
Supplementary Information: Knowledge gaps in the early growth of

semantic feature networks

Ann E. Sizemore1, Elisabeth A. Karuza2, Chad Giusti3, and Danielle S. Bassett1,4,5,6,*

1Department of Bioengineering, School of Engineering and Applied Sciences, University of
Pennsylvania, Philadelphia, PA 19104 USA

2Department of Psychology, College of Arts and Sciences, University of Pennsylvania,
Philadelphia, PA 19104 USA

3Department of Mathematical Sciences, University of Delaware, DE 19716 USA
4Department of Physics & Astronomy, College of Arts and Sciences, University of

Pennsylvania, PA 19104 USA
5Department of Neurology, Perelman School of Medicine, University of Pennsylvania, PA

19104 USA
6Department of Electrical & Systems Engineering, School of Engineering and Applied

Sciences, University of Pennsylvania, PA 19104 USA

*dsb@seas.upenn.edu

1

Supplementary Methods

Details of topological methods

This section outlines the details of encoding the growing semantic feature network as a filtration and comput-
ing the persistent homology. We devote significant real estate to the encoding and briefly describe persistent
homology since it is more thoroughly discussed elsewhere.13,14,67,72

Node-weighted networks and induced filtrations

Our motivation comes from data described most naturally as a network with weights on the nodes. Such
systems can arise from protein-protein interaction networks with protein expression as node weights, struc-
tural brain networks with region activity as node weights, or a social network with time of contamination as
nodes weights. Though generally classic graph statistics do not extend easily to networks with node weights,
we present a construction that allows the simultaneous computation of both graph statistics and persistent
homology on node-weighted networks.

It is important to note that we derive our inspiration from an object generated from edge-weighted
networks called the order complex .10 Given a graph with edge weights, we obtain an ordering on the edges
by decreasing edge weights. Then we create a sequence of graphs, G0 ⊂ G1 ⊂ . . . G|E| with each Gi the
graph containing the i highest ranked edges. This sequence of graphs is called the order complex of the
weighted network (or corresponding symmetric weighted matrix).

Now returning to node-weighted networks, we get a node ordering from the decreasing node vales. Then
from this node ordering s and graph G with N nodes we can similarly construct a sequence of graphs
G0 ⊂ G1 ⊂ · · · ⊂ GN with Gn containing the first n nodes in s and any connections between these nodes
which exist in G. We call this sequence of binary graphs the node-filtered order complex of a node-weighted
network, denoted nord(G,w) with G the binary graph and w : N → R the function assigning node weights.
For brevity we often refer to this object as the n-order complex. Note then the n-order complex is completely
determined by the pair (G,w) or (G, s) with s the node ordering.

The n-order complex retains intrinsic developmental aspects of the node-weighted system, and further-
more allows for computation of both common binary graph metrics and persistent homology on these objects.
Most graph metrics are not generalizable to include orders (weights) on the nodes, but if we instead construct
the n-order complex, we now can compute such metrics on each Gn in the filtration.

Construction of n-order complex into order complex
In practice, the software that we use to compute the persistent homology expects oder complexes. Then

to compute the persistent homology of a growing network, we encode the associated n-order complex as an
order complex. We will show by construction that any n-order complex nord((G, s)) can be translated into
a weighted network M with each Gi in the filtration of nord((G, s)) equal to G′i in the filtration of ord(M).

Given a node-ordered network (G, s), we construct the node-filtered order complex nord((G, s)). Then
each Gi is a binary graph and can be written as an N ×N binary symmetric matrix Mi (with N − n extra

padding rows and columns). Let M =
∑N
i=0Mi. Now we have created a real-valued symmetric matrix M

that encodes a weighted network with the highest edge weights corresponding to the earliest added edges.
If we then create ord(M) with binary graphs G′i, then by our construction it must be that G′i = Gi for all
i = 0, . . . , N . Thus any n-order complex can be written as a weighted matrix M with ord(M) = nord((G, s)).
It is important to note that to get Gi = G′i, we must assume that either all nodes always exist and we use the
“growing graph” concept to describe how edges are added, or for both we do not include nodes in the graph
until they have a neighbor. Finally, if we denote by N the set of filtrations achievable by node-weighted
networks and O the set of filtrations achievable by edge-weighted networks, by the above discussion we must
have N ⊆ O.

To examine the reverse relation, take the 3-clique with nodes a, b, and c with weights ea,b = 3, eb,c = 2,
ea,c = 1. The resulting filtration could not be created from a node-weighted network, since the final edge

19

Node-ordered

network

Edge-weighted

 network

G1 G2 G3
... G6 G7 G8

G'8G'7G'6G'3G'2G'2
...

Supplementary Figure 1: Filtration of a node-ordered network (top) and equivalent edge-weighted
network yielding the same graph filtration (bottom).

Cliques

Simplices

a b

C2(G)

C1(G)

C0(G)

...

0

...

...

Supplementary Figure 2: Simplices and boundaries. (a) A (k+ 1)-clique is a collection of k+ 1 all-to-all
connected nodes (1-clique, 2-clique, etc. shown in top). Cliques in a graph are replaced with simplices of the
same number of nodes (0-simplex, 1-simplex, etc. shown at bottom). (b) Example of an element in C2(G)
sent to its boundary in C1(G), then when the boundary is again taken this is sent to 0 in C0(G).

ea,c would be added to two nodes that already exist. In other words, it could not be added as the result of
adding a new node. Therefore N (O.

Persistent homology

Next we formally describe persistent homology. We begin with the task of detecting topological cavities in
an unweighted graph. Given G = (V,E) we translate this binary, unweighted graph into a combinatorial
object called the clique complex by “coloring in” all cliques (all-to-all connected subgraphs) of G. Formally
every (k + 1)-clique, a completely connected subgraph of G containing k + 1 nodes (Supplementary Fig. 2a,
top), is replaced with a k-simplex (Supplementary Fig. 2a, bottom). A k-simplex σ = {v0, v1, . . . , vk} is the
convex hull of k + 1 affinely positioned nodes. The collection of simplices created from the cliques of G is
called the clique complex X(G). The clique complex of G is an abstract simplicial complex, meaning that
we have a vertex set V (the original vertex set of G) along with a collection K of subsets of V that is closed
under taking subsets. So elements of K are simplices, and using geometric intuition we see clearly that any
subset of a simplex must also be a simplex, called a face. We can write X(G) = {X0(G), X1(G), . . . , XM (G)}
with each Xk(G) being the collection of k-simplices of G called the k-skeleton. To summarize thus far we
have taken our graph G and translated it into the combinatorial object called the clique complex X(G).

To locate topological cavities, we will need to perform algebra with elements of the clique complex. We
create the chain group Ck(X(G)), a vector space with basis elements σ corresponding to k-simplices of X(G).
Then elements of Ck(X(G)), called k-chains, are linear combinations of these basis elements. Though we
can certainly choose coefficients from any group (for example, Z), for computational purposes we work in
the field Z2. To streamline notation, we will write Ci(G) to mean Ci(X(G)) for simplicity.

20

Boundary operator. To locate the topological cavities, we need to first comprehend the makeup and ar-
rangements of simplices in our simplicial complex. For example, if we only have edges, we cannot tell which
closed loops are true cavities without information about the positions of higher dimensional simplices within
the complex. In particular, when searching for k-dimensional cavities we need to know the k-dimensional
footprints of (k+ 1)-dimensional simplices. These footprints are the boundaries of (k+ 1)-simplices that can
be computed using the boundary operator ∂k+1. The boundary operator ∂k+1 : Ck+1 → Ck is defined

∂k+1(σv0,v1,...,vk) =
∑
i

(−1)iσv0,v1,...,vi−1,vî,vi+1,...,vk

with vî omitted. Note the (−1)i records the directionality of chains, but since we work in Z2 we can drop
this term.

The boundary operator allows us to detect cavities due to a few particularly useful properties. First, the
boundary operator extends linearly, so for a, b ∈ Ck, ∂k(a + b) = ∂k(a) + ∂k(b). Geometrically this means
that the boundary of a collection of simplices is what we would intuit: the (k − 1)-simplices that form a
“shell” around the k-chain a+ b (for example, see Supplementary Fig. 2b).

Next, let us examine what happens when we take the boundary of a cycle, a closed path of simplices.
Again following geometric intuition, the boundary of a cycle is the end minus the beginning, which are the
same in a closed path, and therefore the boundary should be 0. Indeed, cycles of dimension k are precisely
the elements in Ck sent to 0 by ∂k, or ker(∂k). Now note that one way we could construct a cycle is to
take a (k + 1)-simplex σ and remove the interior – equivalently send σ to its k-boundary. Then ∂k+1(σ) is
a cycle, and thus ∂k(∂k+1(σ)) = 0. If the boundary of any simplex is a cycle, then by linearity we get that
the boundary of any (k + 1)-chain is a k-cycle. Thus im(∂k+1) ⊆ ker(∂k). We call elements of im(∂k+1)
k-boundaries. To summarize, we have ker(∂k) the k-cycles, im(∂k+1) the k-boundaries, and ∂k ◦ ∂k+1 = 0
(so im(∂k+1) ⊆ ker(∂k)).

Equivalent cycles. We have just seen how all k-boundaries are necessarily k-cycles. But what if im(∂k+1) (
ker(∂k)? Then there exist k-cycles in ker(∂k)− im(∂k+1) that do not surround a collection of higher dimen-
sional simplices. Thus, they must instead enclose a void of dimension k + 1 called a k-cavity. Since the
cavities themselves are the features of interest, we do not want to simply enumerate ker(∂k)− im(∂k+1), but
instead we need to have all cycles surrounding the same cavity count as one (to avoid grossly overcounting).
If two cycles surround the same cavity (we will assume each only surrounds one cavity for the sake of this
example) then their difference must be some collection of higher dimensional simplices. More precisely, if
we let `1 and `2 denote these two k-cycles, then `1 − `2 ∈ im(∂k+1). We call these two cycles equivalent. In
fact, we say that any two cycles a, b ∈ ker(∂k) are equivalent if a − b ∈ im(∂k+1). For example, we see in
Supplementary Fig. 3a the two cycles a1 and a2 are equivalent because a2−a1 is the boundary of a 2-simplex.
However, a1 6∼ b, since their difference is not a boundary of a collection of 2-simplices. We could also take
the 1-cycle c which surrounds both cavities, though note that it is not equivalent to any of a1, a2, or b but is
instead the sum a2 + b ∼ a1 + b. The defined equivalence relation partitions ker(∂k) into equivalence classes
[`0] = {` ∈ Zk|`0 − ` ∈ im(∂k+1)}. Then each (non-trivial) equivalence class corresponds to a topological
cavity within the simplicial complex. By abuse it is common to refer to an equivalence class of k-cycles as a
k-cycle.

Homology. At this point in the exposition, we have detailed the intuitions and definitions necessary to
concretely define the homology groups of simplicial complexes. The homology group is simply the group
formed by the equivalence classes as we defined above. Formally stated Hk(X(G)) := ker(∂k)/im(∂k+1).
Each non-trivial equivalence class corresponds to a topological cavity, so dim(Hk(X(G))) is the number of
k-cavities within the simplicial complex X. The dimension of Hk(X(G)) is called the kth Betti number βk
and the list {β0, β1, . . . , βm} are the Betti numbers of X(G).

Revisiting filtrations. Earlier we introduced filtrations as a way to encode node-weighted networks. Consider

21

a b

X1(G)

Supplementary Figure 3: Equivalent cycles and filtrations. (a) For the clique complex X(G), 1-cycles
a1 and a2 are equivalent since their difference is a boundary of a 2-simplex. However, these cycles are
not equivalent to either cycle b or c. (b) Filtration on graphs Gi (top) induces a filtration on their clique
complexes X(Gi) (middle) which finally induces maps between homology groups H∗(X(Gi)) (bottom). The
minimal 1-cycle surrounding a cavity born at node 6 is highlighted as it shrinks and dies at node 9. A
minimal 2-cycle born at node 8 is also highlighted.

one unit of the filtration, the map ik : Gk ↪→ Gk+1. Since every node and edge in Gk maps to itself in
Gk+1, we see that the map i extends to clique complexes, with every simplex in X(Gk) mapping to itself in
X(Gk+1). This gives us the map i′k : X(Gk) ↪→ X(Gk+1). Then, the filtration of graphs induces a filtration
of clique complexes (Supplementary Fig. 3b). Furthermore, the inclusion X(Gk) ↪→ X(Gk+1) also means
that we can easily map elements of the chain groups C∗(X(Gk)) ↪→ C∗(X(Gk+1)), since we can take the
above inclusion i′k as mapping the basis elements of C∗(X(Gk)) to those in C∗(X(Gk+1)). We depict these
concepts in Supplementary Fig. 3b.

Finally since we have these nice maps from one chain complex into the next, we can map cycles to cycles
and consequentially the homology groups H∗(Xk) → H∗(Xk+1) (Supplementary Fig. 3b, bottom). This
means we can not only find k-cavities at each filtration index, but we can follow each k-cavity from the first
point it exists in the filtration (called the birth), as it evolves throughout the filtration, and is killed (called
the death) by simplices tessellating the cavity. Some cavities never die, so we assign them a death time of
inf. We call the lifetime of a persistent cycle the death− birth. The birth and death can be given in terms
of the edge density,10,73 filtration index, or for this study the number of nodes added. For example, the
persistent 1-cycle in Supplementary Fig. 3b is born with the addition of node 6 and dies when node 9 is
added, resulting in a lifetime = 3.

Models of node-filtered order complexes

While this exposition is motivated by early semantic learning, creating simple models with controlled prop-
erties will help us gain an intuition for possible behaviors of n-order complexes. Though we describe the
following models in the main text, for conceptual organization we revisit the definitions and group by model
type.

We describe two main categories of n-order complex models: generative and derived (Supplementary
Fig. 4). Recall a n-order complex can be completely defined by the pair (G, s) with G a binary graph and
s an ordering of the nodes. A generative model creates the complex according to a set of rules: for n-order
complexes we can generate a pair (G, s) by first assuming s = 1, 2, . . . , N and then constructing G. Derived
models instead begin with either G or s and use this to construct the model.

We can construct simple n-order complex models using a function p : {1, 2, . . . , N} → [0, 1] such that
when node n is added, each edge between node n and all previous nodes exist with probability p(n). In the
main text we include results for

22

Node filtered order complex models

Generative Derived

new edges

exist w.p. f(n)

or

Supplementary Figure 4: Models for n-order complexes. We design models falling into two groups:
Generative and Derived. Those in the generative group are created by assigning probabilities to edge
presence with each node added. Derived models can be constructed from existing complexes by altering the
edges in the binary graph or by altering the order of the nodes.

p(n) = c, (3)

p(n) = (n/N)d, (4)

called the constant probability model and proportional probability model, respectively.
We could also enforce some global architecture such as community structure on the graph. If we let cn

be the community of node n, then we can iteratively build a binary graph G at step n

p(n,m) =
{ pin cn = cm;
pout cn 6= cm

}
(5)

with pin > pout defining within or between module edge probabilities and m < n. We assign the
community affiliation vector randomly with the desired number of communities and call this the modular
n-order complex model.

Instead of constructing a graph with a particular global structure, it may be the case that we may have
some local information such as a predetermined affinity of each node for connections. The node affinity
does not change as the network grows, making this inherently different than for example the preferential
attachment model.74 Then given an affinity vector a = (a1, a2, . . . , aN) with am the affinity of node m, we
can construct a n-order complex using the following rule: when the nth node is added, the probability of an
edge forming between node n, m is

p(n,m) = c
am

max(a)
. (6)

We call this the edge affinity model. If a node with normalized affinity = 1 is not ideal, one can multiply
am

max(a) by a constant c to adjust the maximum probability that any node will acquire edges after it is added.

The second class of models that we consider we call derived models, which, in contrast to generative
models, alter features of an existing network and therefore require some prior knowledge of the system.
We further group these into two basic types based on whether the edges of the binary graph G or the node
ordering s changes. In the first, we maintain the original node ordering s but, as an example, could randomly
rewire the edges of G while preserving degree distribution (similar to the configuration model19,20) which
we call the randomized edges model. In the second, we maintain the original graph G and reorder the
nodes, either randomly (randomized node model) or perhaps based on a node property of G such as degree
(decreasing degree model) or topological distance from a given node (distance from v0 model).

23

Additional information for null models

Parameters for the four presented generative n-order complex models were chosen to match the edge density
of the semantic feature network (∼ 0.3). One might ask how these parameters affect the persistent homology
of the growing graphs. In Supplementary Fig 5 we show the persistent homology of the constant probability
model with p = 0.2 and p = 0.4, the proportional probability model with d = 0.5 or d = 2, the modular
model with pin = 0.8, pout = 0.2 and pin = 0.6, pout = 0.4, and the edge affinity model with affinity vectors
as random permutations of (1 : 120)3 (left) and (1 : 120) (right). We observe that the persistent homology
varies considerably between outputs of the constant probability model constructed with differing parameters,
suggesting that the edge density of the network plays a large role in the persistent homology of this model.

To develop a deeper understanding of the generative and derived null models, we also calculated three
common graph statistics on each model. Specifically, we compute the average degree, average clustering
coefficient,70 and modularity quality index75 on each produced binary graph (that is, the binary graph at
the end of the filtration). We show the results in Supplementary Fig. 6. Note that the binary graph at
the final step of the filtration for the randomized nodes, decreasing degree, and distance from v0 models
is the same as that of the growing semantic feature network, so these are not separately included in our
calculations.

Supplementary Notes

Details on grouped data

The results we present in the main text were constructed from grouped data following the methods described
in.4 One might ask the extent to which we can understand individual learning from our procedure. The
data used in this paper gives one time-point per child, at which all words the child is able to produce
are recorded. We hope in the future to perform our analysis on the growing semantic feature network of
individual children. However, with the current data we do not yet have this resolution. Still, we can move
towards predicting learning in an individual child by treating the current data as an empirical cumulative
distribution and taking properties from the derived probability distribution. To this end, for each word we
sample 100 individuals from a given month and record the number that can produce the word. We repeat
this procedure 500 times for each month to construct a distribution of cumulative distribution functions
(Supplementary Fig. 7, left). Using the average number of children producing the word for each month,
we can then calculate the probability distribution and the mean. This mean can now be interpreted as the
average month at which a child learns the word. Ordering the words by increasing expected month learned
we obtain the persistence diagram and barcode in Supplementary Fig. 7 (right) and see that it very closely
matches the results from the original ordering (Fig. 3). We expect the ordering here to better reflect the
learning of an individual child, so this supports our hypothesis that cavities will form and close throughout
learning.

Further information for maternal education levels

First we address the distance between orderings. We calculate the maximum distance that any node moves
between two orderings (also known as the L∞ distance between orderings). As shown below in Supplementary
Fig. 88, the distance between each pair is at least 35. We know by the Stability Theorem76 that this is an
upper bound for how far any point can move when comparing the persistence diagrams. Since the resulting
barcodes are very similar (Supplementary Fig. 8), we can conclude that the persistent homology has changed
little with respect to the worst possible scenario given by the maximum swap distance.

Additionally to supplement Fig. 4, we include in Supplementary Fig. 9 the barcodes of the secondary,
college, and graduate growing semantic feature networks with the starting and ending words of each persistent
cavity.

24

0

100

200

300

400

500

0

500

1000

1500

2000

0

20

40

60

80

100

120

0

100

200

300

400

1600

1200
1400

1000
800
600
400
200

0

1200

1000

800

600

400

200

0

15

10

5

0

70
60
50
40
30
20
10
0

0 20 40 60 80 80 120
Nodes

0 20 40 60 80 80 120
Nodes

0 20 40 60 80 80 120
Nodes

0 20 40 60 80 80 120
Nodes

0 20 40 60 80 80 120
Nodes

0 20 40 60 80 80 120
Nodes

0 20 40 60 80 80 120
Nodes

0 20 40 60 80 80 120
Nodes

0 20 40 60 80 80 120
Nodes

a b

c d

e f

g h

Supplementary Figure 5: Persistent homology of model n-order complexes with varying param-
eters. Results for the constant probability model with (a) p = 0.2 and (b) p = 0.4. Persistent homology
for the proportional probability model with (c) d = 0.5 and (d) d = 2. Results for the modular model with
(e) pin = 0.6, pout = 0.4 and (f) pin = 0.8, pout = 0.2. Persistent homology of the edge affinity model with
affinity vector a random permutation of (g) (1 : 120) and (h) (1 : 120)3.

25

0

50

100

A
v
e

ra
g

e
 D

e
g

re
e

0

0.2

0.4

0.6

C
lu

s
te

ri
n

g
 C

o
e

ff
ic

ie
n

t

Constant

probability

Edge

affinity

Proportional

probability

Modular

growth

Randomized

edges

Semantic

Feature

0

0.1

0.2

0.3

0.4

M
o

d
u

la
ri
ty

Supplementary Figure 6: Comparison of common graph statistics between empirical data and both
generative and derived null models. Average degree (top), average clustering coefficient (middle), and
modularity quality index (bottom) of generative models (left), derived models (middle), and the empirical
data (right) studied in this paper. Central line marks the median while the top and bottom edges indicate
the 25th and 75th percentiles, respectively.

26

2216 2018 24 26 28 30
Month

0 20 40 60 80 100 120
Nodes Added

0

2

4

6

8

10

12
F

ra
c
ti
o

n
 P

ro
d

u
c
in

g

N
u

m
b

e
r

o
f
c
y
c
le

s

β
1

β
2

β
3

0

0.2

0.4

0.6

0.8

1

Supplementary Figure 7: Persistent homology using the ordering from repeated uniform subsam-
pling of the original data. (Left) Fraction of sampled children producing the word “box” at each month,
created using 100 children per month and repeated for 500 trials. Central line marks the median while the
top and bottom edges indicate the 25th and 75th percentiles, respectively. (Right) Barcodes and Betti curves
generated from the persistent homology of the growing semantic feature network using the ordering on nodes
created from calculating the expected month at which each word was learned.

Additional number of persistent cycles killed correlates

Frequency of a word in child-directed speech is known to correlate with age of acquisition.27 We asked if
caregiver output frequency correlates with the number of persistent cycles each node kills. We extracted
frequency counts of child-directed speech from.27,77,78 Of our original 120 words, 87 were found in this
database so we restrict the following calculations to those 87 words. As described in the main text, we
calculated the Spearman correlation coefficient between the persistent cycle death count and the node degree,
clustering coefficient, betweenness centrality, word length, and word frequency for the semantic feature
network using all children, and separately when broken down by education level (Supplementary Fig. 10).
We observe a slightly decreasing trend of word frequency as corresponding nodes kill more persistent cycles,
but this is not significant (Spearman correlation coefficient df = 85; all: r = −0.2168, p = 0.0437; secondary:
r = −0.2012, p = 0.0616; college: r = −0.1861, p = 0.0843; graduate: r = −0.0021, p = 0.9849). Trends for
number of persistent cavities killed with node degree, clustering, and betweenness are similar to those seen
with all nodes (Fig. 5) in the growing semantic feature networks. To summarize, we observe the connectivity
patterns of words better determine the tendency of a word to fill in a knowledge gap than do simple lexical
features.

Additionally, prior work reports that the relative feature distinctiveness of a word is negatively correlated
with the age at which the word is acquired.17 The relative feature distinctiveness of a word is defined as

d(n) =

m∑
i=1

1

wi
,

where node n has m features and where wi is the number of words that have feature i. Intuitively, we can
interpret the relative feature distinctiveness as a measurement of the rarity of a word’s features within the
given dataset.

One might hypothesize that learning words in the order of decreasing distinctiveness might produce
more persistent cavities compared to the regular ordering, largely because we imagine that distinctive words
might sit far from each other in the semantic feature network. Interestingly, we find that ordering nodes by
decreasing distinctiveness produces Betti curves with quite similar peak magnitudes and peak locations to
those observed in the original ordering (Supplementary Fig. 11, left). This observation stands in contrast to

27

0

5

10

15

20

25

30

35

40

45

50

M
a

x
im

u
m

 s
w

a
p

 d
is

ta
n
c
e

all

secondary

college

graduate

Supplementary Figure 8: Differences in word order between maternal education levels. Maternal
education levels shown on both axes. Each element in the matrix is the maximum swap distance of nodes
between orderings derived from two maternal education levels. Colorbar indicates the magnitude of the
maximum swap.

our original hypothesis about distinctiveness, but supports the notion that many word orderings will produce
a similar progression of persistent features.

If a node has low relative distinctiveness, it shares many features with other nodes and thus is likely well-
connected, making these low distinctiveness nodes candidates for persistent cycle killing. However, we find
that the correlation between distinctiveness and number of cycles killed is not significant (Supplementary
Fig. 11a, right; Spearman correlation coefficient df = 118; all: r = −0.1910, p = 0.0366; secondary:
r = −0.2183, p = 0.0166; college: r = −0.1993, p = 0.0291; graduate: r = −0.0835, p = 0.3643), suggesting
that words with low distinctiveness are not generally delayed in the learning if their neighbors have already
been learned. It is interesting that we recover similar barcodes despite an L∞ distance of 114 between
orderings since swapping a node that far in the ordering could possibly prevent all observed persistent cycles
from forming.

Finally, we also ask whether we observe persistent cavities under the modeling assumption that words
are learned via the mechanism of preferential acquisition. Following,18 we calculate the probability that each
node is learned as

P (n) =
(kn + 1)β∑
i(ki + 1)β

with β = 1. Words are sampled without replacement following this probability distribution. We repeat this
process 1000 times and we show the resulting Betti curves in Supplementary Fig. 11b. We observe that
these Betti curves are similar in peak magnitude and peak location to those observed in the semantic feature
network. Together these findings support the claim that knowledge gaps are a robust feature of the learning
process. Still, the relationship between knowledge gaps, word properties, and network properties is quite
complicated and we suggest that further analyses are needed to tease apart potentially subtle but essential
interactions. One concrete example would include weighting edges based on distances.17

28

pants

napkincouch

strawberry squirrel

doll pony

airplane bathtub
airplane spoon

tablechair

comb

turtle strawberry
turtle stick

turtle alligator

butter y owl
corn gira!e

tricycle sled

goosepumpkin
alligator

gira!e

bench

stone

bench

bench
bench

squirrel
squirrel deer

turkey

peas
peas
peas
peas

turkey
pony

rooster

bear bus
doll pony
chair pillow

bathtubrock
raisin box
bathtub plate

pants

peas

peas
peas

table

turtle

couchhouse
couchboots

owl
butter y
butter y

gira!ecorn
ant

sledtricycle
traystick

couch
pumpkincouch

strawberry
strawberry squirrel

bench

bench

bench
benchsquirrel

pencil
pencil

alligator deer
alligator hose

goose
pumpkin turkey

turkey

pumpkin

rooster
pony

bus
bed house

rock bathtub
doll pony

cow

bread pencil
pants squirrel

platebathtub
raisinturtle

gira!ecorn
pillow

strawberry couch
couch

couch
tablebroom

hamer

ant
sledtricycle

table

bench

bench

bench
benchpencil
bench

stick
strawberry

alligator
pumpkin

alligator

couch deer
couch goose

turkey
pony
rooster

Supplementary Figure 9: Barcodes for secondary, college, and graduate growing networks. Words
corresponding to persistent cycle birth or death nodes depicted next to the associated bar.

29

0 1 2 3 4 5 6

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

0

100

200

300

400

500

600

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6

0

500

1000

1500

2000

2500

3000

Le
n

g
th

Fr
e

q
u

e
n

c
y

D
e

g
re

e

C
lu

st
e

ri
n

g

B
e

tw
e

e
n

n
e

ss

sec.
col.
grad.
all

Persistent cycles killed Persistent cycles killed

Persistent cycles killed Persistent cycles killed

Persistent cycles killed

Supplementary Figure 10: Additional correlates of number of persistent cycles killed. Number of
persistent cycles killed by each node against corresponding word length, frequency in child-directed speech,
node degree, clustering coefficient, and betweenness centrality.

0 20 40 60 80 100 120

Nodes Added

0 20 40 60 80 100 120

Nodes Added Persistent cycles killed

C
y
c
le

s

C
y
c
le

s

2

β
1

β
3

0

1

2

3

4

5

6

7

8

0 2 4 6
0

0.1

0.2

0.3
sec.
col.
grad.
all

D
is

ti
n
c
ti
v
e
n
e
s
s

a b

0

2

4

6

10

8

β
1

β
2

β
3

Supplementary Figure 11: Persistent homology when ordered by distinctiveness and preferential
acquisition. (a) (Left) Betti curves and barcodes from the persistent homology of the semantic feature
network with nodes ordered by decreasing distinctiveness. (Right) Scatter plot of persistent cycles killed
against the corresponding word distinctiveness. (b) Betti curves using preferential acquisition ordering in
which words are more likely to be added if they have a high degree in the semantic feature network.

30

