

Figure S1: Flow cytometry analysis of mature bone marrow, spleen, and thymic hematopoietic populations, Related to Figure 2.

- A) Representative flow cytometry analysis of mature myeloid, erythroid, and macrophage populations in the bone marrow of 1-year-old mice.
- B) Representative flow cytometry analysis of mature B cell and T cell populations in the spleen of 1-year-old mice.
- C) Representative flow cytometry analysis of T cell populations in the thymus of 1-yearold mice.
- D) Percentages of *Carm1*^{Δ/Δ};Vav1-Cre⁺ and *Carm1*^{FI/FI};Vav1-Cre⁻ age-matched mice for mature bone marrow and spleen populations. n=5, n.s.= no significant differences.
- E) Average percentages of $Carm1^{\Delta/\Delta}$; Vav1-Cre⁺ and $Carm1^{FI/FI}$; Vav1-Cre⁻ age-matched mice for thymic T-cell populations. n=5, n.s.= no significant difference. *p< 0.05. Bar graphs represent the mean ± SD. Statistics represent a Student's t-test for samples of unequal variance.

L

Relative expression/Gapdh

•

••

Bone Warrow

•<u>•</u>•

Spleen

■ *Carm1*^{+/+};Mx1-Cre⁺ ■ *Carm1*^{∆/∆};Mx1-Cre⁺

Μ

Κ

Figure S2: Characterization of AE9a and MLL-AF9 mice by flow cytometry, organ histology, and blood counts, Related to Figure 3.

- A) Representative flow cytometry plot of GFP⁺ and CD45.1⁺ peripheral blood engraftment over time in the AE9a recipient initiation experiments.
- B) Average AE9a Carm1^{FI/FI}; Vav1-Cre⁻, Carm1^{Δ/+}; Vav1-Cre⁺, and Carm1^{Δ/Δ}; Vav1-Cre⁺ recipient white blood cell count (WBC) over time. n = 10, *p<0.01</p>
- C) Average MLL-AF9 Carm1^{FI/FI}; Vav1-Cre⁻, Carm1^{$\Delta/+$}; Vav1-Cre⁺, and Carm1^{Δ/Δ}; Vav1-Cre⁺ recipient white blood cell count (WBC) over time. n = 10, *p<0.01
- D) Average AE9a Carm1^{FI/FI}; Vav1-Cre⁻, Carm1^{$\Delta/+$}; Vav1-Cre⁺, and Carm1^{Δ/Δ}; Vav1-Cre⁺ recipient peripheral blood GFP⁺ percentage over time. n = 10, *p<0.01
- E) Average AE9a Carm1^{FI/FI}; Vav1-Cre⁻, Carm1^{$\Delta/4$}; Vav1-Cre⁺, and Carm1^{Δ/Δ}; Vav1-Cre⁺ recipient peripheral blood GFP⁺ percentage over time. n = 10, *p<0.01
- F) Representative spleen size for AE9a Carm1^{Fl/Fl};Vav1-Cre⁻, Carm1^{Δ/+};Vav1-Cre⁺, and Carm1^{Δ/Δ};Vav1-Cre⁺ recipient mice, three months post-transplant.
- G) Representative spleen size for MLL-AF9 Carm1^{FI/FI}; Vav1-Cre⁻, Carm1^{$\Delta/4$}; Vav1-Cre⁺, and Carm1^{Δ/Δ}; Vav1-Cre⁺ recipient mice, three months post-transplant.
- H) Average spleen weight for AE9a Carm1^{FI/FI}; Vav1-Cre⁻, Carm1^{Δ/+}; Vav1-Cre⁺, and Carm1^{Δ/Δ}; Vav1-Cre⁺ recipient mice, three months post-transplant. n = 10, *p<0.01, **p<0.001</p>
- Average spleen weight for MLL-AF9 Carm1^{FI/FI}; Vav1-Cre⁻, Carm1^{Δ/+}; Vav1-Cre⁺, and Carm1^{Δ/Δ}; Vav1-Cre⁺ recipient mice, three months post-transplant. n =10, **p<0.001, n.s. = no significant differences
- J) Histological analysis of Carm1^{FI/FI};Vav1-Cre⁻ and Carm1^{Δ/Δ};Vav1-Cre⁺ recipient mice. Scale bars represent 20 µm for the bone marrow, peripheral blood smears and bone marrow cytospins. Scale bars for the spleen represents 100 µm (spleen and bone marrow) or 20 µm (peripheral blood smears and bone marrow cytospins)
- K) PCR for the knockout of *Carm1* post poly(I:C) induction in $Carm1^{+/+}$;Mx1-Cre⁺, *Carm1*^{$\Delta/+};Mx1-Cre⁺$, and *Carm1*^{Δ/Δ};Mx1-Cre⁺ maintenance recipient mice pre and post induction of Cre by poly(I:C).</sup>
- L) Expression of *Carm1* in *Carm1*^{Δ/Δ};Mx1-Cre⁺ maintenance recipient mice normalized to *Gapdh* and compared to *Carm1*^{+/+};Mx1-Cre⁺ recipient mice.
- M) Comparison of CARM1 protein expression in fetal liver cells transduced with the MIGR1 vector alone, or MIGR1 AML1-ETO (AE), AML1-ETO9a (AE9a), MLL-AF9, or BCR-ABL β-ACTIN is shown as a loading control.

All error bars represent the mean \pm SD. Statistics represent a Student's t-test for samples of unequal variance.

Replating Number

В

А

Figure S3: In vitro rescue of CARM1, Related to Figure 3.

- A) Morphological analysis of colony formation (top) and colony cytospins (bottom) from MLL-AF9 and AE9a Carm1^{FI/FI};Vav1-Cre⁻ and Carm1^{Δ/Δ};Vav1-Cre⁺ fetal liver cells cultured in M3434 methylcellulose. Scale bar (top) = 50 µm, Scale bar (bottom)= 20 µm
- B) Representative flow cytometry plot for GFP and the macrophage cell differentiation marker F4/80 in the AE9a Carm1^{FI/FI};Vav1-Cre⁻ and Carm1^{Δ/Δ};Vav1-Cre⁺ fetal liver cells after the second replating.
- C) CARM1 protein levels following tranduction of Carm1^{FI/FI}; Vav1-Cre⁻ and Carm1^{Δ/Δ}; Vav1-Cre⁺ fetal liver cells with either vector alone, Carm1^{WT} or Carm1^{EQ}. β-ACTIN is shown as a loading control.
- D) Carm1 mRNA levels following transduction of Carm1^{FI/FI}; Vav1-Cre⁻ and Carm1^{Δ/Δ}; Vav1-Cre⁺ fetal liver cells with either vector alone, Carm1^{WT} or Carm1^{EQ}, normalized to Gapdh. n.s.= no significant differences
- E) Western blot analysis of CARM1 enzymatic activity following transduction of Carm1^{FI/FI}; Vav1-Cre⁻ and Carm1^{Δ/Δ}; Vav1-Cre⁺ fetal liver cells with either vector alone, Carm1^{WT} or Carm1^{EQ}. β-ACTIN is shown as a loading control.
- F) CFU replating assay of MLL-AF9 expressing Carm1^{FI/FI}; Vav1-Cre⁻ and Carm1^{Δ/Δ}; Vav1-Cre⁺ fetal liver cells transduced with either vector alone, Carm1^{WT} or Carm1^{EQ}. *p< 0.01</p>
- G) Average colony percentage of MLL-AF9 expressing Carm1^{FI/FI};Vav1-Cre⁻ and Carm1^{Δ/Δ};Vav1-Cre⁺ fetal liver cells transduced with either vector alone, Carm1^{WT} or Carm1^{EQ}, scoring CFU-M, CFU-GM, and CFU-GEMM from triplicate CFU experiments after replating 4. *p< 0.01
- H) CFU replating assay of AE9a expressing Carm1^{FI/FI}; Vav1-Cre⁻ and Carm1^{Δ/Δ}; Vav1-Cre⁺ fetal liver cells transduced with either vector alone, Carm1^{WT} or Carm1^{EQ}. Error bars represent the mean ± SD for three independent experiments.*p< 0.01</p>
- I) Average colony percentage of AE9a expressing Carm1^{FI/FI}; Vav1-Cre⁻ and Carm1^{Δ/Δ}; Vav1-Cre⁺ fetal liver cells transduced with either vector alone, Carm1^{WT} or Carm1^{EQ} scoring CFU-M, CFU-GM, and CFU-GEMM from triplicate CFU experiments after replating 4. *p< 0.01</p>

All error bars represent the mean \pm SD. Statistics represent a Student's t-test for samples of unequal variance.

А

D

F

8.6

Figure S4. Comparison of CARM1 mRNA, isoform abundance, and target methylation in AML cell lines, Related to Figure 5.

A) Quantitative RT-PCR for *CARM1* mRNA expression in 16 AML cell lines and CD34⁺ cells. Error bars represent the mean \pm SD of three independent experiments. Statistics represent a Student's t-test for samples of unequal variance.

B) Quantification of $\log_2 BAF155me2a$ compared to CARM1 protein expression in 16 AML cell lines and CD34⁺ cells. Spearman correlation and linear regression: p value = 0.196, R² = 0.116

C) Representative western blot showing levels of methylated BAF155 and total BAF155 in 18 AML cells lines and CD34⁺ cells. β -ACTIN is shown as a loading control.

D) Comparison of the log_2 AUC for 18 cell lines and CD34⁺ cells treated with EPZ025654 for 10 days vs. log_2 BAF155me2a. Spearman correlation and linear regression: p value = 0.213, R² = 0.1095

E) Quantification of *CARM1* full length (FL) and *CARM1* lacking exon 15 (Δ 15) by semi quantitative RT-PCR. Error bars represent the mean ± SD from three independent samples from each cell line. Statistics represent a Student's t-test for samples of unequal variance.

F) Comparison of the log_2 AUC for 18 cell lines and CD34⁺ cells treated with EPZ025654 for 10 days vs. isoform ratios. Spearman correlation and linear regression: p value = 0.194, R² = 0.0005

Table S2. Top 100 differentially regulated genes in AML cell lines, Related to Figure 5.

Gene ID	HGNC symbol	p value	Adjusted p value	log ₂ FoldChange
ENSG00000166803_KIAA0101	KIAA0101	2.84E-09	9.99E-07	-2.34
ENSG00000124635_HIST1H2BJ	HIST1H2BJ	6.63E-10	2.88E-07	-2.21
ENSG00000142453_CARM1	CARM1	2.23E-25	5.09E-21	-2.21
ENSG00000196584_XRCC2	XRCC2	3.26E-18	1.86E-14	-2.07
ENSG00000065328_MCM10	MCM10	2.87E-08	6.78E-06	-2.01
ENSG00000159259_CHAF1B	CHAF1B	1.00E-08	2.85E-06	-1.95
ENSG00000128408_RIBC2	RIBC2	2.45E-17	1.12E-13	-1.89
ENSG00000276043_UHRF1	UHRF1	2.54E-12	2.23E-09	-1.88
ENSG00000127564_PKMYT1	PKMYT1	1.06E-12	1.05E-09	-1.87
ENSG00000256663_RP11-424C20.2	RP11-424C20.2	4.49E-10	2.14E-07	-1.84
ENSG00000171320_ESCO2	ESCO2	6.83E-10	2.89E-07	-1.83
ENSG00000121211_MND1	MND1	2.35E-13	2.99E-10	-1.83
ENSG00000215784_FAM72D	FAM72D	1.68E-13	2.37E-10	-1.81
ENSG00000092470_WDR76	WDR76	1.87E-08	4.70E-06	-1.80
ENSG00000159055_MIS18A	MIS18A	3.61E-14	6.35E-11	-1.77
ENSG00000165490_DDIAS	DDIAS	3.38E-08	7.74E-06	-1.73
ENSG00000168078_PBK	PBK	8.20E-09	2.44E-06	-1.71
ENSG00000104738_MCM4	MCM4	8.81E-22	1.01E-17	-1.71
ENSG00000119969_HELLS	HELLS	2.41E-15	6.13E-12	-1.71
ENSG00000188610_FAM72B	FAM72B	5.32E-10	2.48E-07	-1.63
ENSG00000105011_ASF1B	ASF1B	3.70E-09	1.26E-06	-1.59
ENSG00000076003_MCM6	MCM6	4.81E-16	1.83E-12	-1.57
ENSG00000137812_KNL1	KNL1	9.85E-10	3.69E-07	-1.56
ENSG00000164109_MAD2L1	MAD2L1	5.34E-11	3.13E-08	-1.56
ENSG0000060982_BCAT1	BCAT1	2.57E-11	1.73E-08	-1.56
ENSG00000123219_CENPK	CENPK	1.86E-08	4.70E-06	-1.54
ENSG00000132436_FIGNL1	FIGNL1	4.86E-15	1.01E-11	-1.51
ENSG00000277224_HIST1H2BF	HIST1H2BF	1.05E-08	2.93E-06	-1.50
ENSG00000175279_CENPS	CENPS	1.21E-08	3.29E-06	-1.47
ENSG00000091651_ORC6	ORC6	3.87E-09	1.30E-06	-1.45
ENSG00000196550_FAM72A	FAM72A	6.14E-13	6.39E-10	-1.44
ENSG00000012048_BRCA1	BRCA1	6.42E-15	1.22E-11	-1.44
ENSG00000111445_RFC5	RFC5	1.76E-13	2.37E-10	-1.44
ENSG00000198056_PRIM1	PRIM1	3.06E-10	1.52E-07	-1.43
ENSG00000146918_NCAPG2	NCAPG2	2.80E-12	2.37E-09	-1.43
ENSG00000162062_C16orf59	C16orf59	1.61E-08	4.24E-06	-1.39
ENSG00000122952_ZWINT	ZWINT	5.36E-09	1.78E-06	-1.35
ENSG00000164087_POC1A	POC1A	2.93E-13	3.53E-10	-1.33
ENSG00000167325_RRM1	RRM1	9.71E-16	2.77E-12	-1.31
ENSG00000058804_NDC1	NDC1	1.11E-11	8.74E-09	-1.31
ENSG00000109881_CCDC34	CCDC34	1.03E-11	8.38E-09	-1.30
ENSG00000112118_MCM3	МСМ3	6.06E-09	1.90E-06	-1.30
ENSG00000177602_GSG2	GSG2	9.96E-09	2.85E-06	-1.29
ENSG00000097046_CDC7	CDC7	1.83E-11	1.27E-08	-1.28
ENSG00000153044_CENPH	CENPH	2.47E-10	1.25E-07	-1.26

Gene ID	HGNC symbol	p value	Adjusted p value	log ₂ FoldChange
ENSG00000156802_ATAD2	ATAD2	1.64E-10	8.52E-08	-1.25
ENSG00000149636_DSN1	DSN1	3.05E-15	6.98E-12	-1.24
ENSG00000112029_FBXO5	FBXO5	1.33E-08	3.54E-06	-1.22
ENSG00000213585_VDAC1	VDAC1	1.13E-09	4.09E-07	-1.21
ENSG00000197299_BLM	BLM	1.51E-11	1.12E-08	-1.21
ENSG00000104889_RNASEH2A	RNASEH2A	9.14E-10	3.52E-07	-1.21
ENSG00000112312_GMNN	GMNN	2.07E-12	1.97E-09	-1.20
ENSG00000158169_FANCC	FANCC	5.23E-14	8.54E-11	-1.19
ENSG00000040275_SPDL1	SPDL1	9.24E-10	3.52E-07	-1.18
ENSG00000146263_MMS22L	MMS22L	1.01E-08	2.85E-06	-1.18
ENSG00000144554_FANCD2	FANCD2	1.84E-08	4.70E-06	-1.13
ENSG00000136824_SMC2	SMC2	1.73E-11	1.24E-08	-1.13
ENSG00000176974_SHMT1	SHMT1	4.30E-11	2.66E-08	-1.10
ENSG00000077514_POLD3	POLD3	3.82E-19	2.91E-15	-1.09
ENSG00000178966_RMI1	RMI1	7.55E-16	2.47E-12	-1.08
ENSG00000166881_NEMP1	NEMP1	5.87E-09	1.88E-06	-1.06
ENSG00000120802_TMPO	ТМРО	6.06E-11	3.47E-08	-1.05
ENSG00000156876_SASS6	SASS6	8.69E-10	3.52E-07	-1.05
ENSG00000106399_RPA3	RPA3	1.20E-10	6.36E-08	-1.04
ENSG00000075131_TIPIN	TIPIN	2.67E-11	1.75E-08	-1.01
ENSG00000080839_RBL1	RBL1	1.22E-13	1.86E-10	-0.99
ENSG00000172009_THOP1	THOP1	1.26E-08	3.40E-06	-0.98
ENSG00000101868_POLA1	POLA1	6.16E-10	2.76E-07	-0.97
ENSG00000198826_ARHGAP11A	ARHGAP11A	8.96E-10	3.52E-07	-0.96
ENSG00000184445_KNTC1	KNTC1	3.60E-10	1.75E-07	-0.96
ENSG00000106462_EZH2	EZH2	4.53E-11	2.73E-08	-0.95
ENSG00000204899_MZT1	MZT1	2.10E-08	5.16E-06	-0.93
ENSG00000014138_POLA2	POLA2	3.55E-11	2.26E-08	-0.91
ENSG00000213390_ARHGAP19	ARHGAP19	6.19E-09	1.91E-06	-0.88
ENSG00000166483_WEE1	WEE1	2.97E-08	6.93E-06	-0.85
ENSG00000138780_GSTCD	GSTCD	2.36E-12	2.16E-09	-0.84
ENSG00000105486_LIG1	LIG1	1.19E-10	6.36E-08	-0.83
ENSG00000171208_NETO2	NETO2	1.92E-08	4.77E-06	-0.81
ENSG00000079616_KIF22	KIF22	3.45E-09	1.19E-06	-0.79
ENSG00000166147_FBN1	FBN1	1.82E-09	6.50E-07	-0.79
ENSG00000163781_TOPBP1	TOPBP1	3.89E-13	4.45E-10	-0.77
ENSG00000111775_COX6A1	COX6A1	5.51E-10	2.52E-07	-0.71
ENSG00000120539_MASTL	MASTL	2.24E-08	5.38E-06	-0.69
ENSG00000198924_DCLRE1A	DCLRE1A	1.14E-08	3.14E-06	-0.64
ENSG00000129484_PARP2	PARP2	5.93E-09	1.88E-06	-0.64
ENSG00000232653_GOLGA8N	GOLGA8N	6.92E-09	2.11E-06	-0.57
ENSG00000143315_PIGM	PIGM	2.16E-08	5.25E-06	-0.44
ENSG00000142687_KIAA0319L	KIAA0319L	3.22E-08	7.43E-06	0.50
ENSG0000060971_ACAA1	ACAA1	2.30E-08	5.48E-06	0.57
ENSG00000112679_DUSP22	DUSP22	5.16E-13	5.62E-10	0.70

Gene ID	HGNC symbol	p value	Adjusted p value	log₂FoldChange
ENSG00000243749_TMEM35B	TMEM35B	8.82E-10	3.52E-07	0.87
ENSG00000163956_LRPAP1	LRPAP1	8.43E-09	2.47E-06	0.88
ENSG00000161011_SQSTM1	SQSTM1	1.11E-09	4.09E-07	0.89
ENSG00000167996_FTH1	FTH1	8.49E-10	3.52E-07	1.41
ENSG00000177606_JUN	JUN	6.68E-10	2.88E-07	1.58
ENSG00000185909_KLHDC8B	KLHDC8B	7.14E-09	2.15E-06	2.04
ENSG00000100292_HMOX1	HMOX1	5.92E-09	1.88E-06	2.33
ENSG00000244734_HBB	HBB	1.26E-11	9.57E-09	6.09

* Red font represents gene associated with Gene Ontology Term 'Cell Cycle Progression'*

CARM1-KD1 CARM1-KD2

n.s.

NOXA-FL

Exon 1

Exon 2a

Exon 2b UGA

Exon 2

UGA

Figure S5: Characterization of alternative splicing in leukemia cell lines in response to CARM1 knockdown, Related to Figure 5.

- A) Number of significant alternative splicing events for the SKNO-1, MV4-11, and MOLM-13 cells lines. Events are annotated as Retained Intron (RI), Alternative 3' Splice Site (A3SS), Alternative 5' Splice Site (A5SS), Mutually Exclusive Exons (MXE), or Skipped Exon (SE). Events were considered significant if present in both CARM1 KD samples and not the scrambled control for each cell line.
- B) Gene ontology (GO) analysis of significant skipped exon events common to all three cell lines. Bars represent the –log10 p value.
- C) Schematic of PMAIP transcripts.
- D) Sashimi plot for PMAIP1/NOXA in Scrambled, CARM1-KD1, or CARM1-KD2 MV4-11 (left) and MOLM-13 (right) cells.
- E) Full length PMAIP/NOXA mRNA expression in Scrambled, CARM1-KD1, or CARM1-KD2 sorted MV4-11 (left) and MOLM-13 (right) cells, normalized to GAPDH. Results represent the mean ± SD of three independent experiments. n=3, *p<0.05 Statistics represent a Student's t-test for samples of unequal variance.</p>

Е

Annexin V

Н

6-

5.

4

3

2

1

0-

CD34+

Fold Upregulation

AML1-ETO+

G

Figure S6. Biological comparison of pharmacological inhibition of EPZ025654 and EPZ029751, Related to Figure 6.

A) Quantification of immunoblots showing the percent inhibition of BAF155me2a vs. BAF155 total protein expression in SKNO-1 cells after 48 hours of treatment with increasing doses of the active CARM1 inhibitor (EPZ025654) and control compound(EPZ029751).

B) Log[EPZ05654] compared to the percent inhibition of the asymmetric methylation of BAF155 in CD34⁺, MV4-11, KASUMI-1, SKNO-1, HEL, or mouse AE9a cells treated for 48 hours. Data points represent the quantification of BAF155me2a and total BAF155 by western blot. Lines represent the non-linear regression fit with variable slope.

C) Comparison of the effects of EPZ025654 or EZP029751 on Annexin V/DAPI positivity after 7 days of treatment. Cells treated with 125 μ M or 250 μ M of H₂O₂ are shown as a positive control for apoptosis.

D) Western blot comparing the effects of EPZ025654 or EZP029751 on PARP cleavage in SKNO-1 cells after 7 days of treatment (top). Cells treated with 125 μ M of H₂O₂ are shown as a positive control. β -ACTIN is shown as a loading control. Quantification of Cleaved/Total PARP for three independent experiments (bottom).

E) Comparison of the effects of EPZ025654 or EZP029751 on cell viability after 7 days of treatment as measured by Cell Titer Glo. n = 3, *p <0.01

F) IHC for senescence associated β -galactosidase in SKNO-1 cells treated with 1 μ M or 5 μ M of EPZ025654 for 6 days. Cells with no treatment, identical doses of the control compound EPZ02975, or Doxorubicin (Dox) are shown for comparison. Scale bar = 20 μ m

G) Quantification of percentage senescence associated β -galactosidase positive SKNO-1 cells treated with EPZ025654 or EPZ029751 for 6 days. Doxorubicin (Dox) is shown as a positive control for senescence. Scale bar = 20 µm, n=2, *p< 0.01.

H) Comparison of *CARM1* expression in AML1-ETO⁺ AML patients in the Eastern Cooperative Oncology Group (ECOG) cohort compared to normal CD34⁺ controls. I) Comparison of *CARM1* expression following the KD of AML1-ETO in the t(8;21) positive cell line, Kasumi-1. n=3, *p<0.01

J) Evaluation of AML1-ETO specific gene regulation (*CEBPA*, *ID1*, *EGR1*, and *CDKN1A*) over time in SKNO-1 cells treated with 5 μ M EPZ025654 for 7 days. Expression is relative to *GAPDH*. n=3 , *p<0.01

K) Evaluation of MLL-AF9 specific gene regulation (*HOXA9*, *MEIS1*, *FLT3*, and *LMO2*) over time in MV4-11 cells treated with 5 μ M EPZ025654 for 7 days. Expression is relative to *GAPDH*. n=3, n.s. = no significant differences

For all bar graphs, error bars represent the mean \pm SD. Statistics represent a Student's t-test for samples of unequal variance.

F

EZM2302

Vehicle

Figure S7. Evaluation of in vivo CARM1 inhibitor treatment, Related to Figure 7.

A) Western blot analysis for BAF155 and PABP1 asymmetric methylation in the spleen of mice treated with either vehicle or 100 mg/kg EZM2302 for three weeks. β -ACTIN is shown as a loading control. n = 5

B) Daily percentage body weight change for mice treated with either vehicle or 100 mg/kg EZM2302 for three weeks. n = 5, n.s.= not statistically significant

C) Frequency of hematopoietic stem and progenitor populations from mice treated with either vehicle or 100 mg/kg EZM2302 for three weeks. n = 5, n.s. = not statistically significant

D) Frequency of mature hematopoietic populations in the bone marrow, spleen, and thymus, from mice treated with either vehicle or 100 mg/kg EZM2302 for three weeks. n= 5, n.s. = not statistically significant

E) Comparison of spleen weights, peripheral blood white blood cell (WBC), red blood cell (RBC), and platelet (PLT) counts from mice treated with either vehicle or 100 mg/kg EZM2302 for three weeks. n = 5, n.s. = not statistically significant

F) Image showing spleen morphology of mice treated with either vehicle or 100 mg/kg EZM2302 for three weeks. n = 5

All error bars represent the mean \pm SD. Statistics represent a Student's t-test for samples of unequal variance.

Cell line	Viability EPZ025654	Media	Age	Sex	Reported mutations (CCLE/COSMIC/Tru Myeloid)	FABª	Fusion Oncoprotein
CD34⁺	>10 µM	X-vivo +20% BIT	N/A	N/A	N/A	N/A	N/A
AML-14	>10 µM	RPMI 10%	68	М	TP53, NRAS	M2	
HEL	>10 µM	RPMI 10%	30	М	JAK2V617F,TET2, KMT2D, TP53, EP300	M6	
HL-60	6.3 µM	IMDM 20%	36	F	CDKN2A, NRAS, SF3B1	M2	
KASUMI-1	1.4 µM	RPMI 20%	7	М	C-KIT, TP53, ASXL1, CBP, RAD21	M2	AML1-ETO
MOLM-13	1.1 µM	RPMI 10%	20	М	FLT3/ITD, CBL, KMT2A, KMT2C, NF1, SETD1A	M5	MLL-AF9
MONO-MAC6	>10 µM	RPMI 10%	64	М	FLT3/ITD, KAT6B, RUNX1, ARID2A, ASXL1, IDH1, U2AF1	M5	MLL-AF9
MV4-11	3.0 µM	IMDM 10%	10	М	FLT3/ITD, NPM1	M5	MLL-AF4
NB-4	2.3 µM	RPMI 10%	23	F	KRAS, TP53, ETO, EP300, MOZ, ASXL2	M3	PML-RARA
NOMO-1	1.1 µM	RPMI 10%	31	F	KRAS, ASXL1, EP300, SF3B1, TP53, CDKN1B, KMT2C	M5	MLL-AF9
OCI-AML3	0.1 µM	alpha-MEM 20% FBS	57	М	NPM1, NRAS, DNMT3A	M4	
SET-2	7.8 µM	RPMI 20%	71	F	JAK2V617F, TP53, UTX, DNMT3A	N.D.	
SKNO-1	0.4 µM	RPMI 10% +GM-CSF	22	М	TP53, KDM6B, KRAS, TET2, ASXL1	M2	AML1-ETO
SKM-1	2.2 µM	RPMI 20%	76	М	TP53, c-KIT	M5	
TF-1	0.2 µM	RPMI 10%+ IL-3	35	М	TP53, NRAS	M6	
THP-1	6.3 µM	RPMI 10%	1	М	CDKN2A, NRAS, TP53, ARID1A, UTX	M5	MLL-AF9
U-937	1.0 µM	RPMI 10%	37	М	TP53, WT1, PTEN, ETV6, PTPN11	M5	
UKE-1	3.5 uM	IMDM 10% +HS+HC	59	F	JAK2V617F, IKZF1, EZH2, ETV6, PTPN11, STAG2	N.D.	

Table S4. IC_{50} of leukemia cell lines treated with EPZ025654 for 10 days, Related to Figure 7.

^aFAB: French-American-British classification system

Probe	Source	Identifier
GAPDH (human)	Thermo Fisher	Hs02758991_g1
CARM1 (human)	Thermo Fisher	Hs00406354_m1
MEIS1 (human)	Thermo Fisher	Hs01017441_m1
HOXA9 (human)	Thermo Fisher	Hs00365956_m1
FLT3 (human)	Thermo Fisher	Hs00174690_m1
LMO2 (human)	Thermo Fisher	Hs00153473_m1
<i>E</i> 2 <i>F1</i> (human)	Thermo Fisher	Hs00153451_m1
<i>E2F</i> 2 (human)	Thermo Fisher	Hs00231667_m1
CENPA (human)	Thermo Fisher	Hs0015655_m1
CDC25A (human)	Thermo Fisher	Hs00947994_m1
MYBL2 (human)	Thermo Fisher	Hs00942543_m1
TOP2A (human)	Thermo Fisher	Hs01032137_m1
UHRF1 (human)	Thermo Fisher	Hs00380204_m1
<i>E2F1</i> (human)	Thermo Fisher	Hs00153451_m1
<i>E2F</i> 2 (human)	Thermo Fisher	Hs00231667_m1
<i>E2F</i> 3 (human)	Thermo Fisher	Hs00605457_m1
<i>E2F4</i> (human)	Thermo Fisher	Hs00608098_m1
<i>E2F5</i> (human)	Thermo Fisher	Hs00231092_m1
<i>E2F6</i> (human)	Thermo Fisher	Hs01034552_m1
E2F7 (human)	Thermo Fisher	Hs00403170_m1
<i>E2F8</i> (human)	Thermo Fisher	Hs00226635_m1
<i>TP53</i> (human)	Thermo Fisher	Hs01034249_m1
CDKN1A (human)	Thermo Fisher	Hs00355782_m1
Gapdh (mouse)	Thermo Fisher	Mm99999915_g1
Carm1 (mouse)	Thermo Fisher	Mm01171448_m1

Table S6. Primers used in study, Related to STAR methods
--