATACTGAAAGTTCGCA	[(Seng et al., 2009)]
RPL27	CATTGATGATGGCACCTCAG	TTGTGGGCATTAGGTGATTG	This study

ChIP-qPCR primer sequences

Gene Name	Forward primer	Reverse primer	Reference
HO-1	GGCTCCCAGAGAACAGTTAGAAAAG	GGACTTGGCCAGGCTATGC	[(Reichard et al., 2007)]
NQO-1	CCCTTTTAGCCTTGGCACGAAA	TGCACCCAGGGAAGTGTGTTGTAT	[(Sahdeo et al., 2014)]

EMSA oligonucleotide sequences

Gene Name	Sequence	Reference
HO-1	CCTCCCAAACATGACGCAGCAGAAATGC	[(Rushworth et al., 2005)]
NQO-1	CAGTCACAGTGACTCAGCAGAATCT	[(Wang et al., 2007)]
UGT1A1	GGACTTGGCACTTGGTAAGCACGCAATGAACAGTCA	[(Yueh and Tukey, 2007)]
UGT1A6	CAGAAGCTCAGGTGAAAGCTGACACGGCCATAGT	[(Munzel et al., 2003)]
TXN	GGTCACCGTTACTCAGCACTTTGTGGGGTTCAC	[(Kim et al., 2001)]
FTL	GAGCTCAGCATGACTCAGCAGTC	[(Hintze and Theil, 2005)]
GPX2	AATTGTACAGTGAGAGGGCAGG	[(Banning et al., 2005)]

Table. S1, Related to Figure 4. List of primers and oligonucleotides used for real-time PCR, ChIP-qPCR, and EMSA.

Table. S2, Related to Figure 4. Gene ontology (GO) analysis on RNA-seq performed on HEK293 cells that overexpressed MOTS-c (vs EV) under GR (3 hrs).