
S5 Combining choice correlations and inactivation effects 

In S3 Text and S4 Text, we showed how behavioural thresholds (𝜗, 𝜗−𝑥, and 𝜗−𝑦) and 

multipliers on choice correlations (𝛽𝑥 and 𝛽𝑦) depend on the relative scaling of weights (𝑎𝑥 

and 𝑎𝑦). Now we will combine and invert those results to provide a way to infer the scaling 

of weights from measurements of thresholds and choice correlations. The ratio of the 

multipliers 𝛽𝑥/𝛽𝑦 can be written explicitly in terms of the elements of 𝐸 in Eqn (S4.2) in S4 

Text as: 
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S5.1 Uncorrelated populations 

If populations x and y are uncorrelated, then 𝜀𝑥𝑦 = 0.  Substituting in Eqn (S5.1) gives 
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If behaviour is indeed largely driven by responses along the leading modes of variance in x 

and y, then from Eqn (S3.2 – S3.3) in S3 Text, the post-inactivation thresholds are 𝜗−𝑥
2 ≈

𝜀𝑦𝑦 and 𝜗−𝑦
2 ≈ 𝜀𝑥𝑥. This allows us to express the relative scalings of weights purely in terms 

of relative magnitudes of choice correlations and inactivation effects. 
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 (S5.2) 

This proves Eqn (20) in the main text. 

 

S5.2 Correlated populations 

Let populations x and y be correlated according to 𝜀𝑥𝑦 = 𝛾𝜀𝑥𝑥 where 𝛾 denotes the strength 

of correlations between neurons across the populations relative to those within population x. 

We can re-write Eqn (S5.1) as 
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Once again, using 𝜗−𝑥
2 ≈ 𝜀𝑦𝑦 and 𝜗−𝑦

2 ≈ 𝜀𝑥𝑥, we get: 
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 (S5.3) 

This proves Eqn (21) in the main text. 

 


