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Methods S1: Methods for the computational fluid dynamics model investigated 
(Fig. 3a) 

 
Overview 
We simulated flow patterns during avian respiration using computational fluid dynamics (CFD) 
software (Fig. 3a) (Star-CCM+, Siemens PLM Software, Plano, Texas). We used a simplified 
parametric geometry to facilitate the survey of a wide range of morphologies of different avian 
species as depicted in Fig. S1-1. 
 
Computational Approach 
The CFD analysis was based on mesh-based discretization of the geometric model and 
solutions to the linearized Navier-Stokes and mass continuity equations (Eqns. S1-1 and S1-2) 
to yield predictions of flow velocity and pressure throughout the domain: 
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In Eqns. S2-1 and S2-2, 𝑉%⃗  is the three-dimensional velocity vector, 𝑝 is pressure, 𝜌 and 𝜇 are 
density and viscosity, respectively, and 𝑆 is any other source term, such as gravity. In these 
simulations the influence of gravity was considered to be negligible, thus 𝑆 was zero. 
 
The tracheal and bronchial walls were rigid. A time-varying velocity boundary condition,	𝑉 = 𝑓(𝑡) 
corresponding to a specified breathing waveform (discussed further below) was prescribed at 
the surfaces at the ends of the bronchial segments. A zero-pressure boundary condition, 𝑃0, 
was applied to the end of the tracheal segment. An initial condition of zero velocity everywhere 
was applied. The flow was laminar, unsteady, viscous, and three-dimensional. An implicit, 
unsteady solver was used with velocity and pressure relaxation values of 0.8 and 0.2, 
respectively. Each time step was considered to be converged after momentum and continuity 
residuals reached levels below 1×10−2 The fluid was modeled as incompressible air with a 

density of 1.184 kg/m3 and a dynamic viscosity of 1.855×10−5 Pa∙s. The simulation was allowed 
to run for two breathing cycles. 
 
Breathing Waveform 
The biomimetic time-varying pressure boundary condition at the tracheal inlets simulated 
continuous breathing based on a decomposition of lung pressure of an adult male zebra finch at 
rest, taken from data collected for the investigation by Franz and Goller (1). Procedures for that 
study were approved by the University of Utah IACUC protocols. We ensemble averaged 
several periods of the lung pressure signal and then approximated the resulting waveform using 
the first seven terms of a Fourier transform as shown in Fig. S1-2. Simulations run using a 
pressure boundary condition revealed that the resulting average velocity in the trachea matched 
the velocity waveform shape. Consequently, a velocity waveform of the same shape as the 
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ensemble-averaged pressure waveform was scaled to match zebra finch tidal volume data (2) 
and then used as the velocity boundary condition. 
 
Model Verification 
We used a model with a branching angle of α = 90° to verify that the results were independent 
of mesh density and time step size. We examined results from meshes consisting of between 
approximately 25,000 and 3,200,000 cells and time step sizes ranging from 10 ms to 0.05 ms 
(resulting in between 47 and 9,400 time steps, respectively, over a single breathing cycle), 
varying each independently as well as in combination.  
 
We monitored wall shear stress at a point near the tracheobronchial juncture, a region found to 
have elevated wall shear stress over the course a complete breathing cycle. Grid and time step 
size convergence was determined by identifying parameters that resulted in grid- and time-
independent wall shear stress waveforms (see Figs. S1-3 and S1-4). As wall shear stress is 
calculated using the velocity gradient at the wall, it is very sensitive to changes in the flow field, 
and therefore an excellent indicator of convergence. The results in Fig. 3a were obtained using 
1,629,039 cells and a time step size of 0.5 ms. 
 
Results 
We tracked velocity and wall shear stress over two breathing cycles, with results for the second 
cycle shown in Fig. S1-5. During a small period when the flow is switching directions, 
recirculation can be seen to occur, as evidenced in the t/T = 0/6 time frame (where t denotes 
time and T denotes one period, thus t/T denotes the fraction of one breathing period).  
 
The maximum wall shear stress during exhalation for this configuration is located near the 
lateral sides of the trachea near the tracheobronchial juncture, where the trachea first begins to 
branch out to the bronchi. The maximum wall shear stress during inhalation (and over the whole 
period) is observed at t/T = 5/6 near the pessulus (Fig. 3a; Fig. S1-5). 
 
 



 
Figure S1-1: Geometric depiction of simplified parametric avian airway model. For Fig. 3a, the 
following values were used: D1 = 1 cm, D2 = 1 cm, L1 = 10 cm, L2 = 5 cm, and 𝛼 = 30°. 

 
 
 
 



 
 

Figure S1-2: Ensemble-averaged and Fourier approximation of avian lung pressure signal from 
Franz and Goller (1). 

 

 

Figure S1-3: (Left): Tests to verify independence of time step size. Results from the two finest 
time step sizes (0.5 ms and 0.05 ms) are graphically indistinguishable, indicating convergence. 
(Right): Tests to verify independence of mesh size in which relatively minor variations in wall 
shear stress were observed.  

 
 
 
 
 



 

 
Figure S1-4: Comparison between the results from the finest grid tested, the smallest time step 
tested, and the final grid and time step size parameters used in the simulations shown in Fig. 
3a, showing graphically-indistinguishable results and thereby demonstrating grid and time step 
size independence. 

 



 
Figure S1-5: Contours of velocity (top row) and wall shear stress (bottom row) for selected 
phases of a breathing cycle. The phases are marked in the breathing pattern graph on the 
bottom, with exhalation and inhalation phases denoted. Arrows on the velocity profile plots 
indicate general flow direction. 

 
 

  



 
Methods S2: Methods for the cartilage patterning models investigated (Fig. 3d). 

 
 
We used the generalized Swift-Hohenberg equation (3) as a generic model of periodic 
patterning:  
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Here: 𝜙(𝑥) corresponds to the density of cartilage across the tissue; a controls the speed of 
patterning; L controls the spacing between the cartilage rings; and c is a parameter that 
dictates whether the pattern more closely resembles stripes or spots.  
 
Equation S2-1 was simulated either on a rectangular domain (upper panels in Fig. 3d) or 
using a geometry mimicking the TBJ (lower panels in Fig. 3d). As discussed in the main text, 
we use the two-dimensional simulations as an approximation to the fully three-dimensional 
geometry of the trachea and bronchi. This approximation is accurate for surfaces in the limit of 
zero Gaussian curvature, which is exactly true for the cylindrical domain of the trachea, and 
approximately true for the TBJ. For boundary conditions, we set 𝜙 = 0 everywhere outside the 
domain (corresponding to a situation where 𝜙	is rapidly degraded everywhere outside of the 
domain).  
 
Simulating Equation S2-1 produces stripe-like patterns provided the parameter, c, is 
sufficiently small; however, these patterns have ill-defined orientation and do not reproduce 
the stereotypical circumferential orientation observed in the cartilage elements. Previous 
studies suggest that, in extremely thin geometries, boundary conditions can orient stripes 
circumferentially (for example, in the stripes on the cheetah’s tail (4)). However, the measured 
geometry of the trachea cannot account for stripe orientation in this tissue. Instead, motivated 
by the exploration of pattern-orienting gradients in Hiscock and Megason (5), we modify 
Equation S2-1 with a spatially varying cartilage production gradient, h, to give: 
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For simulations of the trachea, we choose ℎ(𝑥) to vary along the length of the tube; 
simulations confirm that this gradient can orient stripes circumferentially. For the TBJ, we 
allow ℎ(𝑥) to be a function of distance from the center of the TBJ, thereby forming a gradient 
not only along the length of the trachea, but also along each of the bronchi tubes, thus 
directing the formation of circumferential cartilage in both the trachea and the bronchi. 
 
Simulations of Equation S2-2 for a range of parameters recapitulate several in vivo cartilage 
patterns, as shown in Fig. 3d. We find that, for small values of a, the patterns tend to be more 
regular (left); whereas, as a increases, stripe splitting and disorganized patterning at the TBJ 
emerges (right). 
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