Conductively Coupled Flexible Silicon Electronic Systems for Chronic Neural Electrophysiology

Jinghua Li^{a,b,1}, Enming Song^{a,c,1}, Chia-Han Chiang^d, Ki Jun Yu^e, Jahyun Koo^{a,b}, Haina Du^a, Yishan Zhong^a, Mackenna Hill^d, Charles Wang^d, Jize Zhang^a, Yisong Chen^a, Limei Tian^f, Yiding Zhong^a, Guanhua Fang^a, Jonathan Viventi^d, John A. Rogers^{a,b,c,g,h,i,j,k,l,m,2}

a Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana–Champaign, Illinois 61801, United States

b Departments of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States

^c Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, United **States**

d Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States

^e Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea

^f Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana– Champaign, Urbana, Illinois 61801, United States

g Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United **States**

h Department of Chemistry, Northwestern University, Evanston, IL 60208, United States

ⁱ Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, United States

^j Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, United States

^k Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, United States

¹ Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, United States

^m Department of Neurological Surgery, Northwestern University, Evanston, IL 60208, United **States**

¹ These authors contributed equally to this work.

² Corresponding author. E-mail: i rogers@northwestern.edu (J.A.R)

Keywords: thin film encapsulation, Faradaic contact, flexible electronics, bio-integrated electronics, chronic implant, biomedical devices

Supplementary Information

Supplementary Note 1

Supplementary Figure Legends

Supplementary Figure S1-S19

Supplementary Note 1: Step-by-step process flow to fabricate sealed and conductive coupled flexible active arrays.

Wafer back grinding

- 1. Start with SOI wafer (200 nm device Si, 1 μm BOX layer, 500 μm handle wafer, Soitec);
- 2. Grind handle wafer to 200 μm by Syagrus Systems;
- 3. Cut the wafer into chips of device size;

P-doping

- 4. RCA cleaning of SOI wafers;
- 5. Dry thermal oxidation to form 200 nm SiO₂ at 1150 °C;
- 6. Photolithography to define sensing pad doping area using photoresist (PR) (AZ 5214E);
- 7. RIE to dry etch SiO_2 , (a) 50 mTorr of CF $_4$ /O₂ (40/1.2 sccm), with RF power of 100 W for 5min, (b) gentle O_2 plasma, 50 mTorr, 20 sccm of O_2 , with RF power of 100 W for 20 s;
- 8. BOE (10:1) wet etch $SiO₂$ for 5 min;
- 9. PR strip by acetone, isopropanol and blow dry;
- 10. RCA cleaning;
- 11. Dope sensing pad area with diffusive boron source at 1000 °C for 15 min;
- 12. Wet etch SiO2 doping mask using 49% HF for 20 s; and DI rinse;
- 13. RCA cleaning;

N-doping

- 14. Deposit 400 nm PECVD $SiO₂$ as diffusion mask;
- 15. Photolithography to define S/D doping area using photoresist (PR) (AZ 5214E);
- 16. RIE to dry etch SiO_2 , (a) 50 mTorr of CF_4/O_2 (40/1.2 sccm), with RF power of 100 W for 15 min, (b) gentle O_2 plasma, 50 mTorr, 20 sccm of O_2 , with RF power of 100 W for 20 s;
- 17. BOE $(10:1)$ wet etch SiO₂ for 5 min;
- 18. PR strip by acetone, isopropanol and blow dry;
- 19. RCA cleaning;
- 20. Dope S/D area with diffusive phosphorus source at $1000 \degree C$ for 7 min;
- 21. Wet etch $SiO₂$ doping mask using 49% HF for 20 s; and DI rinse;
- 22. RCA cleaning;

Si isolation

- 23. Photolithography to define Si isolation area using PR (AZ 5214E);
- 24. RIE to dry etch Si (50 mTorr, 40 sccm of SF_6 , with RF power of 100 W for 1 min);
- 25. PR stripe by acetone, IPA and blow dry;

Gate stack deposition

- 26. RCA cleaning;
- 27. Dry thermal oxidation to form 50 nm $SiO₂$ at 1150 °C for 15 min;
- 28. Deposit 13 nm (130 cycles) Al_2O_3 at 80 °C using an Atomic Layer Deposition (ALD) system;

Via 0

- 29. Photolithography to define S/D and sensing pad opening via using PR (AZ 5214E);
- 30. Gentle O2 plasma using RIE (50 mTorr, 20 sccm of O2, with RF power of 100 W for 20 s);
- 31. BOE (6:1) to etch gate dielectric for 2 min;
- 32. PR stripe by acetone soaking, IPA and blow dry;

Metal 1

- 33. Deposit Cr/Au, 10/300 nm with an electron-beam evaporator;
- 34. Photolithography to define metal 1 using PR (AZ 5214E);
- 35. Au, Cr wet etching using Au, Cr etchant respectively;
- 36. PR stripe by acetone, IPA and blow dry;
- 37. Measure test transistors;

Interlayer PI 2545

- 38. Clean samples using acetone, IPA, DI, and blow dry;
- 39. Dehydration: bake samples at 110° C for 5 min;
- 40. Spin coat PI adhesion promoter (VM 652) using 500 rpm 5s, hold 20s, 3000 rpm 30s; soft bake at 110 °C for 1 min;
- 41. PI coating: spin coat PI 2545 precursor at 4000 rpm for 30 s; soft bake at 110 °C for 2 min and 150 °C 5 min; cure at 250 °C for 70 min;

Via 1

42. Photolithography to define via 1 using PR (AZ P4620);

- 43. RIE to etch via 1 (200 mTorr, 20 sccm O_2 , with RF power of 150 W for 900s);
- 44. Check microscope and resistance to make sure via is open;
- 45. PR stripe by acetone, IPA, and blow dry;

Metal 2

- 46. Deposit Cr/Au, 10/500 nm with an e-beam evaporator;
- 47. Photolithography to define metal 2 using PR (AZ 5214E);
- 48. Au, Cr wet etching using Au, Cr etchant respectively
- 49. PR stripe by acetone, IPA and blow dry;
- 50. Measure test transistors;

PI substrate 2545

- 51. Clean samples using acetone, IPA, DI, and blow dry;
- 52. Dehydration: bake samples at 110° C for 5 min;
- 53. Spin coat VM 652 using 500 rpm 5s, hold 20s, 3000 rpm 30s; soft bake at 110 °C for 1 min;
- 54. PI coating: spin coat PI 2545 precursor at 3000 rpm for 30 s; soft bake at 110 °C for 2 min and 150 °C for 6 min; cure at 250 °C for 70 min;

Pre-conditioning before bonding

- 55. Deposit 20 nm Al_2O_3 at 150 °C to the devices' PI side using ALD;
- 56. Deposit $Ti/SiO₂ 5/50$ nm to the devices' PI side with an electron-beam evaporator;

Bonding

57. Bond devices to 13-um kapton films (coated with $Ti/SiO₂ 5/20$ nm) using an adhesive (Kwik-Sil, World Precision Instruments).

Si wafer removal

- 58. Scratch off back contamination until the contamination on the back is gone;
- 59. Si back RIE etching (50 mTorr of SF_6/O_2 , 40/3 sccm, with RF power of 100 W. Do 6 runs of 30 min;
- 60. Deep RIE to continue etching back the devices, until all the back Si is etched;

Via 2

- 61. Photolithography to define small regions on t-SiO2 aligned to the p^{++} -Si islands using PR (AZ 5214E);
- 62. RIE to dry etch SiO₂, (a) 50 mTorr of CF_4/O_2 (40/1.2 sccm), with RF power 100 W for 15 min, (b) gentle O_2 plasma, 50 mTorr, 20 sccm of O_2 , with RF power 100 W;
- 63. BOE $(6:1)$ wet etch $SiO₂$ for 11 min;
- 64. PR strip by acetone, IPA and blow dry;

Metal 3

- 65. Deposit Cr/Au, 10/300 nm with a thermal evaporator;
- 66. Photolithography to define metal 3 using PR (AZ 5214E);
- 67. Au, Cr wet etching using Au, Cr etchant respectively
- 68. PR strip by acetone, IPA and blow dry;

Hand cutting

69. Razor blade cut to define the device outline profile;

- 70. Peel off devices gently from handling substrates;
- 71. Stick the stiffener onto the device ZIF side under microscope; devices are then ready to be tested with the DAQ.

Supplementary Figure Legends

Figure S1. Dopant concentration measured by secondary ion mass spectrometry (SIMS) for p^{++} -Si (A) and n^{++} -Si (B) as biofluid barriers.

Figure S2. A: Schematic illustration of the structure of an Mg-based passive device used in soak tests. B: Top view showing the exposed Si barrier layer.

Figure S3. A-B: Change in thickness of a nanomembrane of Si at different doping levels as a function of immersion time in PBS at 37 °C and 70 °C. C: Dissolution rate of p^{++} -Si (concentration: 10^{20} atoms/cm³) as a function of 1/T.

Figure S4. Statistics of lifetimes of Mg test devices encapsulated by p^{++} -Si at 70 and 96 °C, p^{++} -Si (170 nm) coated with 5 nm Ti/ 200 nm Pt at 70 and 96 °C, and n⁺⁺-Si (170 nm) at 70 and 96 °C.

Figure S5. Soak tests of p^{++} -Si as a barrier layer for arrays of passive electrodes. A: Schematic illustration passive electrode arrays encapsulated with p^{++} -Si (170 nm). B: Display of lifetimes of 13 test devices.

Figure S6. Optical image, schematic illustration and photograph of an n-MOSFET (channel length: L_{eff} = 16 μm, width: 400 μm) with p^{++} -Si as an electrical interface (p^{++} -Si via) through the t-SiO₂, of the type used in soak tests.

Figure S7. Results from soak tests of an n-MOSFET with a p⁺⁺-Si via in PBS solution at 65 and 70°C.

Figure S8. Results from soak tests of an n-MOSFET with p^{++} -Si and Au (300 nm) on the side in contact with PBS at 60, 70 and 90°C.

Figure S9. Schematic illustration of the design of a 64 channel multiplexed device, showing the entire device (A) and a unit cell (B).

Figure S10. Procedures for fabricating flexible, sealed and conductively coupled active matrix systems.

Figure S11. Images of active multiplexed matrix devices after six key fabrication steps. A: Isolation of device Si $(p^{++}-Si)$ as encapsulation layer and sensing pad, and $n^{++}-Si$ as backplane transistor) above the buried oxide, t-SiO2. B. Metal 1 for source, drain and gate (connecting to p⁺⁺-Si), and row selects for multiplexing. C: Metal 2 for interconnection with source and drain, and column selects for signal output. D: Configuration after the removal of Si handle-wafer, with t-SiO₂ on the top. E: Via opening on t-SiO₂ to expose p^{++} -Si underneath. F: Metal 3 for sensing pads on the tissue-contacting side.

Figure S12. Schematic illustration of the cross-section of the sealed and conductively coupled active sensing matrix.

Figure S13. Statistics of on/off ratio and subthreshold swing of test transistors from 10 different samples.

Figure S14. Photographs of an active matrix system before (A) and after (B) the application of a Kapton stiffener, and after insertion into an adaptor PCB board through a ZIF connector (C-D).

9

Figure S15. Schematic illustration of the data acquisition system for in vitro assessment.

Figure S16. Cumulative leakage current of the 64-channel multiplexed arrays over time.

Figure S17. Photograph of Mg electrodes with sealed structure in flexible form for immersion test in PBS at 37 °C.

Figure S18. Photograph of a stimulation electrode system in flexible form with an opening of 3 \times 3 mm² to p⁺⁺-Si through t-SiO₂.

Figure S19. Sequential images of a Au thin film electrode during simulation with a voltage of 2V showing that failure occurs after 6 h.

p++-Si/Pt 40 @70 °C 30 Lifetime (days)p++-Si @70 °C 20 \equiv **p++-Si/Pt n++-Si 10 p++-Si @96 °C @70 °C @96 °C n++-Si** $\bar{\mathbf{x}}$ **@96 °C** \equiv $\overline{}$ **0**

C Metal 1 D PI interlayer and metal 2

G Back-via opening H Metal 3

A B 4 mm C D UR

2 mm