Supporting Information for:

Lipidated cyclopropenes *via* a stable 3-*N* spirocyclopropene scaffold

Pratik Kumar^a, Ting Jiang^a, Omar Zainul^a, Alyssa N. Preston^a, Sining Li^a, Joshua D. Farr^{a,b}, Pavit Suri^a and Scott T. Laughlin^{*, a}

* scott.laughlin@stonybrook.edu

^a Department of Chemistry, Stony Brook University, Stony Brook, NY, 11790, USA

^b Current address: Department of Chemistry, Stanford University, Stanford, CA, 94305, USA

Table of Contents

List of abbreviations	S3			
General materials and methods	S4			
Scheme S1: Synthesis and characterization of compounds S1, and 2–6	S5			
NMR spectra	S7			
Scheme S2: Synthesis and characterization of compounds S2–S5	S19			
NMR spectra				
Scheme S3: Attempts at installation of linker at C1 on cyclopropene 15	S24			
Scheme S4: Synthesis and characterization of compounds 8–19	S25			
NMR spectra	S29			
Scheme S5: Synthesis and characterization of compounds 20–22.	S39			
NMR spectra	S41			
References	S45			

List of abbreviations

Calculated
1,1'-Carbonyldiimidazole
Cetyltrimethylammonium bromide
Dichloromethane
N,N-diisopropylethylamine
Dimethylformamide
1,2-di-(9Z-octadecenoyl)- <i>sn</i> -glycero-3-phosphoethanolamine
Electrospray ionization
Ethyl acetate
Ethanol
1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate
Hexamethylphosphoramide
High performance liquid chromatography
High resolution mass spectrometry
Lithium aluminum hydride
Acetonitrile
Methanol
Megahertz
Methoxymethyl chloride
Retention factor
Retention time
tert-Butyldiphenylsilane
Tetrahydrofuran
Thin layer chromatography
Ultraviolet

General materials and methods. All chemical reagents were of analytical grade, obtained from commercial suppliers, and used without further purification unless otherwise specified. Reactions were monitored by thin layer chromatography (TLC) on pre-coated glass TLC plates (Analtech UNIPLATE™ silica gel HLF w/ organic binder, 250 µm thickness, with UV254 indicator) or by LC/MS (Agilent LC-MSD, direct-injection mode, 1–10 µL, ESI). TLC plates were visualized by UV illumination or developed with either potassium permanganate stain (KMnO₄ stain: 1.5 g KMnO₄, 10 g K₂CO₃ and 1.25 mL of 10% NaOH dissolved in 200 mL H₂O), ceric ammonium molybdate stain (CAM stain: 12 g (NH₄)₆Mo₇O₂₄ • 4H₂O, 0.5 g Ce(NH₄)₂(NO₃)₆ and 15 mL of concentrated H₂SO₄ dissolved in 235 mL H₂O), or ninhydrin stain (1.5 g ninhydrin dissolved in 100 mL of 1butanol and 3 mL of conc. AcOH). Flash chromatography was carried out using Sorbtech, 60 Å, 40-63 µm or Millipore 60 Å, 35–70 µm silica gel according to the procedure described by Still¹. HPLC was performed using a Shimadzu HPLC (FCV-200AL) equipped with an Agilent reversed phase Zorbax Sb-Aq C18 column (Preparatory column: 4.6 × 250 mm or Analytical column: 21.2 × 250 mm) fitted with an Agilent stand-alone prep guard column. HPLC purifications were carried using solvents spiked with 0.1% TFA unless specified otherwise. NMR spectra (¹H and ¹³C) were obtained using a 300, 400, 500, or 700 MHz Bruker spectrometer and analyzed using Mestrenova 9.0. ¹H and ¹³C chemical shifts (δ) were referenced to residual solvent peaks. Following residual solvent peaks were chosen: (for ¹H NMR) CDCl₃, 7.2600 ppm; CD₃OD, 3.3100 ppm; (CD₃)₂SO, 2.5000 ppm (for ¹³C NMR) CDCl₃, 77.1600 ppm; CD₃OD, 49.0000 ppm; (CD₃)₂SO, 39.5200 ppm; D₂O, 4.7900 ppm. Further, following abbreviations were used to define ¹H NMR peaks: s, singlet; d, doublet; t, triplet; g, guartet; m, multiplet. Low-resolution electrospray ionization (ESI) and High-resolution electrospray ionization (ESI) mass spectra were obtained at the Stony Brook University Institute for Chemical Biology and Drug Discovery (ICB&DD) Mass Spectrometry Facility with an Agilent LC/MSD and LC-UV-TOF spectrometer respectively. Synthesis for compound 15 and **16** was carried using the method recently described by us².

Scheme S1

S1 was synthesized based on modifications of a previously published protocol³. To an ice-cold solution of benzyl protected Boc-aspartic-acid (5.0 g, 15.46 mmol, 1 eq) in THF (40 mL) was added N-methyl morpholine (1.8 mL, 16.23 mmol, 1.05 eq) and the reaction mixture was stirred at the same temperature for 5 mins. To this solution was added iso-butyl chloroformate (2.4 mL, 17.00 mmol, 1.1 eq) dropwise and the reaction mixture was stirred at the same temperature for 30 mins.

The reaction mixture was filtered using THF (3×20 mL) and cooled down using an ice-bath. NaBH₄ (0.9 g, 23.79 mmol, 1.5 eq) and water (8.0 mL) were added to this reaction mixture in one portion. After 5 mins, additional 400 mL water was added to the reaction mixture. The reaction mixture was transferred to a separatory funnel and the layers were separated using EtOAc (50 mL). The aqueous layer was further washed with EtOAc and the combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to obtain crude **S1** (4.97 g) which was used without further purification. MS (ESI): Calcd for $C_{16}H_{24}NO_5$ [M+H]⁺: 310.1, found: 310.1, 254.1[M-C(CH3)3+2H]⁺, 210.1 [M-Boc+2H]⁺.

2 was synthesized based on modifications of a previously reported patent⁴. To a solution of crude **S1** (4.97 g) obtained from the previous step in DMF (30 mL) was added imidazole (1.64 g, 24.11 mmol, 1.5 eq) and TBDPS-CI (3.98 g, 17.68 mmol, 1.1 eq) respectively. The reaction mixture was stirred at rt for 15 h and quenched with saturated NH₄Cl (100 mL). The crude product was extracted with EtOAc (3×30 mL). The combined organic layer was dried over

anhydrous Na₂SO₄, concentrated *in vacuo*, and purified by flash chromatography (75 g silica, Hexanes to 5% EtOAc/hexanes (v/v)) to obtain **2** (7.8 g, 92.2% over two steps). R_f = 0.25 (6% EtOAc/Hexanes, visualized w/ UV). ¹H NMR (500 MHz, CDCl₃): δ = 7.71–7.58 (m, 4H), 7.41–7.35 (m, 6H), 5.10 (s, 2H), 4.17 (br s, 1H), 3.74 (d, *J* = 3.8 Hz, 2H), 2.74 (t, *J* = 6.2 Hz, 2H), 1.45 (s, 9H), 1.08 (s, 9H). MS (ESI): Calcd for C₃₂H₄₂NO₅Si [M+H]⁺: 548.3, found: 548.3.

To a solution of **2** (7.8 g, 142.4 mmol, 1.0 eq) in MeOH (60 mL) at rt was added 10% Pd/C (160 mg) and H₂ balloon. The reaction was stirred for 15 h. Additional Pd/C (50 mg) and H₂ was supplied based on the TLC and the reaction mixture was stirred for additional 6h. Upon completion the reaction mixture was passed through a pad of celite using MeOH to remove Pd/C. The reaction mixture was concentrated *in vacuo* and purified by flash chromatography (70

g silica, 10% EtOAc/hexanes to 30% EtOAc/hexanes (v/v)) to obtain **3** (5.54 g, 85.0%). R_f = 0.30 (5–20% EtOAc/Hexanes, visualized w/ UV). ¹H NMR (400 MHz, CDCl₃): δ = 7.66–7.63 (m, 4H), 7.44–7.36 (m, 6H), 5.11 (d, *J* = 9.1 Hz, 1H), 3.73 (br s, 2H), 2.70 (d, *J* = 5.8 Hz, 2H), 1.43 (s, 9H), 1.07 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ = 177.09, 155.44, 135.66, 133.12, 133.05, 129.96, 127.91, 79.78, 65.00, 48.77, 35.95, 28.48, 26.96, 19.38. MS (ESI): Calcd for C₂₅H₂₄NO₅Si [M-H]⁻: 456.2, found: 456.2, 913.3 [2M-H]⁻.

To a solution of **3** (12.0 g, 26.2 mmol, 1.0 eq) in THF (125 mL) at rt was added CDI (5.1 g) and the yellow reaction mixture was stirred at rt for 24h. To this activated acid was added a 24 h stirred mixture of of MgCl₂ (3.49 g, 36.7 mmol, 1.4 eq), Potassium 3-methoxy-3-oxopropanoate (5.73 g, 36.7 mmol, 1.4 eq), and Et₃N (5.54 mL, 4.03 g, 39.8 mmol, 1.5 eq) in THF (125 mL). The suspension was refluxed for 16 h, guenched with water, and

concentrated *in vacuo* to remove THF. The reaction mixture was then diluted with DCM and 2M HCl, and stirred at rt for 15 min to dissolved the white solid. The aqueous layer was acidified to pH 1–2 using 2M HCl and extracted with DCM. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to obtain a pale-yellow oil that was purified by flash chromatography (20% EtOAc/hexanes) to obtain **4** (10.77 g, 80%) as a light-yellow oil. R_f = 0.75 (50% EtOAc/hexanes, visualized w/ UV). ¹H NMR (400 MHz, CDCl₃): δ = 7.66–7.62 (m, 4H), 7.41–7.33 (m, 6H), 5.09–4.96 (m, 1H), 4.14 (br s, 1H), 3.73–3.65 (m, 5H), 3.48–3.39 (m, 2H), 2.91–2.80 (m, 2H), 1.41 (s, 9H), 1.07 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ = 201.08, 167.19, 155.07, 135.39, 135.35, 132.93, 132.85, 129.74, 127.70, 127.68, 79.15, 64.85, 52.06, 48.97, 48.38, 43.98, 28.20, 26.75, 19.12. COSY NMR (400 MHz, CDCl₃, attached) was obtained under the same conditions. HRMS (ESI): Calcd for C₂₈H₄₀NO₆Si [M+H]⁺: 514.2619, found: 514.2625.

To a solution of β -ketoester **4** (3.13 g, 6.09 mmol, 1 eq) in MeCN (50 mL) was added tosyl azide (1.08 g, 5.48 mmol, 0.9 eq). Et₃N (2.5 mL, 1.88 g, 18.3 mmol, 3 eq) was added dropwise and the mixture was stirred at rt for 16 h. The reaction mixture was concentrated *in vacuo*, and diluted with DCM and water. The organic layer was collected and the aqueous layer was further washed with DCM. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo*, and purified by flash chromatography (45 g silica, 15% ethyl acetate/hexanes (v/v)) to obtain **5** as a yellow oil (3.3 g, quantitative).

A separate reaction starting from 20 g of **4** also afforded **5** in 95% yield. $R_f = 0.30$ (10% EtOAc/hexanes, visualized w/UV).¹H NMR (400 MHz, CDCl₃): δ = 7.67–7.64 (m, 4H), 7.44–7.36 (m, 6H), 5.18 (d, *J* = 9.4 Hz, 1H), 4.24 (br s, 1H), 3.81–3.80 (m, 5H), 3.16 (d, *J* = 6.2 Hz, 2H), 1.44 (s, 9H), 1.10 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ = 190.73, 161.66, 155.29, 135.61, 135.59, 133.22, 133.15, 129.79, 127.75, 79.26, 76.35, 65.53, 52.21, 49.11, 41.67, 28.38, 26.92, 19.31. ¹³C DEPT135 NMR (101 MHz, CDCl₃): δ = (up) 135.61, 135.59, 129.78, 127.74, 52.20, 49.11, 28.38, 26.92, (down) 65.52, 41.66. HRMS (ESI): Calcd for C₂₈H₃₈N₃O₆Si [M+H]⁺: 540.2524, found: 540.2532.

To a solution of **5** (3.3 g, 6.11 mmol, 1 eq) in dry toluene (40 mL) was added Rh₂OAc₄ (13.5 mg, 0.03 mmol, 0.005 eq) and the mixture was stirred at 90 °C for 1.5 h. The reaction mixture was concentrated *in vacuo* and passed through silica gel (30 g) using diethyl ether to obtain **6** as an oil that was used without further purification (3.01 g, 96.5%). R_f = 0.52 (20% EtOAc/hexanes, visualized w/ UV). ¹H NMR (rotamers and mixture of diastereomers 400 MHz, CDCl₃): δ = 7.68–7.54 (m, 4H), 7.37–7.35 (m, 6H), 4.66–4.58 (m, 1H), 4.50–4.34 (m, 1H), 4.17–3.76 (m, 3H), 3.66–3.45 (m, 2H), 2.98–2.53 (m, 2H), 1.46–1.37 (m, 9H), 1.03–1.00 (m, 9H). ¹³C NMR (rotamers and mixture of diastereomers, 101 MHz, CDCl₃):

δ= 203.30, 203.08, 202.65, 166.88, 166.58, 165.85, 153.24, 152.96, 152.75, 135.48, 135.43, 135.40, 135.20, 133.07, 132.96, 132.84, 132.45, 132.33, 132.20, 132.19, 129.91, 129.87, 129.82, 129.75, 129.69, 129.52, 127.86, 127.80, 127.75, 127.70, 127.53, 80.99, 80.98, 80.84, 77.16, 67.08, 66.65, 65.83, 65.76, 65.29, 65.09, 64.73, 64.70, 64.44, 54.99, 54.51, 54.43, 52.85, 52.67, 52.44, 40.86, 40.49, 40.06, 39.79, 28.16, 28.09, 28.05, 26.72, 26.58, 26.46, 19.06, 18.96, 18.85. ¹³C-DEPT135 NMR (rotamers and mixture of diastereomers, 101 MHz, CDCl₃): δ = (up) 135.62, 135.57, 135.54, 135.34, 130.05, 130.01, 129.96, 129.83, 129.65, 128.00, 127.94, 127.89, 127.84, 127.67, 67.22, 66.79, 65.90, 65.43, , 55.13, 54.64, 54.56, 52.98, 52.81, 52.57, 28.30, 28.23, 28.19, 26.86, 26.71, 26.60, (down) 65.97, 65.23, 64.84, 64.57, 40.99, 40.63, 40.20, 39.92. HRMS (ESI): Calcd for C₂₈H₃₇NO₆SiNa [M+Na]⁺: 534.2282, found: 534.2318.

¹H NMR (400 MHz)

¹³C NMR (101 MHz)

¹H NMR (400 MHz)

¹³C NMR (101 MHz)

¹H NMR (400 MHz)

¹³C DEPT-135 NMR (101 MHz)

¹H NMR (400 MHz)

¹³C NMR (101 MHz)

Scheme S2

To an ice-cold solution of **5** (3.51 g, 6.50 mmol, 1 eq) and acetic acid (1.57 mL, 1.65 g, 27.49 mmol, 4.0 eq) in THF (20 mL) was added 1M TBAF (20.61 mL, 20.61 mmol, 3 eq). The reaction mixture was allowed to warm to rt over 16 h and quenched by addition of saturated NH₄CO₃. The reaction mixture was concentrated *in vacuo*, and diluted with DCM and saturated NH₄CO₃. The organic layer was collected and the aqueous layer was further washed with DCM. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo*, and purified by flash chromatography (65 g

silica, 40–75% ethyl acetate/hexanes (v/v)) to obtain **S2** as a yellow oil (1.94 g, quantitative). R_f = 0.35 (40% EtOAc/hexanes, visualized w/ UV).¹H NMR (400 MHz, CDCl₃): δ = 5.31 (d, *J* = 8.7 Hz, 1H), 4.09–4.00 (m, 1H), 3.79 (s, 3H), 3.63–3.61 (m, 2H), 3.14–2.98 (m, 2H), 1.36 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ = 191.02, 174.28, 161.81, 155.94, 79.67, 76.69, 64.64, 53.50, 52.40, 49.63, 41.53, 28.33. HRMS (ESI): Calcd for C₁₂H₁₉N₃O₆ [M+Na]⁺: 324.1166, found: 324.1170.

To an ice-cold solution of **S2** (460 mg, 1.53 mmol, 1 eq) in DCM (20 mL) under N₂ atmosphere was added MOM-CI (267 mg, 232 μ L, 4.98 mmol, 2.1 eq). DIPEA (1.06 mL, 858 mg, 6.12 mmol, 4 eq) was added dropwise and the reaction mixture was allowed to warm to overnight. Additional MOM-CI and DIPEA was furnished based on TLC. Upon consumption of the starting material, the orange reaction mixture was concentrated *in vacuo* and purified by flash chromatography (30 g silica, 20% ethyl acetate/hexanes (v/v)) to obtain **S3** as an oil (361 mg, 68%). R_f = 0.35 (40% EtOAc/hexanes, visualized w/ UV).¹H

NMR (400 MHz, CDCl₃): δ = 5.11 (d, *J* = 9.1 Hz, 1H), 4.48 (s, 2H), 4.12 (br s, 1H), 3.72 (s, 3H), 3.56–3.45 (m, 2H), 3.22 (s, 3H), 3.06–2.94 (m, 2H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ = 190.41, 161.58, 155.16, 96.48, 79.11, 76.10, 69.31, 55.17, 52.10, 47.36, 41.89, 28.18. HRMS (ESI): Calcd for C₁₄H₂₄N₃O₇ [M+H]⁺: 346.1609, found: 346.1611.

To a solution of **S3** (1.21 g, 3.5 mmol, 1 eq) in dry toluene (30 mL) was added Rh₂OAc₄ (7.8 mg, 0.018 mmol, 0.005 eq) and the mixture was stirred at 90 °C for 1.5 h. The reaction mixture was concentrated *in vacuo* and passed through silica gel (30 g) using diethyl ether to obtain **S4** as an oil that was used without further purification (1.05 g, 93.0%). R_f = 0.46 (40% EtOAc/hexanes, visualized w/ KMnO4). ¹H NMR (400 MHz, CDCl₃): δ = 5.11 (d, *J* = 9.1 Hz, 1H), 4.48 (s, 2H), 4.12 (br s, 1H), 3.72 (s, 3H), 3.56–3.45 (m, 2H), 3.22 (s, 3H), 3.06–2.94 (m, 2H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ = 190.41, 161.58, 155.16,

96.48, 79.11, 76.10, 69.31, 55.17, 52.10, 47.36, 41.89, 28.18. HRMS (ESI): Calcd for C₁₄H₂₄NO₇ [M+H]⁺: 318.1547, found: 318.1553.

¹H NMR (400 MHz)

¹³C NMR (101 MHz)

						¹³ C NM	R (101 MHz)	DCI3						
	— 190.4099		22					∑79.1071 ∑77.1600 C ∑76.1036	69.3102	55.1654 52.1007 -47.3648	2020-14 /			
	MOM(BocH)	D NO NO NO NO NO NO NO NO S3												
													n, manuary and many and any space of the second	
200	190 18	80 170 160	150 140	130	120	110	100 90 ppm	80	70 (40	30 20	 10	0

Scheme S3

Scheme S4

D-*erythro*-Sphingosine was synthesized from the commercially available D-*ribo*-Phytosphingosine by modifying the cyclic sulfate strategy by Lee et al.⁵ To a solution of D-*ribo*-Phytosphingosine (1.0 g, 3.15 mmol, 1.0 eq) in EtOH (6.25 mL) was added trifluoroethyl acetate (0.575 mL, 4.82 mmol, 1.53 eq). After stirring the reaction mixture for 20 h at rt, it was poured in brine and washed with EtOAc (2×20 mL). The combined organic layer was dried over anhydrous Na₂SO₄, concentrated *in vacuo*, and purified by flash chromatography (70.0 g silica, 50% EtOAc/hexanes (v/v)) to obtain **8** (1.3 g,

quantitative). $R_f = 0.30-0.55$ (50% EtOAc/hexanes, visualized w/ UV). MS (ESI): Calcd for $C_{20}H_{37}F_3NO_4$ [M-H]⁻: 412.3, found: 412.3.

To an ice-cold solution of **8** (1.56 g, 3.78 mmol, 1.0 eq), DMAP (46 mg, 0.38 mmol, 0.1 eq), and Et₃N (0.78 mL, 1.48 eq) in DCM (15.0 mL) and DMF (5.46 mL) was added TBDPS-Cl (1.40 mL, 5.48 mmol, 1.45 eq). The reaction mixture was allowed to warm to rt over 24h. The reaction was diluted with EtOAc (75.0 mL) and washed with brine (2×60 mL). The combined organic layer was dried over anhydrous Na₂SO₄, concentrated *in vacuo*, and purified by flash chromatography (90.0 g silica, 15% EtOAc/hexanes (v/v)) to obtain **9** (2.48 g, quantitative). R_f = 0.24 (15% EtOAc/hexanes, visualized w/ UV). MS

(ESI): Calcd for C₃₆H₅₆F₃NO₄Si [M-H]⁻: 650.4, found: 650.4.

To an ice-cold solution of diol **9** (2.87 g, 4.40 mmol, 1.0 eq) in DCM (35.0 mL) under N₂ atmosphere was added Et₃N (2.11 mL, 15.1 mmol, 3.44 eq) and SOCl₂ (0.42 mL, 4.84 mmol, 1.11 eq). After stirring the reaction mixture for 30 mins it was poured into brine (70.0 mL) and extracted with EtOAc (2×80 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated to dryness *in vacuo* to obtain crude cyclic sulfite **10** (3.07 g) which was used immediately without purification. $R_f = 0.5$ (10% EtOAc/hexanes, visualized w/ UV). MS (ESI): Calcd for C₃₆H₅₃F₃NO₅SSi [M-H]⁻: 696.3, found: 696.3.

To a solution of the crude sulfite **10** (3.07 g, 4.40 mmol, 1.0 eq) obtained from the previous step in 1:1:1 CCl₄/H₂O/MeCN (37.0 mL) was added NaIO₄ (2.82 g, 13.2 mmol, 3.0 eq) and RuCl₃ (47 mg, 0.023 mmol, 0.05 eq) consecutively. After stirring the reaction mixture at rt for 2 h it was diluted with EtOAc (100.0 mL). The organic layer was washed with sat. NaHCO₃, dried over anhydrous Na₂SO₄, concentrated *in vacuo*, and purified by flash chromatography (90.0 g silica, 10% EtOAc/hexanes (v/v)) to obtain the sulfate **11** (2.12 g, 67.6% over two steps). R_f = 0.25 (10% EtOAc/hexanes, visualized w/ UV). MS (ESI): Calcd for C₃₆H₅₃F₃NO₆Si [M-H]⁻: 712.2, found: 712.2.

To a solution of the sulfate **11** (2.12 g, 2.98 mmol, 1.0 eq) in toluene (31.2 mL) was added nBu_4NI (1.25 g, 3.39 mmol, 1.14 eq) and the reaction mixture was stirred at 30 °C for 24 h. DBU (0.676 mL, 4.26 mmol, 1.43 eq) was added and the reaction mixture was stirred for 2.75 h at the same temperature. To this reaction was added conc. H₂SO₄ (42 µL), H₂O (37.5 µL), and THF (0.682 mL) The reaction was stirred for 19 h. Additional 2X of conc. H₂SO₄, H₂O, and THF was added based on TLC and the reaction was shifted to 55 °C for 1.5 h. Again, based on TLC additional amount of conc. H₂SO₄ was added (reaction pH ~2-3) and the reaction was stirred at 63 °C for 1.5 h. The reaction mixture was cooled

down to rt, diluted with EtOAc (100.0 mL), and washed successively with sat. NaHCO₃ and brine (2×80 mL). The organic layer was dried over anhydrous Na₂SO₄, concentrated *in vacuo*, and purified by flash chromatography (130.0 g silica, 4% EtOAc/hexanes (v/v)) to obtain the alkene **12** (578 mg, 48.6%). $R_f = 0.15$ (4% EtOAc/hexanes, visualized w/ UV). MS (ESI): Calcd for C₃₆H₅₃F₃NO₃Si [M-H]⁻: 632.2, found: 632.2.

To a solution of the crude alkene **12** (578 mg, 0.91 mmol, 1.0 eq) in THF (13.0 mL) was added *n*Bu₄NF (1.37 mL, 1.37 mmol, 1.50 eq, 1.0 M in THF) and the reaction was stirred at rt for 1 h. The reaction mixture was concentrated *in vacuo* and immediately subjected to flash chromatography (40.0 g silica, 25% EtOAc/hexanes (v/v)) to obtain **13** containing unidentifiable minor impurity. Repeating the purification step two more times did not help in getting rid of this unknown impurity. A total of **13** (83 mg, 23%) was obtained. R_f = 0.55 (0% EtOAc/hexanes, visualized w/ UV). MS (ESI): Calcd for C₂₀H₃₅F₃NO₃ [M-H]⁻: 394.3, found: 394.3.

To a solution of the **13** (83 mg, 0.21 mmol, 1.0 eq) in EtOH (4.0 mL) was added aq. NaOH (2.0 M, 3.38 mL) and the reaction was stirred at rt for 2 h. The reaction was diluted with H₂O (5.0 mL) and extracted with EtOAc (2×5 mL). The combined organic layer was washed with brine (2×5 mL), dried over anhydrous Na₂SO₄, concentrated *in vacuo*, and purified by flash chromatography (10.0 g silica, 15% MeOH/DCM + .5% Et₃N (v/v)) to obtain **14** (52 mg, 82.5 %). R_f = 0.22 (15% MeOH/DCM + 0.5% Et₃N, visualized w/ UV).

¹H NMR (700 MHz, CDCl₃): δ = 5.75–5.71 (m, 1H), 5.43 (dd, *J* = 15.5, 6.7 Hz, 1H), 4.10 (s, 1H), 3.67 (br s, 6H), 2.89 (s, 1H), 2.02 (q, *J* = 7.2 Hz, 2H), 1.35 (p, *J* = 7.2 Hz, 2H), 1.29–1.24 (m, 20H), 0.87 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 134.57, 129.01, 74.31, 62.94, 56.49, 32.54, 32.05, 29.85, 29.80, 29.68, 29.60, 29.39, 22.8, 14.23. HRMS (ESI): Calcd for C₁₈H₃₈NO₂ [M+H]⁺: 300.2897, found: 300.2901.

Compounds **15** and **16** were synthesized as recently described by us². To an ice-cold solution of **16** (7.0 mg, 0.022 mmol, 1.0 eq) in dry DMF (1.0 mL) under an inert atmosphere was added DIPEA (4.6 μ L, 0.026 mmol, 1.2 eq). Further, HATU (10.1 mg, 0.026 mmol, 1.2 eq) as a solution in dry DMF (0.3 mL) was added dropwise and the reaction was continued stirring at the same temperature for 30 mins. D-*erytho*-Sphingosine **14** (7.6 mg, 0.025 mmol, 1.15 eq) as a solution in dry DMF (0.3 mL) was added to this activated acid and the resulting yellowish mixture was allowed to gradually warm to rt overnight. The reaction mixture was extracted using DCM and

water. The combined organic layer was dried over anhydrous Na₂SO₄, concentrated *in vacuo*, and purified by flash chromatography (8.0 g silica, 1% MeOH/DCM (v/v) to 10% MeOH/DCM) to obtain **17** (10.1 mg, 76.5%). R_f = 0.37 (5% MeOH/DCM, visualized w/ KMnO₄). ¹H NMR (500 MHz, CDCl₃): δ = 6.80 (s, 1H), 6.54 (br s, 1H), 5.81–5.74 (m, 1H), 5.55–5.48 (m, 1H), 4.31 (q, *J* = 4.7 Hz, 1H), 3.96–3.86 (m, 2H), 3.71–3.66 (m, 1H), 3.59–3.50 (m, 2H), 3.12 (br s, 1H), 2.67–2.56 (m, 2H), 2.38–3.23 (m, 4H), 2.07–1.98 (m, 4H), 1.69 (s, 1H), 1.40 (s, 9H), 1.36–1.35 (m, 2H), 1.27–1.25 (m, 20H), 0.87 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ = 173.07, 154.11, 134.06, 133.94, 128.97, 128.95, 127.93, 125.32, 123.01, 114.06, 103.25, 80.23, 80.20, 74.70, 74.55, 62.55, 62.51, 54.79, 50.35, 50.07, 49.78, 41.35, 35.64, 35.62, 32.44, 32.14, 32.07, 31.94, 31.75, 29.83, 29.80, 29.77, 29.65, 29.51, 29.37, 29.30, 29.27, 28.64, 24.26, 24.23, 23.01, 22.84, 14.27. COSY NMR (500 MHz, CDCl₃, attached) was obtained under the same conditions. HRMS (ESI): Calcd for C₃₃H₅₆F₂N₂O₅ [M+H]⁺: 599.4236, found: 599.4233.

To an ice-cold solution of **17** (10.0 mg, 0.017 mmol, 1.0 eq) in DCM (2.0 mL) was added TFA (0.45 mL) and the reaction was allowed to gradually warm to rt over 1.25 h. The reaction was concentrated *in vacuo* to obtain crude **18** as a TFA salt that was used in the next step without further purification. An analytically pure sample was obtained by purifying it using analytical column on HPLC (R_t = 17.2 mins, 50–100% MeOH over 10 mins, and then 100% MeOH from 10–30 mins, flow rate = 1 mL/min). Yield = 22.0%. R_f = 0.19 (5% MeOH/DCM, visualized w/ KMnO₄). ¹H NMR (700 MHz, CDCl₃): δ = 6.91 (br s, 1H), 6.86 (br s, 1H), 5.76–5.71 (m, 1H), 5.48– 5.43 (m, 1H),

4.53–4.50 (m, 1H), 3.95–3.83 (m, 2H), 3.51–3.45 (m, 3H), 3.14 (qd, *J* = 7.3, 4.5 Hz, 1H), 2.67–2.63 (m, 4H), 2.36–2.34 (m, 2H), 2.07–2.00 (m, 5H+H₂O), 1.35–1.25 (s, 22H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (176 MHz, CDCl₃): δ = 53.59, 45.79, 32.08, 29.86, 29.84, 29.82, 29.78, 29.63, 29.52, 22.85, 14.29, 8.66. Peaks for tertiary and quaternary carbons were not observed. HRMS (ESI): Calcd for C₂₈H₄₉F₂N₂O₃ [M+H]⁺: 499.3706, found: 499.3707.

To an ice-cold suspension of crude TFA salt **18**, obtained from the previous step, in MeCN (3.0 mL) and water (1.0 mL) was added aq. NaHCO₃ (20 mg, 0.6 mL H₂O, reaction pH ~ 8.5). To this reaction mixture was added Nvoc-Cl (5.53 mg, 0.020 mmol, 1.2 eq) and the reaction was allowed to warm up to rt overnight under dark. The reaction was extracted using DCM and water. The combined organic layer was dried over anhydrous Na₂SO₄, concentrated *in vacuo*, and subjected to flash chromatography (5.5 g silica, 50% EtOAc/hexanes (v/v) and then 3% MeOH/DCM) to obtain **19** (11 mg, 89% over two steps) as a yellow oil. R_f = 0.30 (5% MeOH/DCM, visualized w/ UV). ¹H NMR (700 MHz, CDCl₃): δ = 7.69 (s, 1H), 6.95 (s, 1H), 6.83 (br s, 1H), 6.61 (d, 1H), 5.79–5.74 (m, 1H), 5.53–5.49 (m, 1H), 5.40 (s, 2H), 4.31–4.29 (m, 1H), 3.96 (s, 3H), 3.95 (s, 3H), 3.91–3.88 (m, 1H), 3.69–3.63 (m, 3H), 2.62–2.61 (m, 2H), 2.41–2.31 (m, 4H), 2.04 (p, *J* = 7.7 Hz, 4H), 1.63–1.61 (d, *J* = 11.8 Hz, 1H),

1.35 (q, J = 7.5 Hz, 2H), 1.30–1.24 (m, 20H), 0.87 (t, J = 7.1 Hz, 3H). ¹³C NMR (176 MHz, CDCl₃): δ = 173.05, 153.47, 148.45, 140.27, 133.96, 128.86, 127.20, 122.55, 110.64, 108.41, 74.83, 74.68, 63.95, 62.50, 56.57, 56.55, 54.54, 53.58, 41.27, 35.27, 32.45, 32.07, 31.93, 31.79, 29.84, 29.81, 29.78, 29.65, 29.51, 29.39, 29.27, 24.34, 22.92, 22.84, 14.28. COSY NMR (500 MHz, CDCl₃, attached) was obtained under the same conditions. HRMS (ESI): Calcd for C₃₈H₅₈F₂N₃O₉ [M+H]⁺: 738.4136, found: 738.4142.

¹H NMR (700 MHz)

7.2600 CDCI3 DCM -6.7983 5722 5654 5524 -6.5377 .8612 .7110 .7052 .6993 .6839 .6761 .6692 8686 6922 88 ы 8 ഗ്ന്ന് m Boc N < Ö 'N' H

HO

 $\neg \neg$ $\forall \forall$ ㅋㅋ구 Ч Υ ____ Ь 5-1 الطعط Ь 1.02 0.84 1.02 2.01 1.09 2.03 1.04 1.01 1.06 2.00 3.97 3.94 0.94 9.01 2.03 20.07 3.00 8.0 7.5 6.5 2.5 0.5 7.0 6.0 5.5 5.0 3.0 2.0 1.5 1.0 4.5 4.0 3.5 ppm

¹H NMR (500 MHz)

ợ ợ ợ

¹³C NMR (126 MHz)

¹H NMR (700 MHz)

1

¹H NMR (700 MHz)

[S37]

¹³C NMR (176 MHz)

Scheme S4

To an ice-cold solution of **16** (10.0 mg, 0.031 mmol, 1.0 eq) in dry DMF (2.0 mL) under an inert atmosphere was added DIPEA (6.8 μ L, 0.038 mmol, 1.2 eq). Further, HATU (14.4 mg, 0.038 mmol, 1.2 eq) as a solution in dry DMF (0.5 mL) was added dropwise and the reaction was continued stirring at the same temperature for 30 mins. DOPE (25.8 mg, 0.035 mmol, 1.1 eq) as a solution in THF was added to this activated acid and the resulting mixture was allowed to gradually warm to rt over 48 h. The reaction mixture was extracted using DCM and water. The combined organic layer was dried over anhydrous Na₂SO₄, concentrated *in vacuo*, and purified by flash chromatography (30.0 g silica, 10% MeOH/DCM) to obtain **20** (10 mg, 20.8%). R_f = 0.13

(10% MeOH/DCM, visualized w/ KMnO₄). ¹H NMR (700 MHz, CDCl₃): δ= 7.18– 7.11 (m, 1H), 6.80 (br s, 1H), 5.34 (p, *J* = 5.8, 5.4 Hz, 4H), 5.22 (br s, 1H), 4.35 (t, *J* = 11.2 Hz, 1H), 4.12 (br s, 1H), 3.91 (br s, 2.5H), 3.54–3.48 (m, 2.5H), 3.15 (q, *J* = 7.3 Hz, 2H), 2.54 (m, 3.5H), 2.30– 2.28 (m, 7.5H), 2.00 (q, *J* = 6.6 Hz, 8H), 1.92 (m, 2H), 1.62–1.57 (m, 4H), 1.47–1.43 (m, 1H), 1.39 (s, 9H), 1.36–1.26 (m, 40H), 0.87 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (176 MHz, CDCl₃): δ = 173.85, 162.78, 130.14, 129.80, 129.79, 129.79, 114.04, 79.98, 70.46, 63.80, 62.89, 54.75, 46.56, 34.35, 34.18, 32.05, 29.92, 29.85, 29.69, 29.48, 29.47, 29.40, 29.38, 29.33, 29.28, 28.59, 27.38, 25.05, 24.98, 22.83, 14.27, 12.35, 8.76. HRMS (ESI): Calcd for C₅₆H₉₈F₂N₂O₁₁P [M+H]⁺: 1043.6871, found: 1043.6854.

To an ice-cold solution of **20** (10.0 mg, 0.009 mmol, 1.0 eq) in DCM (2.0 mL) was added TFA (0.4 mL) and the reaction was allowed to gradually warm to rt over 2 h. The reaction was concentrated *in vacuo* to obtain crude **21** as a TFA salt. One half of this reaction was purified on analytical column using HPLC (75–100% MeOH over 15 mins, flow rate = 1 mL/min) to obtain **21** (2 mg, 40 %) and the other half was used directly without further purification for next reaction. We found the HPLC purification to be extremely challenging as it required multiple rounds of purification with poor separation. ¹H NMR (700 MHz, CDCl₃): δ = 8.02 (s, 1H), 7.24 (br s, 1H), 6.88 (br s, 1H), 5.34 (p, *J* = 5.8, 5.4 Hz, 4H), 5.22 (br s, 1H), 4.34 (d, *J* = 11.8, 1H), 4.13 (dd, *J* =

12.2, 6.5 Hz, 1H), 3.99–3.96 (m, 5H), 3.58 (br s, 1H), 3.44 (br s, 2H), 3.32 (br s, 1H), 2.75–2.72 (m, 1H), 2.65–2.59 (m, 3H), 2.35–2.28 (m, 6H), 2.11 (br s, 1.5H),

2.00 (d, J = 6.7 Hz, 8H), 1.59 (d, J = 6.9 Hz, 5H), 1.32–1.27 (m, 40H), 0.88 (t, J = 7.0 Hz, 6H). ¹³C NMR (176 MHz, CDCl₃): $\delta = 173.68$, 173.44, 173.31, 162.85, 130.18, 129.82, 129.80, 123.88, 119.77, 99.96, 70.01, 69.97, 65.44, 64.41, 62.34, 62.29, 40.41, 39.49, 36.74, 34.90, 34.33, 34.17, 33.63, 32.06, 31.67, 29.91, 29.88, 29.68, 29.47, 29.43, 29.37, 29.30, 29.26, 29.22, 27.37, 27.33, 25.00, 24.97, 22.83, 22.16, 22.13, 14.27. HRMS (ESI): Calcd for C₅₁H₈₉F₂N₂O₉P [M+H]⁺: 943.6347, found: 943.6329.

To an ice-cold suspension of the second half of crude TFA salt **21**, obtained from the previous step, in MeCN (3.0 mL) and water (1.0 mL) was added aq. NaHCO₃ (20 mg, 0.6 mL H₂O, reaction pH ~ 8.5). To this reaction mixture was added Nvoc-Cl (3.04 mg, 0.011 mmol, 1.2 eq) and the reaction was allowed to warm up to rt overnight under dark. The reaction was extracted using DCM and water. The combined organic layer was dried over anhydrous Na₂SO₄, concentrated *in vacuo*, and subjected to HPLC purification (50–100% MeOH over 15 mins, flow rate = 1 mL/min) to obtain **22** (2 mg, 38.4% over two steps). R_f = 0.18 (10% MeOH/DCM, visualized w/ UV). HRMS (ESI): Calcd for C₆₁H₉₉F₂N₃O₁₅P [M+H]⁺: 1182.6776, found: 1182.6803.

¹H NMR (700 MHz)

¹³C NMR (176 MHz)

¹H NMR (700 MHz)

¹³C NMR (176 MHz)

References

- (1) Clark, W.; Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. **1978**, 43 (14), 2923–2925.
- (2) Kumar, P.; Jiang, T.; Li, S.; Zainul, O.; Laughlin, S. T. *Org. Biomol. Chem.* **2018**, *16* (22), 4081–4085.
- (3) Longobardo, L.; Cecere, N.; DellaGreca, M.; De Paola, I. *Amino Acids* **2013**, *44* (2), 443–448.
- (4) Le, G.; Mark, D. Preparation of oxazolidin-2-one compounds and uses thereof as PI3K inhibitors. WO 2005026113, 2005.
- (5) Lee, Y.; Lee, S.; Jeon, H.; Baek, D.; Seo, J.; Kim, D.; Kim, S. *Synthesis (Stuttg).* **2011**, *2011* (06), 867–872.