
S8 Recurrent network model 
Although all theoretical results on choice correlations are agnostic about the choice of 

network architecture, the specific behavioural predictions of inactivating either brain area 

derived in S5 Text are not. There, we incorporated the assumption of a purely feedforward 

model by asserting that the slopes of the tuning curves of neurons in either area remain 

unchanged following inactivation of the other area. However, in recurrent networks, activity 

in one area can influence the responses in other areas. If there were recurrent connections 

between areas x and y, the lack of lateral inputs following inactivation could alter the 

responses of neurons in the non-inactivated area, possibly rendering the conclusions drawn 

from the feedforward model invalid. Here, we show that the main conclusions may 

nonetheless remain true for at least some recurrent networks. We first derive general results 

that show how neural response and information content are modified following inactivation 

in the presence of linear recurrent connections. (Note that this general architecture includes 

decision feedback as a special case, when the readout weight vector of a population is in the 

row space of the recurrent weight matrix.) We then focus our analyses on a particular 

structure of recurrent connections and examine the performance of the network by varying 

only the connection strength between the two areas to demonstrate our point. 

S8.1 Effect of inactivation in recurrent networks 

Consider the network shown in S16A Fig where responses of neurons in areas x and y are 

modulated by a constant stimulus s with gain 𝐠𝑥
′  and 𝐠𝑦

′  respectively, in addition to receiving 

inputs from other neurons as determined by the recurrent connectivity matrix A. The 

responses 𝐫 are modeled by the following stochastic linear dynamical system: 

𝐫𝑡+1 = 𝐴𝐫𝑡 + 𝐠′𝑠 + 𝛈𝑡 (S8.1) 

where the connectivity matrix 𝐴 is a block matrix given by 𝐴 = [
𝐴𝑥𝑥 𝐴𝑥𝑦

𝐴𝑦𝑥 𝐴𝑦𝑦
], 𝐠′ = (𝐠𝑥

′ , 𝐠𝑦
′ ), 

𝛈𝑡~𝒩(0, 𝐻) is zero-mean noise with covariance H, and the subscripts denote discrete time. 

The steady-state covariance 𝛴 of neural responses is given by the following discrete-time 

Lyapunov equation: 

𝛴 = 𝐴𝛴𝐴T + 𝐻 (S8.2) 

and the steady-state mean of the neural response f(s) is given by: 

𝐟(𝐼 − 𝐴) = 𝐠′𝑠 (S8.3) 

Note that in the absence of recurrent connections, the response covariance is equal to the 

covariance of the input noise, i.e. 𝛴 = 𝐻 if 𝐴 = 0. For a given connectivity structure A, 

knowledge of 𝛴 can be used to solve for H from the above equation. Covariance in area x (or 

y) following inactivation of area y (or x) can then be obtained by solving: 

𝛴𝑥𝑥 = 𝐴𝑥𝑥𝛴𝑥𝑥𝐴𝑥𝑥
T + 𝐻𝑥𝑥 

𝛴𝑦𝑦 = 𝐴𝑦𝑦𝛴𝑦𝑦𝐴𝑦𝑦
T + 𝐻𝑦𝑦 

(S8.4) 



Similarly, the slope of the tuning curve, 𝐟′ is equal to the input sensitivity 𝐠′ if 𝑨 = 𝟎. 

Otherwise, for a given 𝑨, sensitivity 𝐠′ can be uniquely solved from the slope of the tuning 

curve as 𝐠′ = 𝐟′(𝑰– 𝑨). The slopes 𝐟𝒙
′  and 𝐟𝒚

′  following inactivation of area x and y 

respectively, can be determined by solving: 

𝐟𝑥
′ = (𝐼 − 𝐴)−1𝐠𝑥

′  

𝐟𝑦
′ = (𝐼 − 𝐴)−1𝐠𝑦

′  
(S8.5) 

The above four Eqn S8.2 – S8.5 together allow us to determine the signals 𝐟𝒙
′  and 𝐟𝒚

′  and 

covariances 𝜮𝒙𝒙 and 𝜮𝒚𝒚 following inactivation, which in turn provide upper bounds on the 

behavioural thresholds following inactivation: 𝝑−𝒙
𝟐 = 𝟏/𝐟𝒚

′ 𝜮𝒚𝒚
−𝟏𝐟𝒚

′  and 𝝑−𝒚
𝟐 = 𝟏/𝐟𝒙

′ 𝜮𝒙𝒙
−𝟏𝐟𝒙

′ . 

S8.2 Example recurrent network model 

Let [𝐮1 … 𝐮𝑁] and [𝐯1 … 𝐯𝑁] denote the set of eigenvectors of 𝛴𝑥𝑥 and 𝛴𝑦𝑦 respectively. We 

now consider a simple connectivity model in which the connectivity matrix is 𝐴 = 𝐵𝛴𝐵T 

where 𝐵 = [𝐮1 + 𝐯1 𝐮1 − 𝐯1  ⋯ 𝐮𝑝 + 𝐯𝑝 𝐮𝑝 − 𝐯𝑝] spans the first 𝑝 eigenmodes of 𝛴 and 

𝜆 = [1 + 𝑐 1 − 𝑐  ⋯ 1 + 𝑐 1 − 𝑐] are the corresponding eigenvalues, and 𝑐 denotes the 

connection strength between the areas. In this scheme, the sum and difference modes are 

amplified and attenuated respectively for 𝑐>0, and vice-versa for 𝑐 < 0. The resulting 

connectivity structure for extensive and limited information models for 𝑝 = 4 is shown in 

S16B Fig. Using this structure, we used Eqns S8.2 – S8.5 to evaluate the effect of 

inactivation for a range of connection strengths for both models. The ratio of behavioural 

thresholds after inactivation to thresholds before inactivation is shown in S16D Fig. We 

found that inactivation of either area affected behaviour differently depending on the strength 

of connection between areas. Behaviour is predicted to get worse for both models when the 

connection was inhibitory, whereas behaviour following inactivation was improved if 

connections were excitatory and strong. This dependence of inactivation effects on 

connection allowed us to identify a range of intermediate-strength connections whose 

inactivation effects were similar to the purely feedforward model, and hence also consistent 

with our experimental results. For these connection strengths, inactivation of either area 

amplified the tuning curves slopes in both models (S16C Fig). It should be noted that 

regardless of the choice of connection strength, the recurrent network yields the same 

covariance in neural response   by construction. Consequently, the choice correlations and 

readout weights of neurons in the recurrent network are identical to those implied by the 

feedforward model. 

 


