Supporting Information for the Manuscript Entitled

Elucidation of the Interplay between Fe(II), Fe(III) and Dopamine with Relevance to Iron Solubilization and ROS Generation by Catecholamines

Yingying Sun, A. Ninh Pham and T. David Waite^{*}

School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

Running title: Iron, dopamine and ROS

Re-submitted

Journal of Neurochemistry

February, 2016

* Corresponding author. Professor T. David Waite, Tel.: +61 2 9385 5059, Email: d.waite@unsw.edu.au

No.	species	LogK	Reference	
Fe(II) species				
1	$Fe^{2+} + H_2O \rightleftharpoons FeOH^+ + H^+$	-9.51	1	
2	$\mathrm{Fe}^{2+} + 2\mathrm{H}_2\mathrm{O} \rightleftharpoons \mathrm{Fe}(\mathrm{OH})_2^0 + 2\mathrm{H}^+$	-20.6	1	
3	$\operatorname{Fe}^{2+} + \operatorname{CO}_3^{2-} \rightleftharpoons \operatorname{FeCO}_3^0$	5.69	2	
4	$\mathrm{Fe}^{2+} + \mathrm{H}^{+} + \mathrm{CO}_{3}^{2-} \rightleftharpoons \mathrm{FeHCO}_{3}^{+}$	11.8	3	
5	$\operatorname{Fe}^{2+} + 2\operatorname{CO}_3^{2-} \rightleftharpoons \operatorname{Fe}(\operatorname{CO}_3)_2^{2-}$	7.45	2	
6	$\operatorname{Fe}^{2+} + \operatorname{CO}_{3}^{2-} + \operatorname{H}_{2}\operatorname{O} \rightleftharpoons \operatorname{Fe}(\operatorname{OH})\operatorname{CO}_{3}^{-} + \operatorname{H}^{+}$	-4.03	2	
7	$\mathrm{Fe}^{2+} + \mathrm{Cl}^{-} \rightleftharpoons \mathrm{Fe}\mathrm{Cl}^{+}$	0.3	2	
8	$\mathrm{Fe}^{2+} + \mathrm{SO}_4^{2-} \rightleftharpoons \mathrm{Fe}\mathrm{SO}_4^0$	2.42	2	
9	$Fe^{2+} + DA^{2-} \rightleftharpoons FeDA^0$	9.12	4	
10	$Fe^{2+} + 2DA^{2-} \rightleftharpoons FeDA_2^{2-}$	14.56	4	
Fe(III) species				
11	$Fe^{3+} + H_2O \Longrightarrow Fe(OH)^{2+} + H^+$	-2.13	5	
12	$Fe^{3+} + 2H_2O \Longrightarrow Fe(OH)_2^+ + 2H^+$	-6.13	5	
13	$Fe^{3+} + 3H_2O \rightleftharpoons Fe(OH)_3^0 + 3H^+$	-14.3	5	
14	$\mathrm{Fe}^{3+} + 4\mathrm{H}_2\mathrm{O} \rightleftharpoons \mathrm{Fe}(\mathrm{OH})_4^- + 4\mathrm{H}^+$	-22.2	5	
15	$\mathrm{Fe}^{3+} + \mathrm{Cl}^{-} \rightleftharpoons \mathrm{Fe}\mathrm{Cl}^{2+}$	1.28	5	
16	$\mathrm{Fe}^{3+} + 2\mathrm{Cl}^{-} \rightleftharpoons \mathrm{Fe}\mathrm{Cl}_{2}^{+}$	1.16	5	
17	$\operatorname{Fe}^{3+} + \operatorname{SO}_4^{2-} \rightleftharpoons \operatorname{Fe}(\operatorname{SO}_4)^+$	4.27	5	

Table S1. Stability constants for Fe(II) and Fe(III) speciations at 25 °C and I = 0.

18	$\operatorname{Fe}^{3+} + 2\operatorname{SO}_4^{2-} \rightleftharpoons \operatorname{Fe}(\operatorname{SO}_4)_2^{-}$	6.11	5	
19	$\operatorname{Fe}^{3+} + 2\operatorname{CO}_3^{2-} \rightleftharpoons \operatorname{Fe}(\operatorname{CO}_3)_2^{-}$	19.6	5	
20	$Fe^{3+} + DA^{2-} \rightleftharpoons FeDA^+$	21.42	6	
21	$\mathrm{Fe}^{3+} + 2\mathrm{DA}^{2-} \rightleftharpoons \mathrm{Fe}\mathrm{DA}_2^-$	36.46	6	
22	$Fe^{3+} + 3DA^{2-} \rightleftharpoons FeDA_3^{3-}$	45.08	6	
Aqueous species				
23	$H^+ + OH^- \rightleftharpoons H_2O$	14	7	
24	$\mathrm{H}^{+} + \mathrm{CO}_{3}^{2-} \rightleftharpoons \mathrm{HCO}_{3}^{-}$	10.3	7	
25	$2\mathrm{H}^{+} + \mathrm{CO}_{3}^{2-} \rightleftharpoons \mathrm{H}_{2}\mathrm{CO}_{3}^{*}$	16.7	7	
26	$NH_3 + H^+ \rightleftharpoons NH_4^+$	9.24	8	
27	$\mathrm{H}^{+} + \mathrm{SO}_{4}^{2-} \rightleftharpoons \mathrm{HSO}_{4}^{-}$	1.99	8	
28	$Na^+ + CO_3^{2-} \rightleftharpoons NaCO_3^-$	1.27	2	
29	$Na^+ + H^+ + CO_3^{2-} \rightleftharpoons NaHCO_3^0$	10.1	2	
30	$Na^+ + SO_4^{2-} \rightleftharpoons NaSO_4^-$	1.06	2	
31	$\mathrm{NH}_4^+ + \mathrm{SO}_4^{2-} \rightleftharpoons \mathrm{NH}_4 \mathrm{SO}_4^-$	1.03	9	
32	$H_2DA \rightleftharpoons HDA^- + H^+$	-10.58	10	
33	$HDA^{-} \rightleftharpoons DA^{2-} + H^{+}$	-12.07	10	

(1) Morel and Hering (1993); (2) King (1998); (3) Millero and Hawke (1992); (4) Smith and Martell (1989); (5) Pham *et al.* (2006); (6) Avdeef *et al.* (1978); (7) Millero et al. (1995); (8) Yuan *et al.* (2012); (9) Schecher and McAvoy (1992) and (10) Pham and Waite (2014)

Figure S1. Measured absorbance of H_2O_2 at 551 nm with baseline corrected at 690 nm in 0.1 M NaCl at pH 7.4 in the absence of Fe(III) and DA (•) and in the presence of 5 μ M Fe(III) (•) and 20 μ M DA (•). Error bars are standard errors from triplicate measurements.

Figure S1 indicated that the presence of moderate concentrations of Fe(III) (5 μ M) and DA (20 μ M) has negligible effect on the measurement of H₂O₂ in the presence of 1 mM DTPA, 60 μ M DPD and 500 U/L HRP.

Figure S2. Speciation of Fe(III) (a, b and c) and Fe(II) (d, e and f) over the pH range 4.0 - 8.5 in solutions containing varying concentrations of DA with $[Fe(II)]_0 = 5 \ \mu M$ and $[Fe(III)]_0 = 5 \ \mu M$. LogC denotes the log concentration of individual ferrous and ferric species.

Figure S3. Measured absorbance of $Fe^{III}DA_2$ complexes (panel a) and calibration curve for qualification of $Fe^{III}DA_2$ complexes measured at 570 nm with baseline corrected at 850 nm (panel b) in 0.1 M NaCl at pH 7.4 in the presence of 400 μ M DA under deoxygenated condition.

Figure S3 indicated that in the presence of moderate concentrations of DA, $Fe^{III}DA_2$ was the dominant complexes and a clear peak can be observed at 570 nm. 400 μ M DA was used to ensure that precipitation of Fe(III) is negligible.

Figure S4. Sensitivity analysis for different fitting reaction rate constants (Tables 1 - 3, main text) and some other unimportant reactions.

Figure S5. Oxidation pathway of dopamine in the absence of added metals (Pham and Waite 2014)

Text S1

The standard free energy change (ΔG^0) for Fe^{II}DA oxidation to Fe^{III}DA (via one-electron reduction of O₂ to O₂[•]) is given by

$$\Delta G^{0} = -F(E^{0}_{O_{2} \rightarrow O^{\cdot}_{2}} - E^{0}_{Fe^{II}DA \rightarrow Fe^{II}DA})$$

Where $E_{O_2 \to O_2^{\circ}}^0 = -0.18 \text{ V}$ (Koppenol *et al.* 2010), *F* is the Faraday constant, $E_{Fe^{II}DA \to Fe^{II}DA}^0$ is determined using the Nernst equation (Morel and Hering 1993).

$$E_{\rm Fe^{II}DA \to Fe^{II}DA}^{0} = E_{\rm (Fe^{3+} \to Fe^{2+})}^{0} - 0.059 \log_{10} \left(\frac{K_{\rm Fe^{II}DA}}{K_{\rm Fe^{II}DA}} \right)$$

where $E_{(Fe^{3+} \rightarrow Fe^{2+})}^{0} = 0.77 \text{ V}$ (Schumb *et al.* 1937) is the standard reduction potential of Fe³⁺ and *Ki* is the stability constant of the complex Fe^{II}DA and Fe^{III}DA shown in Table S1. Thus, the calculated redox potential of the complexed iron couple should be $E_{Fe^{II}DA \rightarrow Fe^{II}DA}^{0} = 0.044$.

- Avdeef, A., Sofen, S. R., Bregante, T. L. and Raymond, K. N. (1978) Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. J Am Chem Soc, 100, 5362-5370.
- King, D. W. (1998) Role of carbonate speciation on the oxidation rate of Fe (II) in aquatic systems. *Environ Sci Technol*, **32**, 2997-3003.
- Koppenol, W. H., Stanbury, D. M. and Bounds, P. L. (2010) Electrode potentials of partially reduced oxygen species, from dioxygen to water. *Free Radical Bio Med*, **49**, 317-322.
- Millero, F. J. and Hawke, D. J. (1992) Ionic interactions of divalent metals in natural waters. *Mar Chem*, **40**, 19-48.
- Millero, F. J., Yao, W. and Aicher, J. (1995) The speciation of Fe (II) and Fe (III) in natural waters. *Mar Chem*, **50**, 21-39.
- Morel, F. M. and Hering, J. G. (1993) Principles and applications of aquatic chemistry. Wiley, New York.
- Pham, A. N., Rose, A. L., Feitz, A. J. and Waite, T. D. (2006) Kinetics of Fe(III) precipitation in aqueous solutions at pH 6.0–9.5 and 25°C. *Geochim Cosmochim Acta*, **70**, 640-650.
- Pham, A. N. and Waite, T. D. (2014) Cu (II)-catalyzed oxidation of dopamine in aqueous solutions: Mechanism and kinetics. *J Inorg Biochem*, **137**, 74-84.
- Schecher, W. D. and McAvoy, D. C. (1992) MINEQL+: a software environment for chemical equilibrium modeling. *Computers, Environment and Urban Systems*, **16**, 65-76.

- Schumb, W. C., Sherrill, M. S. and Sweetser, S. B. (1937) The measurement of the molal ferric-ferrous electrode potential. *J Am Chem Soc*, **59**, 2360-2365.
- Smith, R. M. and Martell, A. E. (1989) Critical stability constants, Vol. 6: Second Supplement. Plenum Press, New York, USA.
- Yuan, X., Pham, A. N., Xing, G., Rose, A. L. and Waite, T. D. (2012) Effects of pH, chloride, and bicarbonate on Cu(I) oxidation kinetics at circumneutral pH. *Environ Sci Technol*, 46, 1527-1535.