

Supplementary Information for

ATP hydrolysis-coupled peptide translocation mechanism of Mycobacterium tuberculosis ClpB

Hongjun Yu, Tania J. Lupoli, Amanda Kovach, Xing Meng, Gongpu Zhao, Carl F. Nathan^{*}, and Huilin Li^{*}

* For correspondence: cnathan@med.cornell.edu or Huilin.Li@vai.org

This PDF file includes:

Figs. S1 to S6 Tables S1 Caption for movies S1

Other supplementary materials for this manuscript include the following:

Movies S1

Fig. S1. Cryo-EM 3D reconstruction of *Mtb* **ClpB in complex with AMPPNP.** (**A**) 3D density map of ClpB complexed with AMPPNP. (**B**) Eulerian angle distribution of all particles used in the 3D reconstruction, shown in the same orientation as in panel **A.** (**C**) The gold-standard Fourier shell correlation (FSC) curve of the map. (**D**) A side view (left) and a top view (right) of the atomic model. The model was derived by rigid-body docking of the NBD1 and NBD2 structures of P5 promoter of *Mtb* ClpB Conformer 1.

Fig. S2. Cryo-EM analysis of *Mtb* **ClpB in complex of casein and ATPγS. (A)** Gel filtration profile of ClpB (Superose 6 10/300 GL column). Inset is an SDS-PAGE of ClpB before and after removal of the sumo tag. (B) Representative cryo-EM micrograph. (C) Representative 2D class averages. (D) The work flow of cryo-EM data processing. Insets with dashed boxes are angular distribution of all particles used in the corresponding 3D reconstructions. (E) The gold-standard Fourier shell correlation (FSC) curve of the corresponding 3D maps. (**F-G**) Local resolution of the 3D density maps of Conformer 1 (**F**) and Conformer 2 (**G**), calculated with ResMap.

Fig. S3. Analysis of the MD conformations. (**A**) Cryo-EM density of motif 1 of the MD domains of 'tight' protomers P4, P5 and P6 in Conformer 1. The structure of MD motif 1 extracted from the crystal structure of *E. coli* ClpB (PDB ID 4CIU), 56% identical to the *Mtb* protein, fitted well in this density as a rigid-body. (**B**) The MD domain motif 1 of protomer P5 (blue) adopted a conformation that interacts with adjacent protomer P4 while its MD motif 2 was dynamic. An *E. coli* ClpB protomer structure in the MD motif 1-unbracing form (PDB ID 4CIU; grey) was superimposed on NBD1 of P5 (blue) of *Mtb* ClpB. This comparison showed that a rotation around the central hydrophobic region between motifs 1 and 2 interconverted the unbracing and bracing forms of the MD motif 1. (**C**) An enlarged view of the hydrophobic region in the MD domain, highlighted by a dashed box in panel **B**.

Fig. S4. Conformational differences among individual protomers of *Mtb* **ClpB.** (**A**) Conformer 1. (**B**) Conformer 2. Bottom, the six protomers were aligned by their respective NBD2 domains. The NBD2 domains of the six protomers in both conformers were superimposable. The NBD1 domains of P1-P2 in Conformer 1 (**A**) and NBD1 of P2 in Conformer 2 (**B**) moved the most among the six protomers. Top, in both Conformer 1 and 2, the NBD1 domains of all six protomers could be superposed among themselves. These comparisons indicated that the individual NBD1 and NBD2 domain structures were largely unchanged; the conformational differences were due to rigid-body motions of these NBD1 and NBD2 domains.

Fig. S5. Nucleotide states of protomers P4, P5 and P6 in Conformer 1 and 2. Bound ATP γ S in their NBD1 and NBD2 were superposed with densities displayed at the same threshold as that in Fig. 5C.

Fig. S6. The inter-protomer interactions outside the nucleotide sites in *Mtb* ClpB were similar to those of several other peptide-translocation ATPases. (A, B) NBD1 and NBD2 domains of Hsp104 (PDB ID 5VJH); (C) VPS4 (PDB ID 6AP1); (D) Yme1 (PDB ID 6AZ0). These inter-protomer interactions were of similar topologies and involved two similarly positioned moieties: (1) one or two α -helices of the small helical domain adjacent to the nucleotide binding site; (2) a loop connected to the β -stand preceding the Walker A motif of an adjacent protomer.

Table S1. (Cryo-EM data	collection	parameters	and	structure	refinement	statistics.
-------------	--------------	------------	------------	-----	-----------	------------	-------------

Ligands complexed	ATPγS+Casein	ATPγS+Casein	ATPγS+Casein	AMPPNP			
with <i>Mtb</i> ClpB	Combined*	Conformer 1	Conformer 2				
EMDB ID	EMD-9027	EMD-7942	EMD-7943	EMD-9028			
		6D.JU	6D.IV	6FD3			
Data collection							
Microscope	FEI Titan Krios						
Voltage (kV)	300						
Detector	Gatan K2 Summit						
Electron dose (e ⁻ /Å ²)	52						
Pixel size (Å)	1.07						
Defocus range (µm)	1.1-3						
Reconstruction							
Software	RELION 2.0	RELION 2.0	RELION 2.0	RELION 2.0			
Particles for final refinement	184,777	108,111	76,666	112,043			
Final Resolution (Å)	3.6	3.8	3.9	6.3			
Map-sharpening B factor (Å ²)	-127.0	-121.2	-128.3	-244.1			
Model composition							
Protein chains		7	7				
Protein residues		3455	3481				
Nucleotides		12	12				
R.m.s. deviations							
Bond lengths (Å)		0.007	0.006				
Bond angles (°)		1.139	1.099				
Ramachandran plot							
Favored (%)		86.4	87.1				
Outlier (%)		0.6	0.4				
Validation							
Molprobity score		1.9	1.9				
Rotamer outlier (%)		0.9	0.7				
Clashscore		6.0	6.2				

*Atomic model was not built because of the mixed states of mobile protomers P1 and P2 (**Fig. 1C-D**).

Movie S1. Atomic trajectories of substrate translocation by *Mtb* **ClpB.** The movie was made by morphing from Stage 1 to Stage 2 and subsequently from Stage 2 to Stage 3 as illustrated in **Fig. 6B**.