

Supplementary Figure 1. Characterization of decellularized rat oesophageal scaffolds.

(a) Masson's trichrome on sections of native oesophagus and decellularized scaffold. Scale bar: 100 μ m. (b) Laminin and DAPI immunostaining (with phase contrast). Scale bar: 100 μ m. (c) Scanning electron microscopy (SEM) images of oesophagi before and after decellularization. Scale bar: 100 μ m. Immunohistochemistry for collagen I (d) and immunofluorescence for collagen IV (e) in native and decellularized oesophagi. Scale bar: 100 μ m. (f-g) Quantification of elastin (g) and glycosaminoglycans (h) in native and decellularized oesophagi (n=3). (h) Bio-mechanical analysis of native and decellularized oesophagi: analysis of stiffness at 30+50% of strain and 50+70% of strain, stress relaxation (residual stress after relaxation), ultimate strain at break and ultimate tensile strength at break (n=5; **p=0.0087; t-test).

Supplementary Figure 2. FACS characterization and smooth muscle differentiation in 2D culture of expanded hMAB.

(a) Representative FACS analysis of expanded hMAB for CD146, CD90, AP, NG2, CD44, PDGFR β , CD45 and CD34. Markers are indicated with fluorochrome used. Percentage of positive cells is indicated in the gate as mean±standard deviation (n=3÷4). (b) hMAB cultured in 2D with TGF β 1 for 7 days showing smooth muscle differentiation by immunostaining for α SMA, calponin and SM22 (top). Mature smooth muscle differentiation was obtained with 2 weeks of TGF β 1 as shown by positivity for smoothelin. Immunostaining for smooth muscle markers was negative in cell cultured without TGF β 1 (bottom – undifferentiated control cells). Nuclei were stained with DAPI. Scale bar: 100µm.

Supplementary Figure 3. Comparison of surface versus multiple-injection seeding of hMAB into decellularized oesophageal scaffolds.

(a) Representative images of DAPI staining on sections of decellularized scaffolds seeded with hMAB using surface or multiple-injection seeding and cultured in static for 4 days. Dotted line indicates the edges of the scaffold. Scale bar: 100 μ m. (**b**-**c**) Total number of cells per area (**b**) and percentage of the number of cells in layers of the scaffold underneath the surface (**c**) in scaffolds seeded with surface seeding or multiple-injections of cells. Data: mean±SEM (n=3; *p=0.0283; t-test).

Supplementary Figure 4. 2D culture controls for oxidative metabolic analysis with ¹³C-glucose. Oxidative metabolism (¹³C-glucose oxidation assay) measured as ¹³CO₂ production in cultured media sampled every hour from 2D cultures of hMAB and hMAB+mFB in presence of TGF β 1.

Supplementary Figure 5. Cell distribution analysis of native oesophagi and re-populated decellularized scaffolds after dynamic culture.

(a,b) Cell distribution maps, representative DAPI staining, polar distribution maps and cell density maps obtained from DAPI-stained sections of a native rat oesophagus without mucosa (a) and a scaffold seeded with hMAB+mFB+mNCC and cultured in dynamic condition for 11 days (b). Scale bar: 100μm.
(c) Total number of cells per field identified in sections of native oesophagi and recellularized scaffolds stained for DAPI. Data: mean±min to max (n=1).

Supplementary Figure 6. ROEC growth and distribution on slit-open and tubular decellularized scaffold.

(a) Immunofluorescence of ROEC for the expression of CK14 and CK13 at day 4 in culture. Scale bar: 100 μ m. (b) Images of MTT colorimetric assay on slit-open scaffolds seeded with ROEC and cultured in air-liquid interphase condition for up to 14 days. Viable cells are coloured in purple. Scale bar: 2mm (top) and 250 μ m (bottom). (c) Hematoxylin and eosin staining of sections of tubular scaffold seeded with ROEC and cultured in static for 7 days. Scale bar: 200 μ m. (d-e) Immunostaining for CK13 and CK14 (d) and E-cadherin and DAPI (e) on sections of tubular scaffold seeded with ROEC and cultured in static for 7 days. Scale bar: 84 μ m.

Supplementary Figure 7. Analysis of re-populated scaffolds post-implantation under the kidney capsule and inflammatory reaction in omental implants.

Analysis of scaffolds seeded with hMAB+mFB+mNCC, cultured in dynamic for 11 days, implanted under the kidney capsule of NSG mice and harvested after 1 week. All images show the *muscularis externa* of the re-populated scaffolds. (**a**) Picture of the surgical implantation of the re-populated scaffold. (**b**) Hematoxylin and eosin staining. Scale bar: 100μ m. (**c**) Immunofluorescence staining for hNuclei, SM22 and DAPI (with phase contrast). Scale bar: 100μ m. (**d**) Immunofluorescence staining for hNuclei, Connexin43 and DAPI (with phase contrast). K: kidney; sc: scaffold. Scale bar: 100μ m. (**e**) Immunofluorescence staining for GFP (indicating the mNCC) and DAPI. Scale bar: 100μ m. (**f**) Images of unseeded scaffolds 7 days after implantation under the kidney capsule. Hematoxylin and eosin staining (left – scale bar: 250μ m) and immunostaining for hNuclei, SM22 and DAPI (with phase contrast) (right – scale bar: 100μ m). Sc: scaffold; k: kidney; kc: kidney capsule; dotted line indicates the separation line between kidney capsule and scaffold. (**g**) Representative images of immunofluorescence for F4/80, Ly6G, hNuclei and DAPI in scaffolds seeded with hMAB+mFB+mNCC, 7 days post-implantation in the omentum of NSG mice. Scale bar: 50μ m. Sc: scaffold; om: omentum; dotted line indicates the separation line between omentum and scaffold.

Antibody	Host	Company	Cat. number	Dilution
Calponin	Mouse	Sigma	C2687	1:1000
Caspase3	Rabbit	Cell Signalling	9661	1:100
CK13	Mouse	Abcam	ab16112	1:100
CK14	Rabbit	BioLegend	PRB-155P	1:800
Collagen I	Mouse	Abcam	ab6308	1:1000
Collagen IV	Rabbit	Abcam	ab6586	1:1000
Connexin43	Rabbit	Abcam	ab11370	1:100
E-cadherin	Mouse	BD Transduction	610181	1:100
		Laboratories		
F4/80	Rat	BioLegend	123110	1:100
GFP	Rabbit/Chick	Life	ab6455/ab13970	1:500
hNuclei	Mouse	Millipore	MAB1281	1:200
Ki67	Rabbit	Abcam	ab15580	1:400
Laminin	Rabbit	Abcam	ab11575	1:400
Ly-6G	Rat	BioLegend	127610	1:200
NG2	Rabbit	Abcam	ab83178	1:100
p63	Mouse	Abcam	ab735	1:50
PanCytokeratin	Rabbit	Invitrogen	18-0059	1:100
PDGFRβ	Rabbit	Abcam	ab32570	1:100
Phalloidin-488		Life Technology	A12379	1:100
S100	Rabbit	Dako	Z031101	1:500
SM22	Rabbit	Abcam	ab14106	1:1000
Sox10	Goat	Santa Cruz	Sc-365692	1:500
TCF-4	Mouse	Millipore	05-511	1:100
TuJ1	Mouse	Covance	MMS435P	1:500
Vimentin	Mouse	Abcam	ab20346	1:100
vWF	Rabbit	Abcam	ab9378	1:100
αSMA	Mouse	Abcam	ab7817	1:50
Anti-mouse 568	Goat	Invitrogen	A1104	1:1000
Anti-rabbit 488	Goat	Invitrogen	A11008	1:350
Anti-goat 594	Donkey	Invitrogen	A11058	1:500
Anti-chicken 488	Goat	Invitrogen	A11039	1:500

Supplementary Table 1. Antibodies and dilutions for immunofluorescence and immunohistochemistry.

Antibody	Wavelength	Company	Cat. number	Dilution
CD146	BV711	BD	536186	1:200
CD56	BV395	BD	563554	1:200
CD90	PE-Cy7	BD	561558	1:200
AP	647	BD	561500	1:100
NG2	488	BD	562413	1:200
CD44	PE-Cy7	BioLegend	103030	1:200
PDFGRβ	PE	BioLegend	323606	1:50
CD45	APC	BioLegend	304011	1:200
CD34	APC	Miltenyi	130090954	1:20

Supplementary Table 2. FACS antibodies and dilutions.