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Appendix for “Time-to-event Bayesian Optimal Interval Design to Accelerate Phase I 
Trials” by Yuan, Lin, Li, Nie and Warren. 

 

A.   Statistical Principles of the TITE-BOIN Design 

Let 𝑦" denote the binary DLT outcome, with 𝑦" =1 indicating that the ith patient experiences DLT, and 𝑦" 
= 0 indicating that the ith patient does not experience DLT. Suppose that at a certain moment in the trial, a 
total of 𝑛	  patients have been enrolled at the current dose, among which 𝑟	  patients have completed the 
DLT assessment and their DLT data 𝑦" are known, and 𝑐 = 𝑛 − 𝑟	  patients have not completed the DLT 
assessment and their DLT data 𝑦" are pending. Let 𝑂 denote the set of patients whose DLT data are 
known (i.e., observed), and 𝑀	  denote the set of patients whose DLT data are pending (i.e., missing). Let 𝑝 
denote the true DLT rate of the current dose level. Under the BOIN design, the dose escalation and de-
escalation decision is determined by comparing the estimate of 𝑝, given by 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �̂� =
∑ 𝑦""∈/ +	  ∑ 𝑦""∈1

𝑛 	  ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   (1) 

with a pair of fixed, predetermined escalation and de-escalation boundaries, 𝜆7 and 𝜆8. If �̂� ≤ 𝜆7, escalate 
the dose to the next higher level; if �̂� ≥ 𝜆8, de-escalate the dose to the next lower level; otherwise stay at 
the current dose. Given the target DLT rate of 𝜙, and assuming the noninformative prior that a priori the 
current dose is equally likely to be below, equal to or above the MTD, the optimal escalation and de-
escalation boundaries 𝜆7 and 𝜆8 that minimize the incorrect decision of dose escalation and de-escalation 
are given by   

𝜆7 = log
1 − 𝜙?
1 − 𝜙 log

𝜙(1 − 𝜙?)
𝜙?(1 − 𝜙)

@  

𝜆8 = log
1 − 𝜙
1 − 𝜙A

log
𝜙A(1 − 𝜙)
𝜙(1 − 𝜙A)

@  

where 𝜙? is the highest toxicity probability that is deemed subtherapeutic (i.e., below the MTD) such that 
dose escalation should be made, and 𝜙A	  is the lowest toxicity probability that is deemed overly toxic such 
that dose de-escalation is required. Liu and Yuan (2016) recommend default values 𝜙? = 0.6𝜙 and 𝜙A =
1.4𝜙 for general use. Because of using the non-informative prior, the decision rule of the BOIN has an 
appearance of the classical frequentist design and only involves the observed DLT rate. Actually, the 
BOIN can also be derived as a frequentist design, and Liu and Yuan (2016) show that its decision rule is 
equivalent to using the likelihood ratio test to determine dose escalation/de-escalation. Having both 
Bayesian and frequentist interpretations is a strength of the BOIN, making it appealing to wider 
audiences. 

In the presence of late-onset toxicity or fast accrual, the difficulty is that 𝑦" is unknown (or 
missing) for patients whose DLT data are pending, i.e., 𝑖 ∈ 𝑀. We handle this missing data problem using 
imputation. Let 𝑇 denote the pre-specified DLT assessment window, 𝑋" denote the time to DLT, and 𝑡" (<
	  𝑇) denote the follow-up time for the patient whose DLT data are pending, i.e., 𝑖 ∈ 𝑀. Assuming that the 
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time to DLT follows a uniform distribution over [0,𝑇], the expected value of 𝑦", 𝑖 ∈ 𝑀, for a patient 
treated at the current dose j with follow-up time 𝑡" is given by 
𝐸(𝑦"|𝑋" > 𝑡") = Pr(𝑦" = 1	  |𝑋" > 𝑡")	  

=
Pr(𝑦" = 1	  ) Pr(𝑋" > 𝑡"	  | 𝑦" = 1)

Pr(𝑦" = 1)Pr(𝑋" > 𝑡"	  | 𝑦" = 1) + Pr(𝑦" = 0) Pr(𝑋" > 𝑡"	  | 𝑦" = 0)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
(2)	  

=
𝑝 S1 − 𝑡"𝑇T

𝑝 S1 − 𝑡"𝑇T + (1 − 𝑝)
	  

≈
𝑝 S1 − 𝑡"𝑇T
(1 − 𝑝)  

A major concern for late-onset toxicity is that it may lead to aggressive dose escalation, thus we take a 
conservative approach by adopting the approximation as the last equation. This approximation slightly 
inflates the expected value of 𝑦" to reduce the chance of aggressive dose escalation, but is sufficiently 
accurate to yield superior operating characteristics (see simulation study) because in practice 𝑝  and thus 
𝑝 S1 − VW

X
T are often small, compared to 1 − 𝑝. The assumption that the time to DLT is uniformly 

distributed over [0,𝑇] seems strong and restrictive, but our numerical study shows that the performance of 
the design is remarkably robust to the violation of this assumption. This result is consistent with that 
reported by Cheung and Chappell (2000) for the TITE-CRM, which also uses the assumption that the time 
to DLT follows a uniform distribution. In Section A2, we describe an approach that does not assume the 
uniform distribution. 

In equation (1), replacing the unknown values of 𝑦", 𝑖 ∈ 𝑀, with its expected value 𝑦Y", and let 𝑠 =
∑ 𝑦""∈/  denote the number of patients experienced DLT, we have  

�̂� =
∑ 𝑦""∈/ +	  ∑ 𝑦Y""∈1

𝑛 	  

=
𝑠 +	  ∑

𝑝 S1 − 𝑡"𝑇T
(1 − 𝑝)"∈1

𝑛 	  

=
𝑠 +	   𝑝

1 − 𝑝 (𝑐 −
1
𝑇 ∑ 𝑡""∈1 )

𝑛  

=
𝑠 +	   𝑝

1 − 𝑝 (𝑐 − STFT)

𝑛 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (3) 

where STFT =∑ 𝑡""∈1 /𝑇 is the standardized total follow-up time (STFT) for pending patients at the 
current dose, and 𝑠 is the number of patients who experienced DLT among the r patients whose DLT data 
are observed at the current dose. In the statistical literature, the above approach is known as single mean 
imputation (Little and Rubin, 2012). One drawback of single mean imputation is that although it provides 
an unbiased and consistent point estimate, the resulting variance estimate is biased because of ignoring the 
imputation uncertainty. In our case, this is not a concern as the decision rules of the BOIN only rely on 
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the point estimate of 𝑝. After the single mean imputation, �̂� is a valid, unbiased point estimate of 𝑝 (Little 
and Rubin, 2012).   

Equation (3) involves an unknown value 𝑝. We replaced it with its Bayesian posterior mean 
estimate �̀� based on the observed data. Assuming the beta-binomial model with the prior 𝑝~𝐵𝑒𝑡𝑎(𝛼, 𝛽), 
the Bayesian posterior mean estimate is given by �̀� = (𝑠 + 𝛼)/(𝑟 + 𝛼 + 𝛽). We use a vague beta prior 
with 𝛼 = 0.5𝜙, and 𝛽 = 1 − 𝛼 such that the prior corresponds to an effective prior sample size of 1 with 
prior mean 𝜙/2.  

One important property of equation (3) is that �̂� is a monotonically decreasing function of STFT. 
This makes it possible to tabulate the decision rule before trial conduct. After some algebra and imposing 
the long-memory coherence property to be consistent with the BOIN, it can be shown that �̂� crosses the 
BOIN escalation boundary 𝜆7 (i.e., �̂�h ≤ 𝜆7) when STFT ≥ 𝜋7; and �̂� crosses the BOIN de-escalation 
boundary 𝜆8 (i.e., �̂�h ≥ 𝜆8) when STFT ≤ 𝜋8, where 𝜋7 and 𝜋8 are given by 

𝜋7 = j𝑐 −
1 − �̀�
�̀� (𝑛𝜆7 − 𝑠)k 𝐼 m

𝑠
𝑛 < 𝜙n +∞𝐼 m

𝑠
𝑛 ≥ 𝜙n	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (4) 

𝜋8 = j𝑐 −
1 − �̀�
�̀� (𝑛𝜆8 − 𝑠)k 𝐼 m

𝑠
𝑛 > 𝜙n − ∞𝐼 m

𝑠
𝑛 ≤ 𝜙n	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (5). 

In other words, if the STFT for 𝑐	  pending patients ≥ 𝜋7, escalate the dose to the next higher level; and if 
the STFT for 𝑐	  pending patients ≤ 𝜋8, de-escalate the dose to the next lower level; otherwise, stay at the 
current dose level. The TITE-BOIN decision tables, such as Table 1 (in the main text; with a target DLT 
rate of 0.2) and Table S1 (with a target DLT rate of 0.3), are generated by this procedure. In equations (4) 
and (5), the indicator function 𝐼 mp

q
< 𝜙n and 𝐼 mp

q
≥ 𝜙n are imposed to ensure that the TITE-BOIN has the 

similar long-memory coherence property as the BOIN (i.e., the dose is never escalated/deescalated if the 
observed DLT rate s/n is greater/smaller than the target DLT rate 𝜙).  

One remarkable feature of the TITE-BOIN is that its decision rule is invariant to 𝑇. This means 
that given a target DLT rate, the same decision table, such as Table 1, can be used to guide dose 
escalation and de-escalation, regardless of the length of the assessment window. For example, Table 1 can 
be used for any trial with the target DLT rate = 0.2, regardless of its assessment window. This is 
practically appealing and greatly simplifies trial protocol preparation because in practice what often varies 
across trials is the assessment window, while the target DLT rate is often 0.2, 0.25 or 0.3. 

During trial conduct, we impose the following overdose control / safety stopping rule: if 
Pr(𝑝 > 𝜙| 𝑠, 𝑛) > 0.95 and 𝑛 ≥ 3, eliminate the current and higher doses from the trial; if the lowest 
dose is eliminated, terminate the trial early for safety. When the current dose is eliminated, the dose is de-
escalated to the next lower level. The posterior probability Pr(𝑝 > 𝜙| 𝑠, 𝑛) is evaluated based on the 
following beta-binomial model: 

𝑠|𝑝~𝐵𝑖𝑛𝑜𝑚(𝑝) 

𝑝~𝐵𝑒𝑡𝑎(1, 1). 

That is, Pr(𝑝 > 𝜙| 𝑠, 𝑛) = 𝐵𝑒𝑡𝑎(𝜙; 	  1 + 𝑠, 𝑛 − 𝑠 + 1), where 𝐵𝑒𝑡𝑎(𝜙; 	  1 + 𝑠, 𝑛 − 𝑠 + 1) is the 
cumulative density function of a beta distribution evaluated at 𝜙 with parameters 1 + 𝑠 and 𝑛 − 𝑠 + 1.
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B. Simulation Settings 

To simulate the toxicity outcome for a patient treated at a specific dose level j, we generated the 
time to DLT 𝑋" for the ith patient, 𝑖 = 1,⋯ , 𝑁, from a Weibull distribution 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝜉h, 𝜆h). If 
𝑋" < 𝑇, we set 𝑦" =1 to indicate that the ith patient will experience DLT; otherwise, we set 𝑦" =0 

to indicate that the ith patient will not experience DLT. We set 𝜉h = logS− logS?}~�
��� A

TT log2�  

and 𝜆h = log�1 − 𝑝h� /𝑇��	  such that 50% of DLT occurred in the latter half of the DLT 
assessment window, where 𝑝h is the true DLT rate for dose level j, 𝑗 = 1,⋯ , 𝐽. For the standard 
3+3 method and cohort expansion, the trial enrolls the next cohort of new patients only when the 
DLT data of previously enrolled patients have been cleared.  

The TITE-CRM method is based on the following power model  

𝑝h = 𝑎h���	  (�) 

where 𝑎h is the skeleton (i.e., prior estimate of DLT rate for dose level j), and 𝛼 is the model 
parameter. When the target toxicity probability is 0.2, the skeleton was equal to scenario 7 in 
Table 1, which is consistent with the scenario reported by Normolle and Lawrence (2006). When 
the target toxicity probability is 0.3, the skeleton was based on the calibration method of Lee and 
Cheung (2009), with the prior MTD being dose level 4 and the halfwidth being 0.04, leading to 
skeleton = (0.10, 0.15, 0.22, 0.30, 0.38, 0.46, 0.53). The prior distribution for 𝛼 is N(0, 1.34). 
The uniform weighting scheme was used for the patients with DLT data pending. For the TITE-
BOIN design, we took the default setting for the design parameters  𝜙? = 0.6𝜙 and 𝜙A = 1.4𝜙 
to determine the escalation and de-escalation boundaries, as recommended by Liu and Yuan 
(2015). For fair comparison, the same accrual suspension rule (described in “TITE-BOIN  
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C. Sensitivity Analysis 

Different late-onset profiles 

We considered more severe late-onset DLTs by simulating the time to DLT from a Weibull 
distribution, with 70% of the DLTs occurring in the latter half of the assessment window. The 
results of the TITE-BOIN, TITE-CRM and R6 design (see Figures S1-S3) are similar to those 
reported in the main text, where 50% of DLTs occurred in the latter half of the assessment 
window, suggesting that the TITE-BOIN is robust to the late-onset toxicity profile.  

Different accrual rates 

In addition to the accrual rate of 2 patients per month, we considered a slower accrual rate of 1 
patient/ month and a faster accrual rate of 3 patients/month. Simulation results (see Figures S4-
S6 for 1 patient/month and S7-S9 for 3 patients/month) demonstrated that the performance of 
TITE-BOIN is not sensitive to different accrual rates and consistently better than that of the R6 
design.  

Different dose-toxicity scenarios 

To confirm that our comparison results based on the 16 dose–toxicity scenarios (see Table S2) 
are generally applicable, we conducted a much larger scale simulation study that compared the 
performance of the 3+3, R6, TITE-BOIN and TITE-CRM designs based on 50,000 dose–toxicity 
scenarios, randomly generated using the method of Clertant and O’Quigley (2017). Figure S10 
shows the 50 randomly generated dose–-toxicity scenarios with the target DLT rate of 0.2. For 
each of the 50,000 dose–toxicity scenarios, 10,000 trials were simulated. We considered the 
patient accrual rate of 1, 2 or 3 patients/month, with the DLT assessment window of 3 months. 
The skeleton of TITE-CRM was chosen based on the model calibration method of Lee and 
Cheung (2009), with the third dose level as the initial MTD guess and a halfwidth of 0.05, 
leading to skeleton = (0.05, 0.11, 0.20, 0.31, 0.42, 0.43) for the target DLT rate of 0.2 and 
skeleton = (0.12, 0.20, 0.30, 0.40, 0.50, 0.59) for the target DLT rate of 0.3. The remaining 
simulation configurations for the four designs were the same as those in the main simulation 
study with 16 dose–toxicity scenarios. Table S3 show the average performance of the four 
designs over 50,000 dose–toxicity scenarios. The results (based on 50,000 randomly generated 
scenarios) are consistent with those reported in the main text based on 16 scenarios. Specifically, 
in terms of MTD identification accuracy and trial duration, the TITE-BOIN design is comparable 
to the model-based TITE-CRM design, and performs uniformly better than the 3+3 and R6 
designs. When the target DLT rate is 0.2, TITE-BOIN is as safe as the 3+3 and R6 designs and is 
slightly more conservative than TITE-CRM. When the target DLT rate is 0.3, the TITE-BOIN 
has substantially better overdose control than the TITE-CRM.  
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D. Incorporating prior information on the time to DLT 

In some trials, prior information is available on the distribution of 𝑋" (i.e., time to DLT). For 
example, for a certain drug, we may know a priori that the DLT is more likely to occur in the 
later part of the DLT assessment window [0, 𝑇]. Such prior information can be easily 
incorporated into the TITE-BOIN by specifying a piecewise uniform prior distribution for 𝑋", 
which partitions [0, 𝑇] into several intervals and assumes a uniform distribution within each 
interval. By increasing the number of partitions, the piecewise uniform distribution can 
approximate any shape of the time-to-toxicity distribution. For ease of exposition, we consider 
three partitions, [0, 𝑇/3], (𝑇/3, 2𝑇/3] and (2𝑇/3, 𝑇], that are often adequate for practical use. 
Let (𝜔?,𝜔A, 𝜔�) be the prior probability that the DLT would occur at the three intervals, where 
𝜔? + 𝜔A + 𝜔� = 1. Define ℎ� = 0, ℎ? = 𝑇/3, ℎA = 2𝑇/3, ℎ� = 𝑇, respectively, and define 

�̃�"� = �

1,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑡" > ℎ�
3(𝑡" − ℎ�}?)

𝑇 ,	  	  	  	  	  	  	  	  	  	  	  𝑡" ∈ (ℎ�}?, ℎ�]

	  	  	  	  	  	  	  0,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

,	  	  	  	  	  	  	  𝑘 = 1, 2, 3. 

Then, the conditional probability Pr(𝑋" > 𝑡"	  | 𝑌" = 1)	  is given by 

Pr(𝑋" > 𝑡"	  | 𝑌" = 1) = 1 −�𝜔��̃�"�
�

��?

, 

Plugging this into equation (2) and going through the similar algebra and approximation, we 
have 

�̂� =
𝑠 +	   𝑝

1 − 𝑝 (𝑐 −WSTFT)

𝑛 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (6) 

where WSTFT is the weighted STFT, given by 

WSTFT =��𝜔��̃�"�
�

��?"∈1

 

with 𝑀 indicates the set of patients with pending DLT data. When 𝜔? = 𝜔A = 𝜔� = 1/3 (i.e., 
assigning an equal weight over the DLT assessment window), the WSTFT reduces to STFT. In 
other words, equation (3) using the uniform weight is a special case of equation (6). Following 
the same derivation procedure described previously, the same dose escalation and de-escalation 
boundaries given by equations (4) and (5) are obtained. The only difference is that we now 
compare WSTFT, rather than STFT, with the boundaries to determine dose escalation and de-
escalation. More specifically, if the WSTFT for 𝑐	  pending patients ≥ 𝜋7, escalate the dose to the 



   7  

next higher level; and if the WSTFT for 𝑐	  pending patients ≤ 𝜋8, de-escalate the dose to the next 
lower level; otherwise, stay at the current dose level. 
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Table S1. Dose escalation and de-escalation boundaries for TITE-BOIN with a target DLT rate 
of 0.3 and cohort size of 3. 

No. 
treate

d 

No. 
DLT

s 

No.  
data 

pendin
g 

STFT No. 
treate

d 

No. 
DLT

s 

No.  
data 

pendin
g 

STFT 

Escalat
e Stay De-

escalate 
Escalat

e Stay De-
escalate 

3 0 ≤1 Y   12 2 5 ≥2.72 <2.7
2  

3 0 ≥2 Suspend accrual 12 2 6 ≥4.11 <4.1
1  

3 1 0  Y  12 2 ≥7 Suspend accrual 

3 1 1  >0.8
8 ≤0.88 12 3 ≤6  Y  

3 1 ≥2 Suspend accrual 12 3 ≥7 Suspend accrual 
3 2 ≤1   Y 12 4 0  Y  

3 3 0   Y&Eli
m 12 4 1  >0.4

3 ≤0.43 

6 0 ≤3 Y   12 4 2  >1.5
0 ≤1.50 

6 0 ≥4 Suspend accrual 12 4 3  >2.5
7 ≤2.57 

6 1 ≤1 Y   12 4 4  >3.6
5 ≤3.65 

6 1 2 ≥0.60 <0.6
0  12 4 5  >4.7

2 ≤4.72 

6 1 3 ≥1.96 <1.9
6  12 4 6  >5.7

9 ≤5.79 

6 1 ≥4 Suspend accrual 12 4 ≥7 Suspend accrual 
6 2 0  Y  12 5, 6 ≤7   Y 

6 2 1  >0.7
3 ≤0.73 12 ≥7 ≤5   Y&Eli

m 

6 2 2  >1.8
0 ≤1.80 15 0 ≤7 Y   

6 2 3  >2.8
7 ≤2.87 15 0 ≥8 Suspend accrual 

6 2 ≥4 Suspend accrual 15 1 ≤7 Y   
6 3 ≤3   Y 15 1 ≥8 Suspend accrual 

6 ≥4 ≤2   Y&Eli
m 15 2 ≤5 Y   

9 0 ≤4 Y   15 2 6 ≥0.35 <0.3
5  

9 0 ≥5 Suspend accrual 15 2 7 ≥2.07 <2.0
7  

9 1 ≤4 Y   15 2 ≥8 Suspend accrual 
9 1 ≥5 Suspend accrual 15 3 ≤1 Y   

9 2 0 Y   15 3 2 ≥0.11 <0.1
1  

9 2 1 ≥0.59 <0.5
9  15 3 3 ≥1.29 <1.2

9  

9 2 2 ≥1.65 <1.6
5  15 3 4 ≥2.46 <2.4

6  

9 2 3 ≥2.71 <2.7
1  15 3 5 ≥3.64 <3.6

4  
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9 2 4 ≥3.77 <3.7
7  15 3 6 ≥4.81 <4.8

1  

9 2 ≥5 Suspend accrual 15 3 7 ≥5.98 <5.9
8  

9 3 0  Y  15 3 ≥8 Suspend accrual 

9 3 1  >0.5
8 ≤0.58 15 4 ≤7  Y  

9 3 2  >1.6
5 ≤1.65 15 4 ≥8 Suspend accrual 

9 3 3  >2.7
2 ≤2.72 15 5 0  Y  

9 3 4  >3.7
9 ≤3.79 15 5 1  >0.2

8 ≤0.28 

9 3 ≥5 Suspend accrual 15 5 2  >1.3
5 ≤1.35 

9 4 ≤5   Y 15 5 3  >2.4
2 ≤2.42 

9 ≥5 ≤4   Y&Eli
m 15 5 4  >3.5

0 ≤3.50 

12 0 ≤6 Y   15 5 5  >4.5
7 ≤4.57 

12 0 ≥7 Suspend accrual 15 5 6  >5.6
4 ≤5.64 

12 1 ≤6 Y   15 5 7  >6.7
2 ≤6.72 

12 1 ≥7 Suspend accrual 15 5 ≥8 Suspend accrual 
12 2 ≤3 Y   15 6, 7 ≤9   Y 

12 2 4 ≥1.33 <1.3
3  15 ≥8 ≤7   Y&Eli

m 
Note: “No. treated” is the total number of patients treated at the current dose level, “No. DLTs” is the 
number of patients who experienced DLT at the current dose level, “No. with data pending” denotes that 
number of patients whose DLT data are pending at the current dose level, “STFT” is the standardized 
total follow-up time (in months) for the patients with data pending, defined as the total follow-up time for 
the patients with data pending divided by the length of the DLT assessment window. “Y” represents 
“Yes”, and “Y&Elim” represents “Yes & Eliminate”. When a dose is eliminated, all higher doses should 
also be eliminated. 
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Table S2. Sixteen true toxicity scenarios with target DLT rates of 0.2 and 0.3. The target DLT 
rate is 0.2 in scenarios 1-8 and 0.3 in scenarios 9-16. The MTD is in bold face. Scenarios 3, 4, 5 
and 7 were previously considered by Normolle and Lawrence (2006; JCO). 

Scenario Dose level  
1 2 3 4 5 6 7 

 Target DLT rate is 0.2 
1 0.05 0.20 0.46 0.50 0.60 0.70 0.80 
2 0.02 0.05 0.20 0.28 0.34 0.40 0.44 
3 0.01 0.05 0.10 0.20 0.32 0.50 0.70 
4 0.01 0.04 0.07 0.10 0.50 0.70 0.90 
5 0.01 0.05 0.10 0.14 0.20 0.26 0.34 
6 0.01 0.02 0.03 0.05 0.20 0.40 0.50 
7 0.01 0.04 0.07 0.10 0.15 0.20 0.25 
8 0.01 0.02 0.03 0.04 0.05 0.20 0.45 
 Target DLT rate is 0.3 
9 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

10 0.14 0.30 0.39 0.48 0.56 0.64 0.70 
11 0.07 0.23 0.41 0.49 0.62 0.68 0.73 
12 0.05 0.15 0.30 0.40 0.50 0.60 0.70 
13 0.05 0.12 0.20 0.30 0.38 0.49 0.56 
14 0.01 0.04 0.08 0.15 0.30 0.36 0.43 
15 0.02 0.04 0.08 0.10 0.20 0.30 0.40 
16 0.01 0.03 0.05 0.07 0.09 0.30 0.50 
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Table S3. Simulation results averaged over 50,000 randomly generated dose–toxicity scenarios 
with six dose levels. Under each of the random scenarios, 10,000 trials were simulated. 

 Target DLT probability is 0.2  Target DLT probability is 0.3 

 Method  Method  

Performance  
characteristic 3+3 R6 TITE- 

CRM 
TITE- 
BOIN  3+3 R6 TITE- 

CRM 
TITE- 
BOIN 

Accrual rate = 1 patient/month 

Correct selection %  31.0 38.1 46.0 44.2  21.4 24.0 49.5 46.9 

Overdose selection % 12.4 13.5 13.8 11.7  4.9 3.8 17.4 13.1 

Correct allocation % 27.6 24.6 32.7 30.8  21.3 19.1 34.5 32.0 

Overdose allocation % 15.6 12.2 14.6 12.3  7.7 5.3 18.6 11.9 

Regretful trials % 0.0 35.0 13.5 3.1  0.0 36.6 35.2 5.9 

Average duration  56.8 49.3 40.5 41.7  54.5 46.8 40.6 43.0 

Accrual rate = 2 patients/month 

Correct selection %  30.8 38.4 44.7 44.8  21.7 23.5 48.0 46.7 

Overdose selection % 12.0 13.4 13.4 11.8  4.4 4.1 17.9 11.8 

Correct allocation % 27.5 24.7 32.0 31.1  21.5 19.1 34.0 31.6 

Overdose allocation % 15.2 12.4 14.5 12.6  7.5 5.7 17.9 11.0 

Regretful trials % 0.0 36.0 18.6 2.9  0.0 38.8 45.3 5.7 

Average duration  44.5 36.1 25.6 27.8  42.6 34.7 25.7 28.7 

Accrual rate = 3 patients/month 

Correct selection %  31.6 38.2 43.6 45.3  21.8 23.8 47.7 46.5 

Overdose selection % 12.0 13.3 13.0 12.1  4.4 4.2 17.4 11.5 

Correct allocation % 28.0 24.5 31.0 31.0  21.5 19.0 32.6 31.8 

Overdose allocation % 15.4 12.4 14.4 13.3  7.4 5.9 18.0 11.2 

Regretful trials % 0.0 35.7 20.8 2.9  0.0 38.3 46.6 6.2 

Average duration  40.2 31.6 21.0 23.6  38.7 30.7 21.0 24.5 
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Figure S1. The relative percentages of correct selection of the MTD and the relative percentages 
of patients assigned to the correct MTD based on the time-to-event Bayesian optimal interval 
(TITE-BOIN), the rolling six (R6), and the time-to-event continual reassessment method (TITE-
CRM) designs, with respect to the 3+3 design, when 70% of the toxicity events occur in the 
latter half of the DLT assessment window. The target DLT rate in scenarios 1-8 is 0.2, while that 
in scenarios 9-16 is 0.3. The accrual rate is 2 patients/month. 
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Figure S2. The relative percentages of overdose selection (a and b), the relative percentages of 
patients assigned to the doses above the MTD (c and d) and below the MTD (e and f), based on 
the time-to-event Bayesian optimal interval (TITE-BOIN), the rolling six (R6), and the time-to-
event continual reassessment method (TITE-CRM) designs, with respect to the 3+3 design, when 
70% of the toxicity events occur in the latter half of the DLT assessment window. The target 
DLT rate in scenarios 1-8 is 0.2, while that in scenarios 9-16 is 0.3. The accrual rate is 2 
patients/month. 
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Figure S3. The relative percentages of “regretful” trials and the relative average trial duration 
based on the time-to-event Bayesian optimal interval (TITE-BOIN), the rolling six (R6), and the 
time-to-event continual reassessment method (TITE-CRM) designs, with respect to the 3+3 
design, when 70% of the toxicity events occur in the latter half of the DLT assessment window. 
The target DLT rate in scenarios 1-8 is 0.2, while that in scenarios 9-16 is 0.3. The accrual rate is 
2 patients/month. 
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Figure S4. The relative percentages of correct selection of the MTD and the relative percentages 
of patients assigned to the correct MTD based on the time-to-event Bayesian optimal interval 
(TITE-BOIN), the rolling six (R6), and the time-to-event continual reassessment method (TITE-
CRM) designs, with respect to the 3+3 design, when 50% of the toxicity events occur in the 
latter half of the DLT assessment window. The target DLT rate in scenarios 1-8 is 0.2, while that 
in scenarios 9-16 is 0.3. The accrual rate is 1 patient/month. 
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Figure S5. The relative percentages of overdose selection (a and b), and the relative percentages 
of patients assigned to the doses above the MTD (c and d) and below the MTD (e and f), based 
on the time-to-event Bayesian optimal interval (TITE-BOIN), the rolling six (R6), and the time-
to-event continual reassessment method (TITE-CRM) designs, with respect to the 3+3 design, 
when 50% of the toxicity events occur in the latter half of the DLT assessment window. The 
target DLT rate in scenarios 1-8 is 0.2, while that in scenarios 9-16 is 0.3. The accrual rate is 1 
patient/month. 
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Figure S6. The relative percentages of “regretful” trials and the relative average trial duration 
based on the time-to-event Bayesian optimal interval (TITE-BOIN), the rolling six (R6), and the 
time-to-event continual reassessment method (TITE-CRM) designs, with respect to the 3+3 
design, when 50% of the toxicity events occur in the latter half of the DLT assessment window. 
The target DLT rate in scenarios 1-8 is 0.2, while that in scenarios 9-16 is 0.3. The accrual rate is 
1 patient/month. 

 

 

 



   18  

 

Figure S7. The relative percentages of correct selection of the MTD and the relative percentages 
of patients assigned to the correct MTD based on the time-to-event Bayesian optimal interval 
(TITE-BOIN), the rolling six (R6), and the time-to-event continual reassessment method (TITE-
CRM) designs, with respect to the 3+3 design, when 50% of the toxicity events occur in the 
latter half of the DLT assessment window. The target DLT rate in scenarios 1-8 is 0.2, while that 
in scenarios 9-16 is 0.3. The accrual rate is 3 patients/month. 
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Figure S8. The relative percentages of overdose selection (a and b), and the relative percentages 
of patients assigned to the doses above the MTD (c and d) and below the MTD (e and f),  based 
on the time-to-event Bayesian optimal interval (TITE-BOIN), the rolling six (R6), and the time-
to-event continual reassessment method (TITE-CRM) designs, with respect to the 3+3 design, 
when 50% of the toxicity events occur in the latter half of the DLT assessment window. The 
target DLT rate in scenarios 1-8 is 0.2, while that in scenarios 9-16 is 0.3. The accrual rate is 3 
patients/month. 
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Figure S9. The relative percentages of “regretful” trials and the relative average trial duration 
based on the time-to-event Bayesian optimal interval (TITE-BOIN), the rolling six (R6), and the 
time-to-event continual reassessment method (TITE-CRM) designs, with respect to the 3+3 
design, when 50% of the toxicity events occur in the latter half of the DLT assessment window. 
The target DLT rate in scenarios 1-8 is 0.2, while that in scenarios 9-16 is 0.3. The accrual rate is 
3 patients/month. 
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Figure S10. Fifty randomly generated dose–toxicity curves with the target DLT rate of 0.2. 
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