## Energy Level Tuned Indium Arsenide Colloidal Quantum Dot Films for Efficient Photovoltaics

Jung Hoon Song,<sup>1,\*</sup> Hyekyoung Choi,<sup>1,\*</sup> Hien Thu Pham<sup>1,\*</sup> and Sohee Jeong<sup>1,2</sup>

<sup>1</sup>Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, Korea.

<sup>2</sup>Department of Nanomechatronics, Korea University of Science and Technology (UST),

Daejeon 34113, Korea.

\*These authors contributed equally

## **Corresponding Author**

S. Jeong (sjeong@kimm.re.kr)



**Supplementary Figure 1.** Synthesis of InAs CQD-oleate by continuous injection approach in the presence of dioctylamine (DOAm) as les-reactive group V precursor's factor.



**Supplementary Figure 2.** Absorption spectra of InAs CQDs prepared by (a) previous report.<sup>1</sup> Absorption spectra (b) and transmission electron microscopy (TEM) image (c) of InAs CQDs with the average size of 5.3 nm  $\pm$  0.2, prepared by modified synthetic method with dioctylamine (DOAm).



**Supplementary Figure 3.** Size tunability with access to larger particles. Representative UV–vis–NIR spectra of various sizes of InAs CQDs synthesized by externally supplying the monomers.



**Supplementary Figure 4.** X-ray diffraction (XRD) patterns of InAs CQDs before (black line) and after (red line) NOBF<sub>4</sub> treatment. The red vertical line on the bottom is corresponding position and intensity of X-ray reflection for bulk InAs.



**Supplementary Figure 5.** TEM image of InAs before and after ligand re-binding, include: (a) InAs CQD free capping BF<sub>4</sub>, InAs CQD capped Br, and InAs CQD capped MPA.



**Supplementary Figure 6.** Absorbance spectra of InAs CQDs depending on treatment of NOBF<sub>4</sub> concentration.



**Supplementary Figure 7.** X-ray electron spectroscopy (XPS) spectra of As 3*d*, Cl 2*p*, Br 3*d*, I 3*d* and S 2*p* of InAs CQD films deposited on ITO/glass substrate.



**Supplementary Figure 8.** X-ray electron spectroscopy (XPS) spectra of In 3*d* of InAs CQD films depending on capping ligands.



**Supplementary Figure 9.** Absorption spectra of the 1<sup>st</sup> excitonic peak of InAs CQD capped MPA film. The peak absorbance at E = 1.1 eV is taken as optical bandgap.



**Supplementary Figure 10.** Transfer curves ( $I_{DS}$  vs  $V_G$  (black line) and  $I_{DS}^{1/2}$  vs  $V_G$  (red line) of FET of (a) naked InAs CQDs, (a) Br treated InAs CQDs.



**Supplementary Figure 11.** Absorption spectra of large size (black) and small size (red) InAs CQD layers treated with (a) Br and (b) MPA used in PL-based inter-particle coupling method (3D diffusion method)



**Supplementary Figure 12.** PL-based interparticle measurement. PL of large- and small-sized InAs CQDs with (a) Br treatment and (e) MPA treatment. PL of InAs-Br CQDs mixed with (b) 10%, (c) 1%, and (d) 0.1% of large-sized CQDs. PL of InAs-MPA QDs mixed with (b) 10%, (c) 1%, and (d) 0.1% of large-sized CQDs.



**Supplementary Figure 13.** PL ration of CQD mixtures in various concentrations from Supplementary Figure 12.



**Supplementary Figure 14.** (a) Transfer curve of an I-passivated PbS CQD FET device immediately after fabrication in  $N_2$ . (b) Transfer curve of the same device after 1 hour of air exposure.



Supplementary Figure 15. Absorption spectra of PbS CQDs used in device fabrication.



Supplementary Figure 16. Cross-sectional SEM images of CQD PVs.



**Supplementary Figure 17.** (a) Capacitance-voltage curves of CQD PVs and Mott-Schottky analysis. (b) Calculated depletion width of (b) InAs CQD films (red: InAs–Br, black: InAs–MPA) and (c) PbS CQD (red: InAs–Br, black: InAs–MPA) films versus applied voltage. Carrier concentration, depletion width, and built-in potential by impedance analysis. We used the impedance analysis to determine the carrier concentration and depletion width of InAs CQD layers and PbS CQD layers. An impedance analyzer (Agilent, 4291A) with the signal of 1000 Hz frequency and 50 mV amplitude was used for *C–V* measurement under the *C*<sub>p</sub>–*R*<sub>p</sub> model. We fabricated MSM (ITO/InAs CQDs/Au) devices to extract the dielectric constants by the parallel capacitor equation.<sup>2</sup>



**Supplementary Figure 18.** Current–voltage (*J–V*) characteristics of (b) No InAs, (b) InAs–Br, and (c) InAs–MPA in Fig. 4(b) with various voltage sweep speed in both forward and backward direction.



**Supplementary Figure 19.** Stability of photocurrent at maximum power point for (a) an No InAs, (b) an InAs–Br (50 nm), and (c) an InAs–MPA (50 nm) PVs.



**Supplementary Figure 20.** (a) Current–Voltage (I–V) and (b) Current density–Voltage (J–V) of CQD PVs with 0.047 cm<sup>2</sup> (black lines) and 0.029 cm<sup>2</sup> (red lines) of aperture area.



**Supplementary Figure 21.** Current-voltage (J-V) and EQE characteristics of CQD-PV devices fabricated using ligand dependent and thickness dependent InAs CQDs. The insert in (a) and (c) show a schematic of CQD PVs architecture.



**Supplementary Figure 22.** EQE characteristics of CQD PVs with (a) InAs–Br CQDs and (b) InAs-MPA CQDs around the first exciton peaks. (c) Absorption spectra of CQDs constituting CQD PVs. With increasing the thickness of InAs CQD layers, the EQE increases in the longwave length region.



**Supplementary Figure 23.** Absorption spectra of InAs CQDs (a) and PbS CQDs (b). EQE and IQE characteristics (c) of CQD PVs with InAs-MPA CQDs and PbS CQDs.

|             |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                     |                                                                                                                                                  |                                                                                                                                    |                                                                                                                              |                                                                                                                                 |                                   | D.           |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|
|             | 0                                                                                                                                                                                                                                                     | Nevvpor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                     |                                                                                                                                                  | Ne                                                                                                                                 | wport Calibr                                                                                                                 | PV L                                                                                                                            | ab                                |              |
| AND VIEW    | DUT SIN: 7166<br>Newport Calibra<br>Manufacturer:<br>Material: InAsi<br>Measurement Da<br>Temperature See<br>Environmental e<br>The above DUT I<br>Corporation. Qu<br>95% level of com<br>other measureme<br>The performance. Thi<br>Reported perform | 392, InAs-1<br>ition #: 1857<br>Korean Institute of N<br>PbS QHI PV<br>ate: 2018-Mar-1<br>nsor: TC-K, DUT T<br>ounditions at the time<br>has been tested using<br>oted uncertainties are<br>parameters reported<br>semificiant to be repr<br>mance parameters a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tachinery and M<br>emperature: 26<br>of calibration<br>the following tr<br>expanded usin<br>are traceable to<br>it of total irradii<br>are traceable to<br>it of total irradii<br>coluced in part of<br>the average of<br>the average of the second<br>traceable to the second<br>coluced in part of the second<br>traceable to the second<br>trace | laterials (K<br>.6 ± 0.8 °C<br>r Tempera<br>nethods to<br>g a covera<br>o either NE<br>cate apply<br>only with w<br>forward (s                      | IMM)<br>ture: 24+3 'V<br>meet the ISO<br>ge factor of k<br>eable to the W<br>ST or CNRC:<br>only at the t<br>ritten permission<br>hort-circuit - | 2; Humidity<br>17025 Standa<br>= 2 and exp<br>ortd Radiome<br>and the Intern<br>ime of the Ite<br>ion from the N<br>> open-circuit | 40 ± 10 %<br>rd by the PV<br>ressed with a<br>tric Reference<br>ational Syste<br>st, and do<br>lewport PV I<br>(i) and reven | Lab at Newp<br>in approximat<br>ie (WRR) and<br>in of Units (<br>not imply fut<br>aboratory.<br>se (open-circle<br>device being | oort<br>all<br>SD,<br>are<br>suit |              |
| TA.         | short-circuit)<br>under stabilized                                                                                                                                                                                                                    | tonditions. At this s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | weep rate, hyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eresis of +                                                                                                                                         | 4 2.1% of PC                                                                                                                                     | E was observ                                                                                                                       | ed.                                                                                                                          | + 0.0000                                                                                                                        | 14                                | DY           |
|             | P max [mW]                                                                                                                                                                                                                                            | 0.232 ± 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V max [V]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4213                                                                                                                                              | ± 0.0066                                                                                                                                         | 1 max [A]                                                                                                                          | 0.000550                                                                                                                     | * 0.0000                                                                                                                        | 13                                | 194          |
| MARK!       | FF Ph2                                                                                                                                                                                                                                                | 64.8 ± 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Area [cm*2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0293                                                                                                                                              | * 0.0002                                                                                                                                         | M                                                                                                                                  | 1.008                                                                                                                        | ± 0.015                                                                                                                         | <u>777</u> 2222                   | VE           |
| AN AN AN AN | Standard Repor<br>Spect<br>1000.<br>Secondary Refer<br>Devic<br>Wind<br>Certif<br>Calibe<br>Solar Simulator<br>Spect<br>Total<br>Quantum Efficie<br>Newp<br>Spect<br>DUT Calibration<br>Newp                                                          | Devices<br>ting Conditions:<br>nm: AMI 5-G (AST)<br>0 W/m <sup>2</sup> at 25.0°C<br>rence Cell:<br>e S/N: 10510-0054 K<br>e Material: mono-Si<br>w Material: Mo | d G173-03/IEC<br>G1<br>al Renewable Ei<br>ocreditation cer<br>cleing #: 1869,<br>if ( <i>La</i> ) under sta<br>sp-19<br>ration filename<br>a' based on <i>L<sub>a</sub></i> o<br>me <i>QE 1857</i> . <i>I</i><br>on factor: <b>M</b> = 1<br>ment WII (EQE<br>ment Area Meas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 60904-3 e<br>nergy Labo<br>tilicate # 2<br>1937<br>indard repo<br>Sol34_Spi<br>f the above<br>ads-f, 0,2 a<br>1,008 ± 0,1<br>0,doex<br>sarement W | 4.2)<br>ratory<br>236.01<br>rting condition<br>ceroraziomere<br>Secondary Ro<br>s.4 WLB.log<br>115<br>12 (Area) doc                              | ss (SRC): 56.1<br># Scan 0198<br>flerence Cell                                                                                     | S7mA<br>xis                                                                                                                  |                                                                                                                                 |                                   | ANN ANN WAN  |
| Constant of | Newp                                                                                                                                                                                                                                                  | ort Corporation docu<br>ort Corporation docu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ment Area Meas<br>ment WI3 (IV.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | weep).doc                                                                                                                                           | 12 (Area) doc<br>(<br>ar 06, 2018                                                                                                                | <u> </u>                                                                                                                           |                                                                                                                              | Page                                                                                                                            | 2 of 2                            | E.           |
| X           | Cal Cert V1.8                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reviewed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d Annova                                                                                                                                            | the Goodford                                                                                                                                     | Wicks                                                                                                                              | 100000000000000000000000000000000000000                                                                                      | 11111111111111111                                                                                                               | DODODO SE                         | ALL CONTRACT |

**Supplementary Figure 24.** Certificate showing the figures of merit for an optimized InAs/PbS CQD solar cells. The measurement was performed by an accredited PV calibration laboratory. (Newport Technology and Application Center – PV Lab)

|    | Pristine    | Step I        | Step II |         |        |          |          |  |  |  |
|----|-------------|---------------|---------|---------|--------|----------|----------|--|--|--|
|    | InAs-oleate | Naked<br>CQDs | InAs–I  | InAs–Br | InAsCl | InAs-MPA | InAs-EDT |  |  |  |
| In | 1.73        | 1.65          | 1.50    | 1.58    | 1.50   | 1.55     | 1.6      |  |  |  |
| As | 1           | 1             | 1       | 1       | 1      | 1        | 1        |  |  |  |
| В  | -           | -             | -       | -       | -      | -        | -        |  |  |  |
| F  | -           | 0.14          | -       | -       | -      | -        | -        |  |  |  |
| Cl | -           | -             | -       | -       | 0.12   | -        | -        |  |  |  |
| Br | -           | -             |         | 0.17    | -      | -        | -        |  |  |  |
| Ι  | -           | -             | 0.22    | -       | -      | -        | -        |  |  |  |
| S  | -           | -             | -       | -       | _      | 0.26     | 0.41     |  |  |  |

**Supplementary Table 1.** XPS quality analysis of atomic ratios according to In atoms in InAs CQDs depending on surface capping ligands.

**Supplementary Table 2.** Trap density, effective lifetime, and diffusion length using PLbased inter-particle coupling measurement (3D diffusion method)<sup>3</sup> from Supplementary Figures 12 and 13.

| Materials    | Trap density<br>(cm <sup>-3</sup> ) | Mobility<br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | Effective<br>lifetime<br>(ns) | Diffusion<br>Length<br>(nm) |
|--------------|-------------------------------------|----------------------------------------------------------------|-------------------------------|-----------------------------|
| InAs–Br      | $(3.32 \pm 0.51) \times 10^{17}$    | $(1.34 \pm 0.23) \times 10^{-3}$                               | 46                            | $30 \pm 10$                 |
| InAs–<br>MPA | $(1.24 \pm 0.11) \times 10^{17}$    | $(1.78 \pm 0.68) \times 10^{-3}$                               | 145                           | $60 \pm 30$                 |

| Supplementar             | y Table | 3. | Mobility | and | carrier | concentration | of | PbS | CQDs | in |
|--------------------------|---------|----|----------|-----|---------|---------------|----|-----|------|----|
| Supplementary Figure 14. |         |    |          |     |         |               |    |     |      |    |
|                          |         |    |          |     |         | Carrie        | r  |     |      |    |

| Materials | Condition                   | Mobility<br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | Carrier<br>Concentration <sup>(a)</sup><br>(cm <sup>-3</sup> ) | Majority<br>Carrier |
|-----------|-----------------------------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------|
| PbS-I CQD | $N_2$                       | $(1.66 \pm 0.31) \times 10^{-1}$                               | $(3.23 \pm 1.82) \times 10^{16}$                               | electron            |
|           | Air exposure<br>for an hour | $(2.74 \pm 1.34) \times 10^{-3}$                               | $(8.11 \pm 0.61) \times 10^{15}$                               | hole                |

(a) Carrier concentrations of the transfer curves and the output curves were obtained.

| in the r vs nom supplementary righter r. |                         |                              |                      |                                             |  |  |  |  |
|------------------------------------------|-------------------------|------------------------------|----------------------|---------------------------------------------|--|--|--|--|
|                                          | Dioloctric              | Carrier                      | Depletion            | Built-in<br>potential <sup>(e)</sup><br>(V) |  |  |  |  |
| Materials                                | Constant <sup>(a)</sup> | Concentration <sup>(c)</sup> | Width <sup>(d)</sup> |                                             |  |  |  |  |
|                                          | Constant                | (cm <sup>-3</sup> )          | ( <b>nm</b> )        |                                             |  |  |  |  |
| InAs–Br                                  | 19.5                    | $4.65 \times 10^{16}$        | 40                   | -                                           |  |  |  |  |
| InAs-MPA                                 | 23.8                    | $1.27 \times 10^{17}$        | 20                   | -                                           |  |  |  |  |
| PbS-I                                    |                         | $5.30 \times 10^{15}$        | 250                  | 0.32                                        |  |  |  |  |
|                                          | 24.5 <sup>(b)</sup>     | (with InAs–Br)               | 550                  | (with InAs–Br)                              |  |  |  |  |
|                                          |                         | $5.18 \times 10^{15}$        | 460                  | 0.43                                        |  |  |  |  |
|                                          |                         | (with InAs–MPA)              | 400                  | (with InAs–Br)                              |  |  |  |  |

**Supplementary Table 4.** Carrier concentration and depletion width of the CQD layers in the PVs from Supplementary Figure 17.

 $(a) \quad \mbox{Extracted by applying the parallel capacitor equation to MSM(ITO/InAs CQDs/Au) devices.}$ 

(b) Taken from reference. <sup>4</sup>

(c) Extracted by applying Mott-Schottky analysis to C-V results.

(d) Calculated using the discrete boundary approximation.

(e) Obtained from linear region onset of  $C^{-2}$  in C-V results.

| Dariaa   |                                               | Dimention(b) | Voc          | J <sub>SC</sub>        | FF    | РСЕ  |
|----------|-----------------------------------------------|--------------|--------------|------------------------|-------|------|
| Device   | Sweep speed                                   | Direction    | ( <b>V</b> ) | (mA cm <sup>-2</sup> ) | (%)   | (%)  |
|          | 1 V ~-]                                       | Forward      | 0.2131       | 13.13                  | 39.57 | 1.11 |
| No In A  | 1 V S                                         | Backward     | 0.2421       | 13.37                  | 40.66 | 1.32 |
| NO IIIA  | 0.02 V s <sup>-1</sup>                        | Forward      | 0.1034       | 10.63                  | 29.60 | 0.33 |
|          | $0.02 \text{ V s}^{-1}$                       | Backward     | 0.3184       | 13.30                  | 43.36 | 1.84 |
|          | 1 V s <sup>-1</sup><br>0.02 V s <sup>-1</sup> | Forward      | 0.4654       | 19.99                  | 52.75 | 4.91 |
| In A. Dr |                                               | Backward     | 0.4444       | 19.60                  | 55.84 | 4.86 |
| IIIA5–DI |                                               | Forward      | 0.4722       | 18.36                  | 55.64 | 4.82 |
|          |                                               | Backward     | 0.4586       | 17.78                  | 56.54 | 4.61 |
|          | 1 3 7 -1                                      | Forward      | 0.5541       | 21.02                  | 62.25 | 7.25 |
| InAs-    | 1 V S                                         | Backward     | 0.5577       | 21.06                  | 63.95 | 7.51 |
| MPA      | 0.02 V c <sup>-1</sup>                        | Forward      | 0.5426       | 20.92                  | 63.73 | 7.23 |
|          | 0.02 V s <sup>-1</sup>                        | Backward     | 0.5516       | 20.95                  | 65.47 | 7.57 |

Supplementary Table 5. Photovoltaic parameters of Supplementary Figure 18.

(a) Sweep speed: 0.8 V (Voltage sweep range, -0.1 V to 0.7 V) [80 (Measurement points) • 10 ms or 500 ms (Dwell time)]<sup>-1</sup>

(b) Forward direction: from  $J_{SC}$  to  $V_{OC}$ , Backward direction: from  $V_{OC}$  to  $J_{SC}$ .

| Dorrigo   | Thickness of  | Voc              | $J_{ m SC}$            | FF               | РСЕ             |
|-----------|---------------|------------------|------------------------|------------------|-----------------|
| Device    | InAs CQD (nm) | ( <b>V</b> )     | (mA cm <sup>-2</sup> ) | (%)              | (%)             |
|           | 10            | $0.48\pm0.072$   | $20.24\pm0.84$         | $42.65 \pm 9.94$ | $4.25 \pm 1.44$ |
| In A c Br | 20            | $0.47\pm0.085$   | $19.90 \pm 1.05$       | $51.57 \pm 13.5$ | $5.06 \pm 1.83$ |
| IIIA5–DI  | 50            | $0.45\pm0.018$   | $17.40\pm3.00$         | $54.40 \pm 3.81$ | $4.22\pm0.38$   |
|           | 100           | $0.45\pm0.022$   | $17.49 \pm 2.99$       | $54.66 \pm 8.21$ | $4.23\pm0.57$   |
|           | 20            | $0.52\pm0.004$   | $19.79\pm0.43$         | $63.65 \pm 1.95$ | $6.58\pm0.31$   |
|           | 30            | $0.53\pm0.009$   | $19.61\pm0.48$         | $61.46\pm2.11$   | $6.44\pm0.26$   |
| InAs-MPA  | 50            | $0.53 \pm 0.006$ | $20.26\pm0.49$         | $63.42 \pm 1.26$ | $6.78\pm0.27$   |
|           | 70            | $0.55\pm0.006$   | $17.62\pm0.48$         | $59.80 \pm 1.95$ | $5.80\pm0.31$   |
|           | 100           | $0.55\pm0.008$   | $15.19\pm0.36$         | 53.49 ± 3.31     | $4.46\pm0.36$   |

**Supplementary Table 6.** Photovoltaic parameter of CQD-PV device fabricated using ligand dependent and thickness dependent InAs CQD. (Average of 6 cells with both forward and backward direction)

**Supplementary Note 1.** Analysis of PL-based inter-particle coupling method (3D diffusion method) in Supplementary Figure 11–13, and Supplementary Table 2.

The trap density of InAs CQDs can be obtained using the following equation:

$$N_{\rm t} = \frac{\frac{PL_{\rm small size 1} - PL_{\rm small size 2} + PL_{\rm large size 1} - PL_{\rm large size 2}}{\frac{PL_{\rm large size 2}}{N_{\rm A2}} - \frac{\frac{PL_{\rm large size 1}}{N_{\rm A1}}}{N_{\rm A1}}}$$
(1)

The slope of PL ratio versus the concentration of large size CQDs in Figure S13 represents the mobility of CQD layers by the following equation:

$$PL_{ratio} = \tau_{bandedge} \cdot 6k_{B}T\mu(q \cdot d)^{-1}\sigma N_{A}$$
<sup>(2)</sup>

The diffusion length of InAs CQD layers can be extracted the following equations:

$$L_{\rm D} = \sqrt{D \cdot \tau_{\rm effective}} \tag{3}$$

$$D = \frac{Sd}{\tau_{\text{bandedge}}} \tag{4}$$

$$\tau_{effective} = \frac{\tau_{bandedge}}{s \cdot N_t} \tag{5}$$

where  $\tau_{bandedge}$  is radiative lifetime of CQDs (~1  $\mu s$ )<sup>5</sup>;  $k_BT$  is thermal energy; q is the charge of a carrier; d is interdot distance (~1nm);  $\sigma$  is the capture cross-sectional area ( $\pi d^2/4$ );  $N_A$  is small-size CQD (acceptor) concentration (cube of inverse radius and half interdot distance of CQDs).<sup>6</sup>; S is the slope in Supplementary Figure 13.

## Supplementary References

- Tamang, S., Lee, S., Choi, H. & Jeong, S. Tuning size and size distribution of colloidal InAs nanocrystals *via* continuous supply of prenucleation clusters on nanocrystal seeds. *Chemistry of Materials* 28, 8119–8122 (2016).
- 2. Rhoderick, E. H.; Williams, R. H., Metal-semiconductor contacts. 1988.
- Zhitomirsky, D., Voznyy, O., Hoogland, S. & Sargent E. H. Measuring charge carrier diffusion in coupled colloidal quantum dot solids. *ACS Nano*, 7, 5282– 5290 (2013).
- 4. Aqoma, H. *et al.* High-efficiency photovoltaic devices using trap-controlled quantum-dot ink prepared *via* phase-transfer exchange. *Advanced Materials* **29**, 1605756 (2017).
- 5. Choi, J. J. *et al.* Photogenerated exciton dissociation in highly coupled lead salt nano- crystal assemblies. *Nano Letters* **10**, 1805–1811 (2010).
- 6. Moreels, I. *et al.* Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. *Chemistry of Materials* **19**, 6101–6106 (2007).