Supporting Information

Molecular mechanism of substrate recognition and specificity of tRNA^{His} guanylyltransferase during nucleotide addition in the 3'-5' direction

Akiyoshi Nakamura¹, Daole Wang², and Yasuo Komatsu^{1, 2}*

¹ Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan

² Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan

* To whom correspondence should be addressed. Tel: +81-11-857-8437; Fax:

+81-11-857-8954; Email: komatsu-yasuo@aist.go.jp

Figure S1: Structure of the *Candida albicans* Thg1 (*Ca*Thg1) and *S. cerevisiae* tRNA^{Phe}_{GUG} (*Sc*tRNA^{Phe}_{GUG}) complex (PDBID: 3WC2). The tetrameric structure of *Ca*Thg1 is shown as ribbon models (cyan, orange, green, and magenta). *Sc*tRNA^{Phe}_{GUG} is shown as yellow ribbon, and its D-loop is indicated in black. The U₁₇ (red stick model) is flipped out from the tertiary core region of the tRNA.

Figure S2: Separation of adenylylation and G_{-1} addition reaction products with/without phosphatase (Calf Intestinal Alkaline Phosphatase; CIP) treatment by a denaturing PAGE. Two-piece tRNA composed of primer (pP4) and template (T3) fragments was incubated with 10 μ M *Ca*Thg1 and with/without ATP and GTP for 30 min. Reaction mixture was incubated with CIP, and then loaded on a 20% Urea-PAGE gel. Chemical synthetic pP4 and pP4 with added G_{-1} (pGpP4) were used as control samples.

Figure S3: A primer/template assay of adenylylation and nucleotide addition reaction with two-piece tRNAs: pP2-T1 (**A**), pP3-T1 (**B**), pP4-T1 (**C**), pP4-T2 (**D**), pP4-T3 (**E**), pP4-T3GAA (**F**). Black, red, and blue triangles indicate bands of substrate, adenylylated product, and G_{-1} added product, respectively.

Figure S4: Secondary structure prediction of template RNAs by *Mfold* (1). The altered bases of T3 are indicated in blue.

1. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Res.*, **31**, 3406-3415.

Figure S5: Nucleotide addition reactions for natural NTPs and various GTP analogs into two-piece tRNA variants.

(A-D) The percentage of nucleotide addition products for four natural NTPs and various GTP analogs after 60 min incubation with pppP4-T3 variants, analyzed by Urea-PAGE.

(E-H) Time course experiments of nucleotide addition reactions for various GTP analogs onto pppP4-T3A₇₃ (E), -T3C₇₃A₇₄ (F), -T3U₇₃A₇₄ (G), and -T3G₇₃ (H). Lines represent each time course fitted to a single-exponential equation (eq. 1) to yield k_{obs} . The marks indicate as follows; GTP (\blacksquare), ITP (\bullet), 2AP (\blacklozenge), 7DG (\blacktriangle), UTP (\Box), ATP (\diamondsuit), CTP (\triangle), isoG (×).

Figure S6: Time course experiments of nucleotide addition reaction for various GTP analogs onto the full-length *Sct*RNA^{Phe}_{GUG}. Lines represent each time course fitted to a single-exponential equation (eq. 1) to yield k_{obs} . The marks indicate as follows; GTP (\blacksquare), ITP (\bullet), 2AP (\blacklozenge), 7DG (\blacktriangle).

Figure S7: The multiple products formation of GTP addition onto pppP4-T3C₇₃ (A), -T3U₇₃ (B).