
S3 Effects of suboptimal decoding on behavioural threshold 

In S2 Text, we showed how the optimal thresholds depend on the covariance 𝜀𝑥𝑥, 𝜀𝑦𝑦, and 

𝜀𝑥𝑦. We will now investigate how behavioural thresholds are affected by suboptimal scaling 

of the different populations. 

S3.1 Limited information model: multiple populations 

It is convenient to write the combined readout weights of multiple areas as 𝐰 = 𝑊𝐚 where 

𝑊 is an N×Z block diagonal matrix 𝑊 = [
𝐰𝑥 𝟎
𝟎 ⋱

] whose nonzero entries 𝐰𝑥 correspond to 

the patterns of decoder weights within a single population, each yielding individually 

unbiased estimates, and elements of 𝐚 are the scaling factors on these weights. For unbiased 

decoding of each population separately, as well as together, we require 𝑊T𝐹 = 𝐼 and 𝐚T𝟏 =

1. Behavioural threshold 𝜗 is the square root of the decoder variance, which depends on the 

noise covariance as: 

𝜗2 = 𝐰T𝛴𝐼𝐿𝐰 

      = 𝐰T𝛴𝐰 +  𝐰T𝐹𝐸𝐹T𝐰 

      = 𝑂(𝑁−1) + 𝐚T𝑊T𝐹𝐸𝐹T𝑊𝐚 

      ≈ 𝐚T𝐸𝐚 

 

 

 

(S3.1) 

where we have again assumed that the variance from the extensive information part is 

dominated by the limited information part. 

S3.2 Limited information model: two populations 

For two populations, Eqn (S3.1) yields 𝜗2 ≈ 𝐚T𝐸𝐚 = 𝑎𝑥
2𝜀𝑥𝑥 + 𝑎𝑦

2𝜀𝑦𝑦 + 2𝑎𝑥𝑎𝑦𝜀𝑥𝑦 to give 

Eqn (22) in Methods. When the population readout vector 𝐚 is suboptimal, the threshold 

implied by Eqn (S3.1) will be smaller than the optimal threshold (Eqn (22)). The quadratic 

form of this equation underlies the U-shaped performance curve shown in Fig 8B. 

In this formulation, selective inactivation of a neural population simply redefines the 

population readout vector 𝐚. For example, completely inactivating one of two populations 

corresponds to setting 𝐚 = (0,1). Behavioural thresholds following inactivation of either x or 

y is given by: 

𝜗−𝑥
2 ≈ (0,1)𝑇𝑊T𝐹𝐸𝐹T𝑊(0,1) ≈ 𝜀𝑦𝑦 

𝜗−𝑦
2 ≈ (1,0)𝑇𝑊T𝐹𝐸𝐹T𝑊(1,0) ≈ 𝜀𝑥𝑥 

(S3.2) 

(S3.3) 

Therefore, the quality of the decoding is determined by the relative weighting 𝐚 of the 

response in the two populations when both populations are active. However, when one of 

them is inactivated, the thresholds are near-optimal, limited by noise correlations within the 

active population. 

  



S3.3 Extensive information model when decoding only dominant noise modes 

If decoding is restricted to the single leading eigenmode within each population x and y, then 

this mode becomes information-limiting in the restricted decoded space. We can express 

decoding weights as: 

𝐰 = 𝑈̃𝐚 

 

where 

𝑈̃ = [𝐮𝑥/𝐮𝑥
T𝒇𝑥′ 𝟎

𝟎 ⋱
] 

is a block diagonal 𝑁 × 𝑍 matrix containing the leading eigenmode of each area separately, 

normalized so that 𝑈̃T𝐹 = 𝐼 which ensures that the estimators from each population in 

isolation are unbiased. In this case, behavioural threshold 𝜗 is once again related to the 

population readout vector 𝐚 according to: 

𝜗2 = 𝐰𝑇𝛴𝐰 

      ≈ 𝐚𝑇𝑈̃T𝐹𝐸𝐹T𝑈̃𝐚 

      ≈ 𝐚𝑇𝐸𝐚 

which is identical to the limited information case (Eqns S3.1 – S3.3) as a function of E, 

because within the decoded subspace the information is limited: the extensive information 

part lies outside. Of course, the values and structure of E may differ between the extensive 

and limited information models, as will the subspace of the full population 𝛴 that is 

characterized by E and the resultant choice correlations. 

 


