Supplemental Figures

Supplemental Figure S1: Experiment Mapping. This figure shows the effect of perturbing each single experiment based on the experimental error. A) Mean base pair probability RMSD, averaged between +/- 3 σ perturbations of the experimental values. The x-axis, which is shared with subplot B, shows the experiment number. This shows how perturbing a single experiment and then propagating the perturbation through the nearest neighbor parameters values alters the predicted base pairing probabilities. B) The impact of changing an individual experimental value by - 3 σ on the parameter values. Independent parameters are along the y-axis, organized by motif type, and the experiment number is shown on the x-axis. This shows how perturbing each experiment perturbs the nearest neighbor parameters. C) Mean base pair probability RMSD, averaged between +/- 3 σ perturbations of the parameter values. Parameter indices are along the y-axis, grouped by parameter type and shared with subplot B. An interactive version of this figure is available at http://rna.urmc.rochester.edu/publications.html.

Supplemental Figure S2: Average parameter values and observed parameter standard deviations. Randomly perturbed experiment values were used to generate 100,000 parameter sets. A) The difference between the average values of the parameters across all 100,000 parameter sets and the values calculated using unmodified experiment values is plotted against parameter index. B) The difference between the errors calculated by the propagation of uncertainties and the observed standard deviations for each free parameter is plotted against parameter index.

Supplemental Figure S3: Score distributions for perturbed parameter sets. The average sensitivity and positive predictive value was calculated for each perturbed parameter set compared against predictions made with an unperturbed parameter set. Parameter sets were generated by either randomly perturbing every free parameter value independently or by randomly perturbing every experiment value within experimental uncertainty. 1,000 parameter sets were evaluated for both classes.

Supplemental Figure S4: Base pair probability RMSD distributions for perturbed parameter sets. Parameter sets were generated by either randomly perturbing every free parameter value independently or by randomly perturbing every experimental value within experimental uncertainty. A) The mean base pair probability RMSD across 1650 sequences was calculated for each parameter set compared against predictions made with an unperturbed parameter set. B) The mean base pair probability length-corrected RMSD across 1650 sequences was calculated for each parameter set compared against predictions made with an unperturbed parameter set. B) The mean base pair probability length-corrected RMSD across 1650 sequences was calculated for each parameter set evaluated for both classes.

Supplemental Figure S5: Convergence of mean RMSD calculations. The cumulative mean average RMSD is plotted as the number of parameter sets is increased. The convergence of the values for both data tables generated by simultaneously perturbing all free nearest neighbor parameter values and data tables generated by perturbing all experiment values within experimental uncertainty demonstrates that sufficient numbers of data table sets have been sampled for both types.

Supplemental Figure S6: Accuracy distributions for randomly perturbed parameter sets. 1000 parameter sets were generated by randomly perturbing optical melting values within experimental uncertainty. The parameter sets were then benchmarked by predicting secondary structures for 1,450 sequences of known structure. The average positive predictive value (PPV) and sensitivity scores across the RNA families are plotted (A and B respectively). The red line indicates the score for the unperturbed parameter set and the blue line indicates the score of the "average" parameter set.

Supplemental Figure S7: Accuracy scores for randomly perturbed parameter sets. 1000 parameter sets were generated by randomly perturbing optical melting values within experimental uncertainty. The parameter sets were then benchmarked by predicting secondary structures for 1,450 sequences of known structure. The sensitivities are plotted against PPVs, where the predicted structures are scored against the known structures. Each data point represents the scores for a single parameter set, with the red data point illustrating the performance of the unperturbed parameter set and the blue dot representing the scores for the "average" parameter set.

Supplemental Figure S8: RMSD difference between positive and negative ΔG perturbations. Experiment indices are along the x-axis, organized by structure type. Difference in Mean base pair probability RMSD for the entire sequence archive except randomized sequences for +3 and -3 σ perturbations. The details of each experiment are available in the Supplemental Tables S1-S8.

Supplementary Table 1: Helical Duplex Experiment List

Note: The top strand is shown 5' to 3'. The bottom strand is shown 3' to 5'.

Index	ID#	Duplex	Folding Free Energy Change (kcal/mol)	Reference
1	R1	UCAUGA AGUACU	-4.30	(1)
2	R3	CAAAAAAG GUUUUUUC	-4.10	(2)
3	R4	CAAAAAAAG GUUUUUUUUC	-5.00	(2)
4	R5	CCGG GGCC	-4.55	(3)
5	R6	ACCGGU UGGCCA	-8.48	(3)
6	R8	GGCC CCGG	-5.37	(4)
7	R9	GGCC CCGG	-5.90	(4)
8	R12	GGCC CCGG	-5.32	(5)
9	R14	AGGCCU UCCGGA	-8.50	(5)
10	R15	CGGCCG GCCGGC	-9.90	(5)
11	R18	GCCGGC CGGCCG	-11.22	(5)
12	R19	UCCGGA AGGCCU	-7.86	(5)
13	R20	GCGC CGCG	-4.63	(6)
14	R21	GCGCGC CGCGCG	-10.60	(6)
15	R22	CGCGCG GCGCGC	-9.06	(6)
16	R24	AUGCGU UGCGUA	-4.22	(7)
17	R25	AUGCGCGU UGCGCGUA	-9.31	(7)

18	R26	AUGCGUAU UAUGCGUA	-5.27	(7)
19	R27	AUGUGCAU UACGUGUA	-6.17	(7)
20	R28	GCUGGC CGGUCG	-6.47	(7)
21	R29	GGCGUC CUGCGG	-4.67	(7)
22	R30	CUGCGG GGCGUC	-4.31	(7)
23	R31	CGGCUG GUCGGC	-5.55	(7)
24	R32	AUGCAU UACGUA	-4.73	(7)
25	R33	AUGCGCAU UACGCGUA	-10.19	(7)
26	R34	AUACGUAU UAUGCAUA	-6.57	(7)
27	R35	AUGUACAU UACAUGUA	-6.49	(7)
28	R36	GCUAGC CGAUCG	-7.89	(7)
29	R37	GACGUC CUGCAG	-7.24	(7)
30	R38	CUGCAG GACGUC	-7.11	(7)
31	R39	CAGCUG GUCGAC	-6.72	(7)
32	R40	UGGCCG GCCGGU	-8.56	(8)
33	R41	UCCGGG GGGCCU	-7.44	(8)
34	R42	GCCGGU UGGCCG	-9.17	(8)
35	R43	GGCGCU UCGCGG	-8.42	(8)
36	R44	GCAUGC CGUACG	-7.34	(9)
37	R45	GUGCAC CACGUG	-7.65	(9)
38	R46	GUCUAGAC CAGAUCUG	-10.09	(9)

39	R47	GAUAUAUC CUAUAUAG	-6.05	(9)
40	R48	GUAUAUAC CAUAUAUG	-5.99	(9)
41	R49	GAGAGA CUCUCU	-6.86	(9)
42	R50	AGAGAGAG UCUCUCUC	-11.14	(9)
43	R51	AAUGCAUU UUACGUAA	-7.17	(9)
44	R52	UAUGCAUA AUACGUAU	-7.22	(9)
45	R53	GAUGCAUC CUACGUAG	-10.18	(9)
46	R54	CAUGCAUG GUACGUAC	-9.72	(9)
47	R55	AGAUAUCU UCUAUAGA	-6.50	(10)
48	R56	AUCUAGAU UAGAUCUA	-7.17	(10)
49	R57	AACUAGUU UUGAUCAA	-7.15	(10)
50	R58	AGUUAACU UCAAUUGA	-6.19	(10)
51	R59	ACUUAAGU UGAAUUCA	-6.26	(10)
52	R60	GAACGUUC CUUGCAAG	-9.39	(10)
53	R61	GUUCGAAC CAAGCUUG	-8.76	(10)
54	R62	UCUAUAGA AGAUAUCU	-6.89	(10)
55	R63	UAGAUCUA AUCUAGAU	-7.06	(10)
56	R64	GUCGAC CAGCUG	-7.08	(10)
57	R65	ACUAUAGU UGAUAUCA	-7.09	(10)
58	R67	UGAUCA ACUAGU	-5.00	(10)
59	R68	UCAUGA AGUACU	-3.82	(10)

60	R70	UGCGCA ACGCGU	-8.17	(11)
61	R71	AGCGCU UCGCGA	-8.01	(11)
62	R72	GGCGCC CCGCGG	-11.31	(11)
63	R73	UGCGCA ACGCGU	-8.12	(12)
64	R74	GAUGCAUU UUACGUAG	-6.82	(13)
65	R75	UAUGCAUG GUACGUAU	-6.44	(13)
66	R76	GCGGCG CGCCGC	-10.43	(14)
67	R78	AUGGUCAU UACUGGUA	-5.42	(15)
68	R79	CCUGUAGG GGAUGUCC	-6.81	(15)
69	R80	CGGGUCCG GCCUGGGC	-11.18	(15)
70	R81	CGUUGACG GCAGUUGC	-6.94	(15)
71	R82	CUGGUCAG GACUGGUC	-7.11	(15)
72	R83	GGAGUUCC CCUUGAGG	-6.45	(15)
73	R84	GGAUGUCC CCUGUAGG	-8.36	(15)
74	R85	GGCGUGCC CCGUGCGG	-9.23	(15)
75	R86	GUCGUGAC CAGUGCUG	-6.05	(15)
76	R87	GAGUUGAG CUCGGCUC	-8.21	(15)
77	R88	AGGCUU UUCGGA	-4.04	(15)
78	R89	AGUCGAUU UUAGCUGA	-5.97	(15)
79	R90	CGGAUUCG GCUUAGGC	-6.54	(15)
80	R91	CCUAGG GGAUCC	-7.86	(15)

81	R93	GGAUCC CCUAGG	-7.46	(15)
82	R94	CACAG GUGUC	-4.41	(16)
83	R95	UGACCUCA ACUGGAGU	-12.34	(17)
84	R96	GAGCUC CUCGAG	-7.73	(18)
85	R97	GCGUGC CGUGCG	-5.11	(18)
86	R98	GAGGUCUC CUCUGGAG	-8.77	(19)
87	R99	GAGCUC CUCGAG	-7.93	(19)
88	R100	GGUACC CCAUGG	-7.32	(19)
89	R101	GAGUGCUC CUCGUGAG	-9.17	(20)
90	R102	GGUUGACC CCAGUUGG	-8.30	(20)
91	R103	GGCUGGCC CCGGUCGG	-13.26	(20)
92	R106	CCAUGUGG GGUGUACC	-7.82	(21)
93	R107	CCAGUUGG GGUUGACC	-5.71	(21)
94	R108	CCAUGG GGUACC	-7.39	(21)
95	R109	GAGGAG CUCCUC	-8.50	(22)
96	R110	GAGUGGAG CUCGUCUC	-9.69	(22)
97	R112	GAGGUGAG CUCUGCUC	-7.62	(22)
98	R113	CGCG GCGC	-3.66	(1)
99	R114	ACGCA UGCGU	-4.96	(1)
100	R115	AGCGA UCGCU	-5.06	(1)
101	R116	GCACG CGUGC	-6.17	(1)

102	R117	GCUCG CGAGC	-6.13	(1)
103	R118	CACGUG GUGCAC	-6.58	(1)
104	R119	CCGCGG GGCGCC	-9.83	(1)
105	R120	GCAACG CGUUGC	-6.99	(1)
106	R121	GCAUCG CGUAGC	-7.26	(1)
107	R122	GCCGCG CGGCGC	-10.87	(1)
108	R123	GCGCCG CGCGGC	-10.92	(1)
109	R124	GCGCGG CGCGCC	-11.39	(1)
110	R125	GCGUCG CGCAGC	-8.77	(1)
111	R126	GCUACG CGAUGC	-7.56	(1)
112	R127	GGCGCG CCGCGC	-10.77	(1)
113	R128	GUGGUG CACCAC	-7.68	(1)
114	R129	GUGUCG CACAGC	-7.18	(1)
115	R130	UCGCGA AGCGCU	-6.85	(1)
116	R131	UCUAGA AGAUCU	-4.96	(1)
117	R132	AAGGAGG UUCCUCC	-9.53	(1)
118	R133	ACUGUCA UGACAGU	-7.92	(1)
119	R134	AGUCUGA UCAGACU	-7.50	(1)
120	R135	GACUCAG CUGAGUC	-9.06	(1)
121	R136	GAGUGAG CUCACUC	-9.70	(1)
122	R137	GUCACUG CAGUGAC	-8.62	(1)

123	R138	ACCUUUGC UGGAAACG	-10.64	(1)
124	R139	CGACGCAG GCUGCGUC	-12.32	(1)
125	R140	CUCGCACA GAGCGUGU	-12.10	(1)
126	R141	GGCUUCAA CCGAAGUU	-10.20	(1)
127	R142	UCCUUGCA AGGAACGU	-11.09	(1)
128	R143	UUCCGGAA AAGGCCUU	-10.80	(1)
129	R144	UUGCGCAA AACGCGUU	-10.19	(1)
130	R145	UUGGCCAA AACCGGUU	-11.02	(1)
131	R146	UUGUACAA AACAUGUU	-6.71	(1)
132	R147	AAGGUUGGAA UUCCAACCUU	-12.69	(1)
133	R148	CAUGCG GUACGC	-7.01	(1)
134	R150	GCUGAG CGACUC	-7.71	(1)
135	R151	GUGCAG CACGUC	-7.68	(1)
136	R156	UCCGCGCA AGGCGCGU	-14.59	(1)
137	R157	GCGGCG CGCCGC	-10.91	(23)
138	R158	GCGCGC CGCGCG	-10.82	(23)
139	R159	AAGGCCGGAA UUCCGGCCUU	-18.15	(24)
140	R160	CCUCUGGUGA GGAGACCGCU	-15.31	(24)
141	R161	AGGCCGGA UCCGGCCU	-15.26	(24)
142	R162	GAGCCGAC CUCGGCUG	-13.76	(24)
143	R163	UCACCUGA AGUGGACU	-10.84	(24)

144	R166	CUGGUC GACCAG	-8.05	(25)
145	R168	GAGUUGAC CUCAACUG	-10.60	(26)
146	R169	GAGUGAG CUCGCUC	-7.81	(23)
147	R170	AUCUAGGU UGGAUCUA	-5.90	Unpublished
148	R171	GUCUAGAU UAGAUCUG	-7.66	Unpublished

Supplementary Table 2: Dangling End Duplex Experiment List

Note: The top strand is shown 5' to 3'. The bottom strand is shown 3' to 5'. Unpaired nucleotides are in lower case.

Index	ID#	Duplex	Folding Free Energy Change	Reference
			(kcal/mol)	
149	D1	UGCGCAa aACGCGU	-9.60	(12)
150	D2	UGCGCAc cACGCGU	-9.11	(12)
151	D3	UGCGCAg gACGCGU	-9.79	(12)
152	D4	UGCGCAu uACGCGU	-9.27	(12)
153	D5	AUGCAUa aUACGUA	-6.06	(12)
154	D6	AUGCAUC CUACGUA	-4.98	(12)
155	D7	AUGCAUg gUACGUA	-6.06	(12)
156	D8	AUGCAUu uUACGUA	-4.91	(12)
157	D9	CCGGa aGGCC	-6.85	(3)
158	D10	CCGGa aGGCC	-6.84	(3)
159	D11	CCGGC CGGCC	-5.25	(4)
160	D12	CCGGg gGGCC	-7.05	(4)
161	D13	CCGGu uGGCC	-5.81	(4)
162	D14	CCGGu uGGCC	-5.76	(3)
163	D15	GCGCa aCGCG	-7.92	(11)
164	D16	GGCCa aCCGG	-9.01	(4)
165	D17	GCGCc cCGCG	-6.16	(11)
166	D18	GGCCC cCCGG	-6.96	(4)

167	D19	GCGCg gCGCG	-7.70	(11)
168	D20	GGCCg gCCGG	-8.88	(4)
169	D21	GGCCu uCCGG	-8.16	(5)
170	D22	GCGCu uCGCG	-6.93	(11)
171	D23	GGCCu uCCGG	-7.98	(4)
172	D24	aUGCGCA ACGCGUa	-8.72	(12)
173	D25	cUCAUGA AGUACUc	-4.09	Unpublished
174	D26	aAUGCAU UACGUAa	-5.38	(12)
175	D27	CAUGCAU UACGUAC	-5.23	(12)
176	D28	gAUGCAU UACGUAg	-5.44	(12)
177	D29	uAUGCAU UACGUAu	-5.11	(12)
178	D30	aCCGG GGCCa	-5.60	(3)
179	D31	cCCGG GGCCc	-5.27	Unpublished
180	D32	gCCGG GGCCg	-4.90	(5)
181	D33	uCCGG GGCCu	-4.84	(5)
182	D34	aGGCC CCGGa	-5.81	(5)
183	D35	CGGCC CCGGC	-5.79	(5)
184	D36	cGCGC CGCGc	-5.27	(11)
185	D37	gGCGC CGCGg	-4.55	(11)
186	D38	uGGCC CCGGu	-5.17	(5)
187	D39	uGCGC CGCGu	-5.08	(11)

188	D40	GGCCc cCCGG	-7.22	(4)
189	D41	GCCGGUa aUGGCCG	-11.37	(8)
190	D42	GCGGCGa aCGCCGC	-14.63	(14)
191	D43	GACCGCa aCUGGCG	-12.17	(14)
192	D44	AGCGCGp pGCGCGA	-8.73	(27)
193	D45	GCCGGAg gAGGCCG	-8.44	(27)

Supplementary Table 3: Terminal Mismatch Duplex Experiment List

Note: The top strand is shown 5' to 3'. The bottom strand is shown 3' to 5'. Unpaired nucleotides are in lower case.

Index	ID#	Duplex	Folding Free Energy Change	Reference
			(kcal/mol)	
194	T1	aUGCGCAa aACGCGUa	-9.68	(13)
195	T2	aUGCGCAc cACGCGUa	-9.42	(13)
196	Т3	aUGCGCAg gACGCGUa	-9.77	(13)
197	T4	aGCGCa aCGCGa	-7.64	(28)
198	T5	cGGCCa aCCGGc	-8.30	(28)
199	T6	gGCGCa aCGCGg	-7.52	(28)
200	T7	uGGCCc cCCGGu	-6.90	(28)
201	T8	gGCGCg gCGCGg	-7.71	(28)
202	Т9	cGGCCu uCCGGc	-8.09	(28)
203	T10	uGCGCu uCGCGu	-7.01	(8)
204	T11	aCCGGa aGGCCa	-6.73	(29)
205	T12	gCCGGa aGGCCg	-7.03	(8)
206	T13	aCCGGc cGGCCa	-6.72	(29)
207	T14	aCCGGg gGGCCa	-7.71	(29)
208	T15	gCCGGg gGGCCg	-7.48	(8)
209	T16	aUCCGGGa aGGGCCUa	-7.94	(30)
210	T17	aUGGCCGg gGCCGGUa	-9.72	(30)
211	T18	uUGGCCGu uGCCGGUu	-9.70	(31)

212	T19	aAUGCAUa aUACGUAa	-6.61	(13)
213	T20	cAUGCAUa aUACGUAc	-6.25	(13)
214	T21	gAUGCAUa aUACGUAg	-6.93	(13)
215	T22	aAUGCAUc cUACGUAa	-6.17	(13)
216	T23	CAUGCAUC CUACGUAC	-5.90	(13)
217	T24	uAUGCAUc cUACGUAu	-5.66	(13)
218	T25	aAUGCAUg gUACGUAa	-6.96	(13)
219	T26	gAUGCAUg gUACGUAg	-7.02	(13)
220	T27	cAUGCAUu uUACGUAc	-5.91	(13)
221	T28	uAUGCAUu uUACGUAu	-5.75	(13)
222	T29	aGCGUa aUGCGa	-3.97	(30)
223	Т30	aGGCGCUg gUCGCGGa	-9.38	(30)
224	T31	gGCCGGUg gUGGCCGg	-10.79	(30)
225	T32	uGCCGGUu uUGGCCGu	-9.97	(31)
226	Т33	aGCGCg gCGCGa	-7.47	(27)

Supplementary Table 4: Hairpin Loop Experiment List

Note: The sequence is shown 5' to 3'. l	Jnpaired nucleotides are in lower case.
---	---

Index	ID#	Duplex	Folding Free Energy Change (kcal/mol)	Reference
227	H1	GGAauaUCC	0.64	(32)
228	H2	GGAGaaaUUCC	-0.93	(30)
229	H3	GGCauaGCC	-0.96	(32)
230	H4	GGGaaaUCC	0.33	(30)
231	H5	GGGauaCCC	-0.21	(32)
232	H6	GGGAUACaaaGUAUCCA	-6.30	(33)
233	H7	GGGAUACcccGUAUCCA	-4.64	(33)
234	H8	GGGAUACuuuGUAUCCA	-7.03	(33)
235	H9	GGUauaACC	0.58	(32)
236	H10	GGUauaGCC	0.87	(30)
237	H11	GCGauuaUGC	-0.32	(30)
238	H12	GCGGauuaUCGC	-1.41	(30)
239	H13	GGAauuaUCC	-0.06	(32)
240	H14	GGCauuaGCC	-2.52	(32)
241	H15	GGGaccaUCC	-1.81	(30)
242	H16	GGGauuaCCC	-1.28	(32)
243	H17	GGGAUACaaaaGUAUCCA	-7.60	(33)
244	H18	GGGAUACcccGUAUCCA	-4.30	(33)
245	H19	GGGAUACuuuuGUAUCCA	-8.16	(33)
246	H20	GGUauuaACC	-1.79	(32)
247	H21	GGUauuaGCC	0.17	(30)
248	H22	GGUgcaaGCC	-1.44	(30)
249	H23	GGCgagaGCC	-3.31	(31)
250	H24	GGCgcgaGCC	-3.50	(31)
251	H25	GGCgggaGCC	-3.23	(31)

252	H26	GGCgugaGCC	-3.16	(31)
253	H27	GGCgaaaGCC	-3.19	(31)
254	H28	GGCgcaaGCC	-3.35	(31)
255	H29	GGCggaaGCC	-3.23	(31)
256	H30	GGCguaaGCC	-3.53	(31)
257	H31	GGACuuuuGUCC	-4.20	(34)
258	H32	GGAGuucgCUCC	-4.05	(34)
259	H33	GGACgcuuGUCC	-4.43	(34)
260	H34	GCGgaagaUGC	-0.28	(30)
261	H35	GGAauuuaUCC	0.42	(32)
262	H36	GGCauauaGCC	-2.38	(32)
263	H37	GGCauuuaGCC	-2.66	(32)
264	H38	GGGauauaCCC	-1.38	(32)
265	H39	GGGauuuaCCC	-1.70	(32)
266	H40	GGGauuuaUCC	-0.70	(30)
267	H41	GGGAUACaaaaaGUAUCCA	-7.72	(33)
268	H42	GGGAUACccccGUAUCCA	-4.10	(33)
269	H43	GGGAUACuuuuuGUAUCCA	-8.13	(33)
270	H44	GGUauuuaACC	-0.25	(32)
271	H45	GGUauuuaGCC	-0.57	(30)
272	H46	ACCgacacaGGU	-1.60	(28)
273	H47	AGGAauaauaUCCU	-2.38	(35)
274	H48	AGGUauaauaGCCU	-2.21	(35)
275	H49	CGGuuaauuCCG	-1.95	(28)
276	H50	CUCUacaccaAGAG	-1.78	(28)
277	H51	GCGgugaaaUGC	-0.69	(30)
278	H52	GCGuuaauuUGC	0.35	(30)
279	H53	GGAauaauaUCC	-0.73	(35)
280	H54	GGAguaauaUCC	-1.72	(28)

281	H55	GGCauaauaGCC	-2.76	(35)
282	H56	GGCauaaucGCC	-2.56	(28)
283	H57	GGCauaaugGCC	-3.11	(28)
284	H58	GGCcuaauaGCC	-2.15	(28)
285	H59	GGCcuaaucGCC	-2.38	(28)
286	H60	GGCcuaauuGCC	-1.82	(28)
287	H61	GGCguaauaGCC	-3.47	(35)
288	H62	GGCguaaugGCC	-3.85	(28)
289	H63	GGCuuaaucGCC	-2.89	(28)
290	H64	GGCuuaauuGCC	-6.23	(28)
291	H65	GGGauaauaUCC	-1.42	(35)
292	H66	GGUauaauaACC	-0.34	(35)
293	H67	GGUauaauaGCC	-0.47	(35)
294	H68	GGUguaauaACC	-1.54	(28)
295	H69	GGUguaauaGCC	-1.85	(28)
296	H70	GGUguaaugACC	-1.04	(28)
297	H71	GGUguaaugGCC	-1.29	(30)
298	H72	GUGguaauaCAC	-1.08	(28)
299	H73	GUGguaauaUAC	0.94	(28)
300	H74	GGAuuaauuUCC	-1.29	(31)
301	H75	GGUuuaauuACC	-0.83	(31)
302	H76	GGUuuaauuGCC	-0.53	(31)
303	H77	GCGguaaugCGC	-2.54	(31)
304	H78	GGAguaaugUCC	-1.16	(31)
305	H80	GCGguaaugUGC	-0.80	(31)
306	H81	GCGAauaaauaUCGC	-2.41	(32)
307	H82	GGCauaaauaGCC	-2.11	(32)
308	H83	GGGacggacaUCC	-1.03	(30)
309	H84	GGGauaaauaCCC	-2.12	(32)

310	H85	GGGauaaauaUCC	-0.22	(30)
311	H86	GGGAUACaaaaaaaGUAUCCA	-7.19	(33)
312	H87	GGGAUACcccccGUAUCCA	-2.91	(33)
313	H88	GGGAUACuuuuuuuGUAUCCA	-7.38	(33)
314	H89	GGUauaaauaACC	-0.41	(32)
315	H90	GGUauaaauaGCC	0.56	(30)
316	H91	GGUguaaaaaGCC	-0.66	(30)
317	H92	GCGaauucauaUGC	-0.65	(30)
318	H93	GCUgaauggaaGGC	-1.28	(30)
319	H94	GGAauaaaauaUCC	-2.19	(32)
320	H95	GGCauaaaauaGCC	-2.16	(32)
321	H96	GGGauaaaauaCCC	-2.35	(32)
322	H97	GGGauaaaauaUCC	-1.65	(30)
323	H98	GGUaauucauaGCC	-0.08	(30)
324	H99	GGUauaaaauaACC	0.51	(32)
325	H100	GGUauaaaauaGCC	0.03	(30)
326	H101	GCGAauaaaaauaUCGC	-2.23	(32)
327	H102	GCGUauaaaaauaACGC	-1.08	(32)
328	H103	GGAauaaaaauaUCC	0.25	(32)
329	H104	GGCauaaaaauaGCC	-2.14	(32)
330	H105	GGGauaaaaauaCCC	-2.09	(32)
331	H106	GGGAUACaaaaaaaaaGUAUCCA	-5.55	(33)
332	H107	GGGAUACccccccCGUAUCCA	-2.10	(33)
333	H108	GGGAUACuuuuuuuuGUAUCCA	-8.05	(33)
334	H126	GGACaacGUCC	-1.32	(36)
335	H127	GGAGuuaCUCC	-0.92	(36)
336	H132	GGCuacgGCC	-3.22	(31)
337	H133	GGCuccgGCC	-3.95	(31)
338	H134	GGCuucgGCC	-4.09	(31)

339	H135	GAAGAcaguguUCUUC	-5.52	(37)
340	H136	GAAGAcagugcUCUUC	-5.44	(37)
341	H137	GAAGAcaguacUCUUC	-4.44	(37)
342	H138	GGAcagugcUCC	-1.02	(31)
343	H139	GGAcagugaUCC	-1.59	(31)
344	H141	GGACuuugGUCC	-3.79	(38)
345	H148	GGACuucgGUCC	-6.31	(34)
346	H149	GGACuuugGUCC	-4.30	(34)
347	H150	GGACuacgGUCC	-5.68	(34)
348	H152	GGACcaagGUCC	-4.02	(39)
349	H153	GGACccagGUCC	-3.83	(39)
350	H154	GGACcgagGUCC	-3.67	(39)
351	H155	GGACcuagGUCC	-3.64	(39)
352	H156	GGACcacgGUCC	-3.56	(39)
353	H158	GGACcgcgGUCC	-3.67	(39)
354	H159	GGACcucgGUCC	-4.77	(39)
355	H160	GGACuaagGUCC	-3.61	(39)
356	H161	GGACucagGUCC	-3.61	(39)
357	H163	GGACuuagGUCC	-3.76	(39)
358	H164	GGACuacgGUCC	-4.88	(39)
359	H165	GGACuccgGUCC	-4.45	(39)
360	H166	GGACugcgGUCC	-4.42	(39)
361	H167	GGACuucgGUCC	-4.78	(39)
362	H170	GGACaacgGUCC	-1.77	(39)

Supplementary Table 5: Internal Loop Duplex Experiment List

Note: The top strand is shown 5' to 3'. The bottom strand is shown 3' to 5'. Unpaired nucleotides are in lower case. The underscore character (_) does not represent a nucleotide. It is used to maintain alignment between the top and bottom strands.

Index	ID#	Duplex	Folding Free	Reference
			Energy Change (kcal/mol)	
363	11	GAGcGAG	-5.63	(23)
		CUCaCUC		
364	12	GAGaGAG	-5.32	(23)
		CUCgCUC		
365	13	GAGcGAG	-5.22	(23)
		CUCuCUC		
366	14	GAGuGAG	-5.24	(23)
		CUCuCUC		
367	15	GAGaGAG	-4.95	(23)
		CUCCCUC		
368	16	GAGaGAG	-4.85	(23)
		CUCaCUC		
369	17	GAGcGAG	-4.75	(23)
		CUCcCUC		
370	18	GAGuGAG	-4.75	(23)
		CUCcCUC		
371	19	GCGuCCG	-8.23	(23)
		CGCuGGC		
372	110	GCGuCGC	-7.90	(23)
		CGCuGCG		
373	111	GCGuGCG	-7.79	(23)
		CGCuCGC		
374	112	GCCuGCG	-8.15	(23)
		CGGuCGC		
375	113	CGCuGCG	-6.31	(23)
		GCGuCGC		
376	114	GCGuUCG	-5.99	(23)
		CGCuAGC		
377	115	GUGuUCG	-3.80	(23)
		CACuAGC		
378	116	GCAuUCG	-4.98	(23)
		CGUuAGC		
379	117	GCAuACG	-4.55	(23)
		CGUuUGC		

380	118	GCUuACG CGAuUGC	-4.47	(23)
381	119	CGCaGCG GCGaCGC	-6.08	(17)
382	120	GCGaCCG CGCaGGC	-6.67	(23)
383	121	GGCaGCC CCGaCGG	-7.83	(23)
384	122	GgCUGAG CgGACUC	-6.87	(23)
385	123	CGgCAUG GCgGUAC	-6.07	(23)
386	124	GUGgCAG CACgGUC	-6.66	(23)
387	125	GCGgCGC CGCgGCG	-9.28	(23)
388	126	CGCgGCG GCGgCGC	-8.14	(23)
389	127	UGACaCUCA ACUGaGAGU	-7.94	(17)
390	128	GAGaGGAG CUCgUCUC	-5.83	(22)
391	129	GAGuGGAG CUCuUCUC	-6.26	(22)
392	130	GAGaGGAG CUCaUCUC	-5.27	(22)
393	131	GAGgUGAG CUCaGCUC	-4.97	(22)
394	132	GAGaUGAG CUCgGCUC	-4.67	(22)
395	133	GAGuUGAG CUCuGCUC	-4.69	(22)
396	134	GAGaUGAG CUCaGCUC	-4.36	(22)
397	135	GAGUaGAG CUCGgCUC	-6.11	(22)
398	136	GAGUgGAG CUCGaCUC	-6.09	(22)
399	137	GAGUuGAG CUCGuCUC	-6.24	(22)
400	138	GAGUCGAG CUCGcCUC	-5.56	(22)

401	139	GAGUCGAG CUCGaCUC	-6.00	(22)
402	140	GAGUaGAG CUCGaCUC	-5.15	(22)
403	141	GAGGaGAG CUCUgCUC	-6.56	(22)
404	142	GAGGuGAG CUCUuCUC	-5.21	(22)
405	143	GAGGCGAG CUCUuCUC	-5.39	(22)
406	144	GAGGCGAG CUCUaCUC	-5.83	(22)
407	145	GAGGaGAG CUCUaCUC	-5.74	(22)
408	146	UGACa_CUCA ACUGaaGAGU	-6.80	(40)
409	147	UGACa_CUCA ACUGaaGAGU	-6.43	(17)
410	148	UGAGa_GUCA ACUCaaCAGU	-6.60	(17)
411	149	UGACa_CUCA ACUGagGAGU	-8.32	(40)
412	150	UCAGa_GUGA AGUCagCACU	-6.44	(24)
413	151	UGACa_CUCA ACUGccGAGU	-7.42	(40)
414	152	UGACa_CUCA ACUGgaGAGU	-8.01	(40)
415	153	UGAGa_GUCA ACUCgaCAGU	-6.98	(40)
416	154	UGACc_CUCA ACUGaaGAGU	-6.80	(40)
417	155	UGACc_CUCA ACUGauGAGU	-6.60	(40)
418	156	UGACc_CUCA ACUGccGAGU	-6.62	(40)
419	157	UGACc_CUCA ACUGcuGAGU	-7.16	(40)
420	158	UGACg_CUCA ACUGaaGAGU	-7.35	(40)
421	159	UGACg_CUCA ACUGagGAGU	-7.92	(40)

422	160	UGACg_CUCA ACUGgaGAGU	-8.32	(40)
423	161	UGACu_CUCA ACUGccGAGU	-6.85	(40)
424	162	UCACu_CUGA AGUGcuGACU	-5.91	(24)
425	163	UGACu_CUCA ACUGucGAGU	-7.54	(40)
426	164	UGACu_CUCA ACUGuuGAGU	-7.90	(40)
427	165	AGGCu_CGGA UCCGuuGCCU	-10.43	(24)
428	166	GCGagCGC CGCgaGCG	-8.46	(18)
429	167	GCGuuCGC CGCuuGCG	-7.66	(19)
430	168	CGGcaCCG GCCacGGC	-5.49	(19)
431	169	CUGcuCAG GACucGUC	-2.32	(19)
432	170	CGGcuCCG GCCucGGC	-5.57	(19)
433	171	GCGacCGC CGCcaGCG	-6.23	(19)
434	172	GCGaaCGC CGCaaGCG	-5.66	(19)
435	173	GGCagGCC CCGgaCGG	-9.44	Unpublished
436	174	CGCagGCG GCGgaCGC	-7.76	(41)
437	175	CGCuuGCG GCGuuCGC	-7.18	(42)
438	176	UGCggGCA ACGggCGU	-5.02	(42)
439	177	CGCcaGCG GCGacCGC	-5.69	(42)
440	178	CGCcuGCG GCGucCGC	-5.45	(42)
441	179	CGCucGCG GCGcuCGC	-5.38	(42)
442	180	CGCccGCG GCGccCGC	-5.13	(42)

443	181	GGCacGCC CCGcaCGG	-6.97	(42)
444	182	CGCaaGCG GCGaaCGC	-5.44	(17)
445	183	GCUgaAGC CGAagUCG	-5.88	(18)
446	184	GCUuuAGC CGAuuUCG	-5.50	(19)
447	185	GGUcaACC CCAacUGG	-4.14	(19)
448	186	GGUcuACC CCAucUGG	-3.86	(19)
449	187	GGUucACC CCAcuUGG	-3.21	(19)
450	188	GCUaaAGC CGAaaUCG	-3.82	(19)
451	189	GGAgaUCC CCUagAGG	-6.41	(18)
452	190	GCAgaUGC CGUagACG	-5.61	(18)
453	191	GCAuuUGC CGUuuACG	-5.61	(19)
454	192	GGAcaUCC CCUacAGG	-4.01	(19)
455	193	GGAacUCC CCUcaAGG	-3.89	(19)
456	194	GCAaaUGC CGUaaACG	-3.52	(19)
457	195	GGCgaGCC CCGagCGG	-9.69	(41)
458	196	GAGgaGAG CUCagCUC	-6.91	(22)
459	197	GAGaaGAG CUCggCUC	-5.74	(22)
460	198	GAGuaGAG CUCugCUC	-4.26	(22)
461	199	GAGaaGAG CUCcgCUC	-4.61	(22)
462	1100	UGAGaaGUCA ACUCaaCAGU	-7.04	(17)
463	1101	GAGaaGAG CUCagCUC	-5.39	(22)

464	1102	GAGagGAG CUCgaCUC	-5.92	(22)
465	1103	GAGugGAG CUCuaCUC	-4.37	(22)
466	1104	GAGcgGAG CUCaaCUC	-5.99	(22)
467	1105	GAGagGAG CUCcaCUC	-6.19	(22)
468	1106	GAGagGAG CUCaaCUC	-5.23	(22)
469	1107	GAGguGAG CUCauCUC	-4.77	(22)
470	1108	GAGauGAG CUCguCUC	-3.88	(22)
471	1109	GAGuuGAG CUCuuCUC	-5.88	(22)
472	1110	GAGauGAG CUCcuCUC	-4.96	(22)
473	1111	GAGauGAG CUCauCUC	-3.85	(22)
474	1112	GAGaaGAG CUCgcCUC	-4.49	(22)
475	1113	GAGuaGAG CUCucCUC	-5.41	(22)
476	1114	GAGuuGAG CUCucCUC	-5.10	(22)
477	1115	GAGacGAG CUCguCUC	-4.69	(22)
478	1116	GAGgcGAG CUCacCUC	-4.47	(22)
479	1117	GAGacGAG CUCgcCUC	-4.53	(22)
480	1118	GAGucGAG CUCucCUC	-5.31	(22)
481	1119	GAGacGAG CUCccCUC	-3.34	(22)
482	1120	GAGacGAG CUCacCUC	-3.03	(22)
483	1121	GAGgcGAG CUCaaCUC	-5.14	(22)
484	1122	GAGacGAG CUCgaCUC	-4.81	(22)

485	1123	GAGucGAG CUCuaCUC	-5.24	(22)
486	I124	GAGacGAG CUCcaCUC	-4.14	(22)
487	I125	GAGacGAG CUCaaCUC	-4.58	(22)
488	1126	GAGgaGAG CUCaaCUC	-5.55	(22)
489	l127	GAGaaGAG CUCgaCUC	-4.90	(22)
490	l128	GAGuaGAG CUCuaCUC	-3.77	(22)
491	l129	GAGaaGAG CUCaaCUC	-4.71	(22)
492	1130	GGAagUCC CCUgaAGG	-4.64	(43)
493	1131	GGUagACC CCAgaUGG	-5.13	(43)
494	1132	GCAggUGC CGUggACG	-4.43	(25)
495	I133	GCUggAGC CGAggUCG	-4.26	(25)
496	I134	GUGgcGUG CACguCAC	-5.30	(25)
497	I135	GAGcgGAG CUCugCUC	-5.69	(25)
498	I136	GAGcgGAG CUCagCUC	-5.70	(25)
499	1137	GAGgcGAG CUCguCUC	-5.66	(25)
500	1138	CUGgaGUC GACggCAG	-5.00	(25)
501	I139	GAGgcGAG CUCgaCUC	-5.57	(25)
502	1140	CUGagGUC GACggCAG	-5.11	(25)
503	1141	GUGgaGUG CACgaCAC	-4.63	(25)
504	1142	GUGagGUG CACagCAC	-4.49	(25)
505	1143	GAGguGAG CUCgcCUC	-5.02	(25)

506	1144	GAGugGAG CUCcgCUC	-4.98	(25)
507	1145	GAGguGAG CUCguCUC	-4.56	(25)
508	1146	GAGugGAG CUCugCUC	-3.86	(25)
509	1147	GAGuuGAG CUCccCUC	-3.54	(22)
510	1148	GAGcgGAG CUCcaCUC	-5.92	(22)
511	1149	GAGcaGAG CUCagCUC	-5.60	(22)
512	1150	CGCaaGCG GCGaaCGC	-5.44	(17)
513	1151	CCACgCUCC GGUGaaaGAGG	-9.65	(24)
514	I152	CGACgGCAG GCUGgaaCGUC	-8.34	(24)
515	I153	UCAGcGUGA AGUCaauCACU	-5.73	(24)
516	1154	CGACaGCAG GCUGgaaCGUC	-8.01	(24)
517	l155	CCACaCUCC GGUGaaaGAGG	-9.18	(24)
518	1156	UCCGaCGCA AGGCaagGCGU	-9.02	(24)
519	1157	GGCuCGG CCGuuuGCC	-6.03	(24)
520	l158	UGACuCUCA ACUGcuuGAGU	-6.77	(24)
521	1159	UCACuCUGA AGUGcucGACU	-5.30	(24)
522	1160	UGACaCUCA ACUGaacGAGU	-6.59	(24)
523	1161	UGAGaGUCA ACUCcgaCAGU	-6.55	(24)
524	1162	UGACaCUCA ACUGaaaGAGU	-6.55	(17)
525	1163	UGACcCUCA ACUGcuuGAGU	-6.34	(24)
526	1164	AGGCuCGGA UCCGuuuGCCU	-9.25	(24)

527	1165	UGAGaGUCA ACUCaaaCAGU	-6.16	(17)
528	1166	UCCGaCGCA AGGCggaGCGU	-8.13	(24)
529	1167	AAGGCuCGGAA UUCCGuuuGCCUU	-11.60	(24)
530	1168	UCCUgUGCA AGGAgagACGU	-6.99	(24)
531	1169	UCCUaUGCA AGGAgagACGU	-6.63	(24)
532	1170	UCCUaUGCA AGGAaagACGU	-6.56	(24)
533	1171	AAGGUCUGGAA UUCCAuuuACCUU	-7.87	(24)
534	1172	UCCUgUGCA AGGAaaaACGU	-6.17	(24)
535	1173	UCCUaUGCA AGGAgaaACGU	-6.18	(24)
536	1174	UCCUaUGCA AGGAagaACGU	-6.09	(24)
537	1175	UCCUaUGCA AGGAaaaACGU	-6.09	(24)
538	1176	ACCUcUUGC UGGAacaAACG	-5.02	(24)
539	1177	CCUCUcGGUGA GGAGAaaaCCGCU	-9.86	(24)
540	1178	GAGUgUGAC CUCGaagGCUG	-5.07	(43)
541	1179	GAGCga_CGAC CUCGaagGCUG	-10.51	(24)
542	1180	CCACgg_CUCC GGUGagaGAGG	-9.84	(24)
543	1181	GAGCaa_CGAC CUCGaagGCUG	-9.23	(24)
544	1182	CGACga_GCAG GCUGgaaCGUC	-8.44	(24)
545	1183	CCUCUgc_GGUGA GGAGAaaaCCGCU	-11.57	(24)
546	1184	UGACuu_CUCA ACUGuuuGAGU	-7.36	(24)
547	1185	GAGCag_CGAC CUCGgaaGCUG	-8.80	(24)

548	1186	GAGCga_CGAC CUCGaaaGCUG	-8.77	(24)
549	1187	CCACgg_CUCC GGUGaaaGAGG	-9.22	(24)
550	1188	GAGCaa_CGAC CUCGgaaGCUG	-8.61	(24)
551	1189	UGACuu_CUCA ACUGcuuGAGU	-6.99	(24)
552	1190	GAGCag_CGAC CUCGaagGCUG	-8.50	(24)
553	1191	UCACuu_CUGA AGUGcucGACU	-5.34	(24)
554	1192	ACCUgc_UUGC UGGAacaAACG	-7.33	(24)
555	1193	UCAGcc_GUGA AGUCaauCACU	-5.11	(24)
556	1194	UGAGaa_GUCA ACUCaaaCAGU	-6.59	(17)
557	1195	UGAGaa_GUCA ACUCcgaCAGU	-6.58	(24)
558	1196	GAGCag_CGAC CUCGaaaGCUG	-8.14	(24)
559	1197	CUGUgg_ACGA GACGagaUGCU	-5.45	(24)
560	1198	GAGCaa_CGAC CUCGaaaGCUG	-7.99	(24)
561	1199	GAGUaa_CGAC CUCGaagGCUG	-7.96	(43)
562	1200	GAGUga_UGAC CUCGaagGCUG	-6.99	(43)
563	1201	GAGCaa_UGAC CUCGaagGCUG	-7.48	(43)
564	1202	CUGUau_GACG GACGaauCUGC	-6.58	(43)
565	1203	GAGUaa_CGAC CUCGaaaGCUG	-6.62	(43)
566	1204	GAGUaa_UGAC CUCGaagGCUG	-5.68	(43)
567	1205	GAGUga_UGAC CUCGaaaGCUG	-5.52	(43)
568	1206	GAGCaa_UGAC CUCGaaaGCUG	-6.23	(43)

569	1207	GAGUag_UGAC CUCGaaaGCUG	-4.79	(43)
570	1208	GAGUaa_UGAC CUCGaaaGCUG	-4.70	(43)
571	1209	UGACuuCUCA ACUGccuGAGU	-6.31	(24)
572	1210	CGACga_GCAG GCUGaagCGUC	-9.77	(44)
573	1211	UGACaCUCA ACUGaaaaGAGU	-6.12	(17)
574	1212	UGAGaGUCA ACUCaaaaCAGU	-5.56	(17)
575	I213	UGAGaaaGUCA ACUCaaaCAGU	-6.67	(17)
576	1214	UGACaaCUCA ACUGaaaaGAGU	-6.07	(17)
577	1215	UGAGaaGUCA ACUCaaaaCAGU	-6.00	(17)
578	1216	UGACaCUCA ACUGaaaaaaGAGU	-5.71	(17)
579	1217	UGAGaGUCA ACUCaaaaaaCAGU	-5.30	(17)
580	1218	UGACcaaCUCA ACUGaaaGAGU	-7.14	(17)
581	1219	UGACaaaCUCA ACUGaacGAGU	-7.17	(17)
582	1220	CGCaaaGCG GCGaaaCGC	-4.88	(17)
583	1221	CGGaaaCCG GCCaaaGGC	-4.64	(17)
584	1222	GCGaaaCGC CGCaaaGCG	-4.27	(26)
585	1223	CGCaaaGGC GCGaccCCG	-5.85	(26)
586	1224	CGGaaaCGC GCCaaaGCG	-5.00	(26)
587	1225	CGCauaGGC GCGaugCCG	-6.05	(26)
588	1226	CGCauaGGC GCGaaaCCG	-6.14	(26)
589	1227	GAGUgaaUGAC CUCAagaACUG	-7.01	(26)

590	1228	GAGCagaCGAC CUCGagaGCUG	-8.36	(26)
591	1229	CGCagaGGC GCGaugCCG	-6.33	(26)
592	1230	GAGCguaCGAC CUCGauaGCUG	-8.48	(26)
593	1231	CGCaaaGGC GCGaugCCG	-6.56	(26)
594	1232	GAGCagaCGAC CUCGauaGCUG	-8.78	(26)
595	1233	GAGCagaCGAC CUCGaugGCUG	-8.73	(26)
596	1234	CGGcacCCG GCCcacGGC	-4.70	(26)
597	1235	GAGCggaCGAC CUCGauaGCUG	-8.89	(26)
598	1236	CGCaaaGGC GCGaaaCCG	-6.78	(26)
599	1237	GCAgaaUGC CGUaagACG	-4.58	(26)
600	1238	CGCucuGGC GCGucuCCG	-6.90	(26)
601	1239	GAGCaaaCGAC CUCGaugGCUG	-9.12	(26)
602	1240	CGCaaaGGC GCGaacCCG	-6.98	(26)
603	1241	GAGCcgaCGAC CUCGagaGCUG	-9.13	(26)
604	1242	CGACgcaGCAG GCUGaaaCGUC	-8.43	(26)
605	1243	CGGacaCCG GCCacaGGC	-5.07	(26)
606	1244	GAGCugcCGAC CUCGuauGCUG	-9.26	(26)
607	1245	GAGCcgaCGAC CUCGauaGCUG	-9.23	(26)
608	1246	GAGCgaaCGAC CUCGaaaGCUG	-9.32	(26)
609	1247	GCUgaaAGC CGAaagUCG	-5.13	(26)
610	1248	GAGCgaaCGAC CUCGauaGCUG	-9.34	(26)

611	1249	GAGCgagCGAC CUCGauaGCUG	-9.45	(26)
612	1250	GGCgaaGCC CCGaagCGG	-7.74	(26)
613	1251	CGGaagCGC GCCguaGCG	-6.33	(26)
614	1252	GAGCgagCGAC CUCGaaaGCUG	-9.60	(26)
615	1253	GAGCgagCGAC CUCGaagGCUG	-9.64	(26)
616	1254	CGCgaaGGC GCGaccCCG	-7.48	(26)
617	1255	GAGCuguCGAC CUCGuauGCUG	-9.72	(26)
618	1256	CGCgaaGGC GCGaaaCCG	-7.67	(26)
619	1257	CGGaagCGC GCCgaaGCG	-6.60	(26)
620	1258	GCGuuuCGC CGCuuuGCG	-6.46	(26)
621	1259	CGCucuGGC GCGuuuCCG	-7.83	(26)
622	1260	CGACgcaGCAG GCUGaagCGUC	-9.22	(26)
623	1261	CGCuuuGGC GCGucuCCG	-7.85	(26)
624	1262	CGCaagGCG GCGgaaCGC	-6.02	(26)
625	1263	GCGgaaCGG CGCaugGCC	-6.65	(26)
626	1264	CGCuuuGGC GCGuuuCCG	-7.84	(26)
627	1265	CGCgaaGGC GCGaugCCG	-7.97	(26)
628	1266	GAGCgagCGAC CUCGagaGCUG	-10.12	(26)
629	1267	CGCauaGGC GCGaagCCG	-7.98	(26)
630	1268	GCGgaaCGC CGCaagGCG	-6.75	(26)
631	1269	GCGguaCGG CGCaugGCC	-7.73	(26)

632	1270	CGCaaaGGC GCGaagCCG	-8.26	(26)
633	1271	GAGCgaaCGAC CUCGagaGCUG	-10.55	(26)
634	1272	CGCgaaGGC GCGaagCCG	-8.41	(26)
635	1273	GAGCgaaCGAC CUCGaagGCUG	-10.75	(26)
636	1274	CGCgaaGGC GCGaacCCG	-8.65	(26)
637	1275	GAGCagaCGAC CUCGaagGCUG	-10.98	(26)
638	1276	GAGCcgaCGAC CUCGaagGCUG	-11.02	(26)
639	1277	CGCagaGGC GCGaagCCG	-9.01	(26)
640	1278	CGACcgaGCAG GCUGaagCGUC	-10.55	(26)
641	1279	GAGCggaCGAC CUCGaaaGCUG	-11.32	(26)
642	1280	CGCgaaGGC GCGaggCCG	-10.28	(26)
643	1281	GAGCggaCGAC CUCGaagGCUG	-12.48	(26)
644	1282	GCgaGCG GCGagCG	-6.68	(41)
645	1283	GCaaGCG GCGaaCG	-4.20	(41)
646	1284	GCagGCG GCGgaCG	-6.33	(41)
647	1285	GCgaGC CGagCG	-4.01	(41)
648	1286	GCgaGCA ACGagCG	-6.78	(41)
649	1287	GCgaGCU UCGagCG	-5.84	(41)
650	1288	CAGgaCUG GUCagGAC	-6.13	(18)
651	1289	GAGgaCUC CUCagGAG	-7.00	(18)
652	1290	GCGgaCGC CGCagGCG	-9.66	(18)

653	1291	GCUgaGGC CGGagUCG	-6.70	(18)
654	1292	GCGgaUGC CGUagGCG	-4.63	(18)
655	1293	GCUaaGGC CGGaaUCG	-4.71	(19)
656	1295	UGACu_CUCA ACUGcuGAGU	-9.50	(40)
657	1296	UGAGa_GUCA ACUCagCAGU	-8.74	(40)
658	1297	UGAGa_GUCA ACUCggCAGU	-8.64	(40)
659	1301	CUGUgaUGAC GACGagGCUG	-8.45	(43)
660	1302	GAGUaaCGAC CUCGaaGCUG	-7.87	(43)
661	1303	GAGUgaUGAC CUCGaaGCUG	-6.72	(43)
662	1304	GCGagUGC CGUgaGCG	-3.84	(43)
663	1305	GAGCaaUGAC CUCGaaGCUG	-7.12	(43)
664	1306	CUGUagGCAG GACGgaUGUC	-5.50	(43)
665	1307	GAGUagUGAC CUCGaaGCUG	-5.18	(43)
666	1308	GAGUaaUGAC CUCGaaGCUG	-5.22	(43)

Supplementary Table 6: Multibranch Loop Duplex Experiment List

Note: The top strand is shown 5' to 3'. The bottom strand is shown 5' to 3'. Unpaired nucleotides are in lower case. The underscore character (_) is used to delimit parts of the sequence that form different helices without intervening unpaired nucleotides.

Index	ID#	Duplex	Folding Free	Reference
			Energy	
			Change	
			(kcal/mol)	
667	M1	GGAG_CGGCuucgGCCG_GACG CGUCaaCUCC	-5.42	(45)
668	M2	GGAGaCGGCuucgGCCG_GACG CGUCauaCUCC	-4.05	(45)
669	M3	GGAGaCGGCuucgGCCG_GCAG CUGCauaCUCC	-5.85	(45)
670	M4	GGAGgCGGCuucgGCCGuGACG CGUCcauaCUCC	-6.01	(45)
671	M5	GGAGaCGGCuucgGCCGcGACG CGUCauaCUCC	-4.78	(45)
672	M6	GGAGgCGGCuucgGCCGuGACG CGUCauaCUCC	-6.17	(45)
673	M7	GGAG_CGGCuucgGCCG_GACG CGUC_CUCC	-5.71	(45)
674	M8	GGAGaCGGCuucgGCCG_GACG CGUCcauaCUCC	-4.59	(45)
675	M9	GGAG_CGGCuucgGCCG_GACG CGUCauaCUCC	-5.43	(45)
676	M10	GGAG_CGGCuucgGCCG_GACG	-5.92	(45)
677	M11	GGAGaCGGCuuceGCCGcGACG	-5 25	(45)
••••		CGUCcauaCUCC	0.20	()
678	M12	GGAGaCGGCuuceGCCGaGACG	-5.91	(45)
		CGUCcauaCUCC		(,
679	M13		-8.38	(46)
			0.00	()
680	M14	GGCAG GCGCuucgGCGC GGAGG	-10.41	(46)
		CCUCCaCUGCC	-	(-)
681	M15	GGCAG GCGCuucgGCGC GGAGG	-11.51	(46)
682	M16	GGCAG GCGCuucgGCGC GGAGG	-11.48	(46)
	_	CCUCCaaaCUGCC	_	(-)
683	M17	GGCAG GCGCuucgGCGC GGAGG	-12.88	(46)
		CCUCCauaCUGCC		
684	M18	GGCAG GCGCuucgGCGC GGAGG	-12.47	(46)
		CCUCCaaaaCUGCC		
685	M19	GGCAGaGCGCuucgGCGC GGAGG	-8.80	(46)
686	M20	GGCAGaGCGCuucgGCGC_GGAGG	-10.54	(46)
687	M21	GGCAGaGCGCuucgGCGC_GGAGG	-11.13	(46)
		CCUCCaaCUGCC		

688	M22	GGCAGaGCGCuucgGCGC_GGAGG	-10.69	(46)
		CCUCCaaaCUGCC		
689	M23	GGCAGaGCGCuucgGCGC_GGAGG	-11.35	(46)
		CCUCCauaCUGCC		
690	M24	GGCAGaGCGCuucgGCGC_GGAGG	-10.98	(46)
		CCUCCaaaaCUGCC		
691	M25	GGCAGaaGCGCuucgGCGC_GGAGG	-9.72	(46)
692	M26	GGCAGaaGCGCuucgGCGC_GGAGG	-11.59	(46)
		CCUCCaCUGCC		
693	M27	GGCAGaaGCGCuucgGCGC_GGAGG	-11.86	(46)
		CCUCCaaCUGCC		
694	M28	GGCAGaaGCGCuucgGCGC_GGAGG	-11.26	(46)
		CCUCCaaaCUGCC		
695	M29	GGCAGaaGCGCuucgGCGC_GGAGG	-11.48	(46)
		CCUCCauaCUGCC		
696	M30	GGCAGaaGCGCuucgGCGC_GGAGG	-10.97	(46)
		CCUCCaaaaCUGCC		
697	M31	GGCAGaaGCGCuucgGCGCaGGAGG	-11.66	(46)
		CCUCC_CUGCC		
698	M32	GGCAGaaGCGCuucgGCGCaGGAGG	-12.89	(46)
		CCUCCaCUGCC		
699	M33	GGCAGaaGCGCuucgGCGCaGGAGG	-13.05	(46)
		CCUCCaaCUGCC		
700	M34	GGCAGaaGCGCuucgGCGCaGGAGG	-13.15	(46)
		CCUCCaaaCUGCC		
701	M35	GGCAGaaGCGCuucgGCGCaGGAGG	-12.93	(46)
		CCUCCauaCUGCC		
702	M36	GGCAGaaGCGCuucgGCGCaGGAGG	-12.37	(46)
		CCUCCaaaaCUGCC		
703	M37	GGCAGaaGCGCuucgGCGCaaGGAGG	-12.50	(46)
704	M38	GGCAGaaGCGCuucgGCGCaaGGAGG	-13.15	(46)
		CCUCCaCUGCC		
705	M39	GGCAGaaGCGCuucgGCGCaaGGAGG	-12.88	(46)
		CCUCCaaCUGCC		
706	M40	GGCAGaaGCGCuucgGCGCaaGGAGG	-12.64	(46)
		CCUCCaaaCUGCC		
707	M41	GGCAGaaGCGCuucgGCGCaaGGAGG	-13.23	(46)
		CCUCCauaCUGCC		
708	M42	GGCAGaaGCGCuucgGCGCaaGGAGG	-12.95	(46)
		CCUCCaaaaCUGCC		
709	M43	GGCAG_UCGCuucgGCGA_GGAGG	-9.15	(46)
710	M49	GGCAGaUCGCuucgGCGA_GGAGG	-9.84	(46)
		CCUCC_CUGCC		
711	M50	GGCAGaUCGCuucgGCGA_GGAGG	-11.79	(46)
		CCUCCaCUGCC		
712	M51	GGCAGaUCGCuucgGCGA_GGAGG	-12.38	(46)
		CCUCCaaCUGCC		
713	M52	GGCAGaUCGCuucgGCGA_GGAGG	-12.00	(46)

		CCUCCaaaCUGCC		
714	M53	GGCAGaUCGCuucgGCGA_GGAGG CCUCCauaCUGCC	-12.06	(46)
715	M54	GGCAGaUCGCuucgGCGA_GGAGG CCUCCaaaaCUGCC	-11.91	(46)
716	M55	GGCAG_CGGCuucgGCCG_GCGCgcaaGCGC_GGAGG CCUCC_CUGCC	-16.48	(46)
717	M56	GGCAG_CGGCuucgGCCG_GCGCgcaaGCGC_GGAGG CCUCCaCUGCC	-13.90	(46)
718	M57	GGCAG_CGGCuucgGCCG_GCGCgcaaGCGC_GGAGG CCUCCaaCUGCC	-12.40	(46)
719	M58	GGCAG_CGGCuucgGCCG_GCGCgcaaGCGC_GGAGG CCUCCaaaCUGCC	-11.19	(46)
720	M59	GGCAG_CGGCuucgGCCG_GCGCgcaaGCGC_GGAGG CCUCCaaaaCUGCC	-10.46	(46)
721	M60	GGCAGaCGGCuucgGCCG_GCGCgcaaGCGC_GGAGG CCUCC_CUGCC	-13.12	(46)
722	M61	GGCAGaCGGCuucgGCCG_GCGCgcaaGCGC_GGAGG CCUCCaCUGCC	-15.40	(46)
723	M62	GGCAGaCGGCuucgGCCG_GCGCgcaaGCGC_GGAGG CCUCCaaCUGCC	-13.52	(46)
724	M63	GGCAGaCGGCuucgGCCG_GCGCgcaaGCGC_GGAGG CCUCCaaaCUGCC	-11.86	(46)
725	M64	GGCAGaCGGCuucgGCCG_GCGCgcaaGCGC_GGAGG CCUCCauaCUGCC	-12.31	(46)
726	M65	GGCAGaCGGCuucgGCCG_GCGCgcaaGCGC_GGAGG CCUCCaaaaCUGCC	-11.18	(46)
727	M66	GGCAGaCGGCuucgGCCG_GCGCgcaaGCGCaGGAGG CCUCC_CUGCC	-13.58	(46)
728	M67	GGCAGaCGGCuucgGCCG_GCGCgcaaGCGCaGGAGG CCUCCaCUGCC	-13.36	(46)
729	M68	GGCAGaCGGCuucgGCCG_GCGCgcaaGCGCaGGAGG CCUCCaaCUGCC	-14.76	(46)
730	M69	GGCAGaCGGCuucgGCCG_GCGCgcaaGCGCaGGAGG CCUCCaaaCUGCC	-13.01	(46)
731	M70	GGCAGaCGGCuucgGCCG_GCGCgcaaGCGCaGGAGG CCUCCauaCUGCC	-12.59	(46)
732	M71	GGCAGaCGGCuucgGCCG_GCGCgcaaGCGCaGGAGG CCUCCaaaaCUGCC	-12.66	(46)
733	M72	GGCAGaaCGGCuucgGCCGaaGCGCgcaaGCGCaaGGAGG CCUCC_CUGCC	-11.77	(46)
734	M73	GGCAGaaCGGCuucgGCCGaaGCGCgcaaGCGCaaGGAGG CCUCCaCUGCC	-12.65	(46)
735	M74	GGCAGaaCGGCuucgGCCGaaGCGCgcaaGCGCaaGGAGG CCUCCaaCUGCC	-12.77	(46)

Supplementary Table 7: Bulge Loop Duplex Experiment List

Note: The top strand is shown 5' to 3'. The bottom strand is shown 3' to 5'. Lower case letters in the top strand indicate unpaired nucleotides. Lower case letters in the bottom strand indicate nucleotides that can base pair with multiple possible nucleotides in the top strand. The underscore character (_) is used to maintain alignment between the top and bottom strands.

Index	ID#	Duplex	Folding Free Energy Change (kcal/mol)	Reference
736	B1	GCGaGCG CGC_CGC	-6.76	(14)
737	B2	GCGuGCG CGC_CGC	-6.51	(14)
738	B3	CGCaCGC GCG_GCG	-6.85	(14)
739	B4	GCGaaGCG CGCCGC	-5.17	(14)
740	B5	GCGuuGCG CGCCGC	-5.01	(14)
741	B6	CGCaaCGC GCGGCG	-5.33	(14)
742	B7	GCGaaaGCG CGCCGC	-4.76	(14)
743	B8	GCGuuuGCG CGCCGC	-4.85	(14)
744	B9	CGCaaaCGC GCGGCG	-6.63	(14)
745	B12	GCGaaGCGa aCGCCGC	-6.64	(14)
746	B13	CGCaaCGCa aGCGGCG	-7.16	(14)
747	B14	GCGaaaGCGa aCGCCGC	-5.39	(14)
748	B15	CGCaaaCGCa aGCGGCG	-7.38	(14)
749	B18	GCGaaGUCa aCGCCAG	-6.60	(14)
750	B19	GCGaaaGUCa aCGCCAG	-5.07	(14)
751	B20	CCAUUaCUACC GGUAA_GAUGG	-9.76	(47)
752	B21	GCACaGAGG CGUG_CUCC	-9.07	(47)

753	B22	GACCaUGUC CUGG_ACAG	-8.16	(47)
754	B23	UGAGaGUCA ACUC_CAGU	-7.82	(47)
755	B24	UGACaCUCA ACUG_GAGU	-7.17	(47)
756	B25	GACUaUGUC CUGA_ACAG	-6.06	(47)
757	B26	CAUGUgACUAC GUACA_UGAUG	-8.89	(47)
758	B27	UGACgCUCA ACUG_GAGU	-7.57	(47)
759	B28	GACUgUGUC CUGA_ACAG	-7.40	(47)
760	B29	GACAgAGUC CUGU_UCAG	-6.63	(47)
761	B30	GCACuGAGG CGUG_CUCC	-9.63	(47)
762	B31	ACUGuGAGU UGAC_CUCA	-8.06	(47)
763	B32	UGACuCUCA ACUG_GAGU	-7.79	(47)
764	B33	GACAuAGUC CUGU_UCAG	-6.48	(47)
765	B34	CAUGAcGCUAC GUACU_CGAUG	-10.58	(47)
766	B35	CAUGUCACUAC GUACA_UGAUG	-8.61	(47)
767	B36	UGAGcGUCA ACUC_CAGU	-8.41	(47)
768	B37	GACUCUGUC CUGA_ACAG	-7.29	(47)
769	B38	UCCUcGAAC AGGA_CUUG	-6.69	(47)
770	B39	GACAcAGUC CUGU_UCAG	-5.93	(47)
771	B40	GACCaaGUC CUGG_uCAG	-9.40	(47)
772	B41	GACGaaGUC CUGC_uCAG	-8.24	(47)
773	B42	GACaaaGUC CUG_uuCAG	-6.87	(47)

774	B43	AGCUggCAG UCGA_cGUC	-9.56	(47)
775	B44	UGAgggUCA ACU_ccAGU	-9.03	(47)
776	B45	AGCAggCAG UCGU_cGUC	-8.59	(47)
777	B46	AGACggCAG UCUG_cGUC	-8.07	(47)
778	B47	GACCuuGUC CUGG_aCAG	-9.28	(47)
779	B48	GACuuuGUC CUG_aaCAG	-7.25	(47)
780	B49	UGAcccUCA ACU_ggAGU	-9.33	(47)
781	B50	UCCUccAAC AGGA_gUUG	-8.41	(47)
782	B51	UCCAccAAC AGGU_gUUG	-8.17	(47)
783	B52	CGGUaGUCU GCCG_CAGA	-8.29	(47)
784	B53	UGAUaCUCA ACUG_GAGU	-5.79	(47)

Supplementary Table 8: Coaxial Stacking Experiment List

Note: The top strand is shown 5' to 3'. The bottom strand is shown 3' to 5'. Unpaired nucleotides are in lower case. The top strand forms a hairpin loop whose stem can coaxially stack with the stem formed by base pairing with the bottom strand.

Index	ID#	Duplex	Folding Free Energy Change (kcal/mol)	Reference
785	X1	GGACGCAGUGGCaaaaaGCCACUG CCUGA	-7.79	(48)
786	X2	GGACGCAGUGGCaaaaaGCCACUGA CCUG	-6.28	(48)
787	X3	GGACGAGUGGCgcaaGCCACU CCUGA	-7.41	(48)
788	X4	GGACGAGUGGCgcaaGCCACUA CCUG	-5.87	(48)
789	X5	GGACGAGUGGCgcaaGCCACGA CCUG	-5.69	(48)
790	X6	GGACGAGUGGCgcaaGCCACGA CCUGA	-6.67	(48)
791	X7	GGACACAGUGGCaaaaaGCCACUG CCUGG	-7.79	(48)
792	X8	GGAGCCAGUGGCaaaaaGCCACUG CCUCC	-5.64	(48)
793	X9	GGACCCAGUGGCaaaaaGCCACUG CCUGC	-6.41	(48)
794	X10	GGACGCAGUGGCaaaaaGCCACUGp CCUGAa	-6.34	(48)
795	X11	GGACGCAGUGGCaaaaasGCCACUGaa CCUGA	-6.18	(48)
796	X12	GGACGCAGUGGCaaaaaGCCACUGpa CCUGA	-6.50	(48)
797	X13	GGACGCAGUGGCaaaaaGCCACUGAa CCUGp	-5.64	(48)
798	X14	GGACGCAGUGGCaaaaaGCCACUGAgg CCUG	-5.43	(48)
799	X15	GGACGAGUGGCgcaaGCCACUaa CCUGA	-6.08	(48)
800	X16	GGACGAGUGGCgcaaGCCACGp CCUGAa	-6.22	(48)
801	X17	GGAGCCAGUGGCaaaaaGCCACUGa CCUCCa	-5.12	(48)

802	X18	GGACCCAGUGGCaaaaaGCCACUGa	-5.66	(48)
		CCUGCa		

References:

- 1. Xia, T., SantaLucia, J., Jr., Burkard, M.E., Kierzek, R., Schroeder, S.J., Jiao, X., Cox, C. and Turner, D.H. (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. *Biochemistry*, **37**, 14719-14735.
- 2. Nelson, J.W., Martin, F.H. and Tinoco, I., Jr. (1981) DNA and RNA oligomer thermodynamics: the effect of mismatched bases on double-helix stability. *Biopolymers*, **20**, 2509-2531.
- 3. Petersheim, M. and Turner, D.H. (1983) Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. *Biochemistry*, **22**, 256-263.
- 4. Freier, S.M., Petersheim, M., Hickey, D.R. and Turner, D.H. (1984) Thermodynamic studies of RNA stability. *J Biomol Struct Dyn*, **1**, 1229-1242.
- 5. Freier, S.M., Alkema, D., Sinclair, A., Neilson, T. and Turner, D.H. (1985) Contributions of dangling end stacking and terminal base-pair formation to the stabilities of XGGCCp, XCCGGp, XGGCCYp, and XCCGGYp helixes. *Biochemistry*, **24**, 4533-4539.
- 6. Freier, S.M., Sinclair, A., Neilson, T. and Turner, D.H. (1985) Improved free energies for G.C basepairs. *J Mol Biol*, **185**, 645-647.
- 7. Sugimoto, N., Kierzek, R., Freier, S.M. and Turner, D.H. (1986) Energetics of internal GU mismatches in ribooligonucleotide helixes. *Biochemistry*, **25**, 5755-5759.
- 8. Freier, S.M., Kierzek, R., Caruthers, M.H., Neilson, T. and Turner, D.H. (1986) Free energy contributions of G.U and other terminal mismatches to helix stability. *Biochemistry*, **25**, 3209-3213.
- Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T. and Turner, D.H. (1986) Improved free-energy parameters for predictions of RNA duplex stability. *Proc Natl Acad Sci U S A*, 83, 9373-9377.
- 10. Kierzek, R., Caruthers, M.H., Longfellow, C.E., Swinton, D., Turner, D.H. and Freier, S.M. (1986) Polymer-supported RNA synthesis and its application to test the nearest-neighbor model for duplex stability. *Biochemistry*, **25**, 7840-7846.
- 11. Freier, S.M., Sugimoto, N., Sinclair, A., Alkema, D., Neilson, T., Kierzek, R., Caruthers, M.H. and Turner, D.H. (1986) Stability of XGCGCp, GCGCYp, and XGCGCYp helixes: an empirical estimate of the energetics of hydrogen bonds in nucleic acids. *Biochemistry*, **25**, 3214-3219.
- 12. Sugimoto, N., Kierzek, R. and Turner, D.H. (1987) Sequence dependence for the energetics of dangling ends and terminal base pairs in ribonucleic acid. *Biochemistry*, **26**, 4554-4558.
- 13. Sugimoto, N., Kierzek, R. and Turner, D.H. (1987) Sequence dependence for the energetics of terminal mismatches in ribooligonucleotides. *Biochemistry*, **26**, 4559-4562.
- 14. Longfellow, C.E., Kierzek, R. and Turner, D.H. (1990) Thermodynamic and spectroscopic study of bulge loops in oligoribonucleotides. *Biochemistry*, **29**, 278-285.
- 15. He, L., Kierzek, R., SantaLucia, J., Jr., Walter, A.E. and Turner, D.H. (1991) Nearest-neighbor parameters for G.U mismatches: [formula; see text] is destabilizing in the contexts [formula; see text] and [formula; see text] but stabilizing in [formula; see text]. *Biochemistry*, **30**, 11124-11132.

- 16. Hall, K.B. and McLaughlin, L.W. (1991) Thermodynamic and structural properties of pentamer DNA.DNA, RNA.RNA, and DNA.RNA duplexes of identical sequence. *Biochemistry*, **30**, 10606-10613.
- 17. Peritz, A.E., Kierzek, R., Sugimoto, N. and Turner, D.H. (1991) Thermodynamic study of internal loops in oligoribonucleotides: symmetric loops are more stable than asymmetric loops. *Biochemistry*, **30**, 6428-6436.
- 18. Walter, A.E., Wu, M. and Turner, D.H. (1994) The stability and structure of tandem GA mismatches in RNA depend on closing base pairs. *Biochemistry*, **33**, 11349-11354.
- 19. Wu, M., McDowell, J.A. and Turner, D.H. (1995) A periodic table of symmetric tandem mismatches in RNA. *Biochemistry*, **34**, 3204-3211.
- 20. McDowell, J.A. and Turner, D.H. (1996) Investigation of the structural basis for thermodynamic stabilities of tandem GU mismatches: solution structure of (rGAGGUCUC)2 by two-dimensional NMR and simulated annealing. *Biochemistry*, **35**, 14077-14089.
- 21. McDowell, J.A., He, L., Chen, X. and Turner, D.H. (1997) Investigation of the structural basis for thermodynamic stabilities of tandem GU wobble pairs: NMR structures of (rGGAGUUCC)2 and (rGGAUGUCC)2. *Biochemistry*, **36**, 8030-8038.
- 22. Xia, T., McDowell, J.A. and Turner, D.H. (1997) Thermodynamics of nonsymmetric tandem mismatches adjacent to G.C base pairs in RNA. *Biochemistry*, **36**, 12486-12497.
- 23. Kierzek, R., Burkard, M.E. and Turner, D.H. (1999) Thermodynamics of single mismatches in RNA duplexes. *Biochemistry*, **38**, 14214-14223.
- 24. Schroeder, S.J. and Turner, D.H. (2000) Factors affecting the thermodynamic stability of small asymmetric internal loops in RNA. *Biochemistry*, **39**, 9257-9274.
- 25. Burkard, M.E., Xia, T. and Turner, D.H. (2001) Thermodynamics of RNA internal loops with a guanosine-guanosine pair adjacent to another noncanonical pair. *Biochemistry*, **40**, 2478-2483.
- 26. Chen, G., Znosko, B.M., Jiao, X. and Turner, D.H. (2004) Factors affecting thermodynamic stabilities of RNA 3 x 3 internal loops. *Biochemistry*, **43**, 12865-12876.
- 27. Santalucia, J., Kierzek, R. and Turner, D.H. (1991) Functional-Group Substitutions as Probes of Hydrogen-Bonding between Ga Mismatches in Rna Internal Loops. *J Am Chem Soc*, **113**, 4313-4322.
- 28. Serra, M.J., Axenson, T.J. and Turner, D.H. (1994) A model for the stabilities of RNA hairpins based on a study of the sequence dependence of stability for hairpins of six nucleotides. *Biochemistry*, **33**, 14289-14296.
- 29. Hickey, D.R. and Turner, D.H. (1985) Effects of terminal mismatches on RNA stability: thermodynamics of duplex formation for ACCGGGp, ACCGGAp, and ACCGGCp. *Biochemistry*, **24**, 3987-3991.
- 30. Giese, M.R., Betschart, K., Dale, T., Riley, C.K., Rowan, C., Sprouse, K.J. and Serra, M.J. (1998) Stability of RNA hairpins closed by wobble base pairs. *Biochemistry*, **37**, 1094-1100.
- 31. Dale, T., Smith, R. and Serra, M.J. (2000) A test of the model to predict unusually stable RNA hairpin loop stability. *RNA*, **6**, 608-615.
- 32. Serra, M.J., Barnes, T.W., Betschart, K., Gutierrez, M.J., Sprouse, K.J., Riley, C.K., Stewart, L. and Temel, R.E. (1997) Improved parameters for the prediction of RNA hairpin stability. *Biochemistry*, **36**, 4844-4851.
- 33. Groebe, D.R. and Uhlenbeck, O.C. (1988) Characterization of RNA hairpin loop stability. *Nucleic Acids Res*, **16**, 11725-11735.
- 34. Antao, V.P. and Tinoco, I., Jr. (1992) Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. *Nucleic Acids Res*, **20**, 819-824.
- 35. Serra, M.J., Lyttle, M.H., Axenson, T.J., Schadt, C.A. and Turner, D.H. (1993) RNA hairpin loop stability depends on closing base pair. *Nucleic Acids Res*, **21**, 3845-3849.

- 36. Shu, Z. and Bevilacqua, P.C. (1999) Isolation and characterization of thermodynamically stable and unstable RNA hairpins from a triloop combinatorial library. *Biochemistry*, **38**, 15369-15379.
- 37. Laing, L.G. and Hall, K.B. (1996) A model of the iron responsive element RNA hairpin loop structure determined from NMR and thermodynamic data. *Biochemistry*, **35**, 13586-13596.
- 38. Antao, V.P., Lai, S.Y. and Tinoco, I., Jr. (1991) A thermodynamic study of unusually stable RNA and DNA hairpins. *Nucleic Acids Res*, **19**, 5901-5905.
- 39. Proctor, D.J., Schaak, J.E., Bevilacqua, J.M., Falzone, C.J. and Bevilacqua, P.C. (2002) Isolation and characterization of a family of stable RNA tetraloops with the motif YNMG that participate in tertiary interactions. *Biochemistry*, **41**, 12062-12075.
- 40. Schroeder, S., Kim, J. and Turner, D.H. (1996) G.A and U.U mismatches can stabilize RNA internal loops of three nucleotides. *Biochemistry*, **35**, 16105-16109.
- 41. SantaLucia, J., Jr., Kierzek, R. and Turner, D.H. (1990) Effects of GA mismatches on the structure and thermodynamics of RNA internal loops. *Biochemistry*, **29**, 8813-8819.
- 42. SantaLucia, J., Jr., Kierzek, R. and Turner, D.H. (1991) Stabilities of consecutive A.C, C.C, G.G, U.C, and U.U mismatches in RNA internal loops: Evidence for stable hydrogen-bonded U.U and C.C.+ pairs. *Biochemistry*, **30**, 8242-8251.
- 43. Schroeder, S.J. and Turner, D.H. (2001) Thermodynamic stabilities of internal loops with GU closing pairs in RNA. *Biochemistry*, **40**, 11509-11517.
- 44. Schroeder, S.J., Fountain, M.A., Kennedy, S.D., Lukavsky, P.J., Puglisi, J.D., Krugh, T.R. and Turner, D.H. (2003) Thermodynamic stability and structural features of the J4/5 loop in a Pneumocystis carinii group I intron. *Biochemistry*, **42**, 14184-14196.
- 45. Diamond, J.M., Turner, D.H. and Mathews, D.H. (2001) Thermodynamics of three-way multibranch loops in RNA. *Biochemistry*, **40**, 6971-6981.
- 46. Mathews, D.H. and Turner, D.H. (2002) Experimentally derived nearest-neighbor parameters for the stability of RNA three- and four-way multibranch loops. *Biochemistry*, **41**, 869-880.
- 47. Znosko, B.M., Silvestri, S.B., Volkman, H., Boswell, B. and Serra, M.J. (2002) Thermodynamic parameters for an expanded nearest-neighbor model for the formation of RNA duplexes with single nucleotide bulges. *Biochemistry*, **41**, 10406-10417.
- 48. Kim, J., Walter, A.E. and Turner, D.H. (1996) Thermodynamics of coaxially stacked helixes with GA and CC mismatches. *Biochemistry*, **35**, 13753-13761.