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Supplementary Experimental Methods 
 

Biopsy protocol, patient consent and tissue acquisition: 
 Approval for the PancSeq protocol was obtained from the Dana-Farber/Harvard 

Cancer Center (DF/HCC) IRB (DF/HCC #14-408, #03-189) to obtain tumor tissue for 

genomic analyses in two situations: 1) Additional tissue obtained at the time of a biopsy 

performed for clinical purposes, and 2) Tissue obtained during a biopsy performed 

specifically for genomic evaluation, without an established clinical indication. Patients 

without prior histologic diagnosis of pancreatic cancer were eligible to enroll if PDAC was 

suspected based on clinical presentation and imaging studies. Patients must have met 

the following criteria: 1) ECOG performance status of 0-2, 2) ability to safely halt 

anticoagulation for the biopsy procedure, and 3) no concurrent chemotherapy treatment. 

A whole blood sample was obtained for paired germline DNA sequencing. 

A median of 5 (range, 1-10) core needle biopsy specimens were collected per 

patient (Supplementary Table S2), with separate cores distributed by the following 

priority: core 1 for formalin fixed paraffin embedded (FFPE) histopathology, core 2 for 

whole exome sequencing (WES), core 3 for RNA-sequencing (RNA-seq), and any 

additional cores for patient-derived models or banking as fresh frozen tissue for future 

research. For clinically indicated biopsies, all specimens were held in a CLIA-certified 

facility until the diagnosis was confirmed, and then released for genomic analysis.  

For comparison with advanced PDAC molecular information, genomic data from 

primary resection specimens have been shown at certain points in the manuscript. 

Primary surgical resection specimens were derived from patients treated at Dana-Farber 

Cancer Institute and the Brigham and Women’s Hospital that were consented to IRB-

approved protocols (DF/HCC #03-189, #11-104). 

 

Whole exome sequencing (WES) 
 WES was performed in a laboratory at the Broad Institute that has been certified 

by the Clinical Laboratory Improvement Amendments (CLIA, #22D2055652). Starting 

with 250 ng input DNA, samples are quantified using a PicoGreen assay and diluted to a 

working stock volume and concentration (2 ng/uL in 50 uL), then libraries are constructed 
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and sequenced on Illumina HiSeq instruments with the use of 76-bp paired-end reads as 

previously described (1). Output from Illumina software is processed by the Picard data-

processing pipeline to yield BAM files containing well-calibrated, aligned reads. All 

process steps are performed using automated liquid handling instruments, and all sample 

information tracking is performed by automated LIMS messaging. All data have been 

made publicly available through the NCBI database of Genotypes and Phenotypes 

(dbGaP). 

 

WES data-processing pipeline (“Picard pipeline”):  
The “Picard” pipeline (http://picard.sourceforge.net/) generates a BAM file 

(http://samtools.sourceforge.net/SAM1.pdf) for each sample and was developed by the 

Sequencing Platform at the Broad Institute. Picard pipeline aggregates data from multiple 

libraries and flow cell runs into a single BAM file for a given sample. This file contains 

reads aligned to the human genome with quality scores recalibrated using the Table 

Recalibation tool from the Genome Analysis Toolkit. Reads were aligned to the Human 

Genome Reference Consortium build 38 (GRCh38) using BWA v0.5.9 (2) (http://bio-

bwa.sourceforge.net/). Unaligned reads that passed the Illumina quality filter (PF reads) 

were also stored in the BAM file. Duplicate reads were marked such that only unique 

sequenced DNA fragments were used in subsequent analysis. Sequence reads 

corresponding to genomic regions that may harbor small insertions or deletions (indels) 

were jointly realigned to improve detection of indels and to decrease the number of false 

positive single nucleotide variations caused by misaligned reads, particularly at the 3’ 

end. All sites potentially harboring small insertions or deletions in either the tumor or the 

matched normal were realigned in all samples. Finally, the Picard pipeline provided 

summary QC metrics such as the target coverage and an estimated level of “oxo-G” 

artifacts (3) for each BAM that were used in subsequent processing.  
 

Cancer genome analysis pipeline (“Firehose”)  
The Firehose pipeline (http://www.broadinstitute.org/cancer/cga/Firehose) performed 

additional QC on the BAM files, mutation calling, small insertion and deletion 

identification, rearrangement detection, coverage calculations, annotation of detected 



 3 

mutations, filtering for OxoG artifacts and filtering by “panel-of-normals” and by Exome 

Aggregation Consortium (ExAC) dataset. The pipeline is an extensive series of tools for 

analyzing massively parallel sequencing data for both tumor DNA samples and their 

patient-matched normal DNA samples. The pipeline contains the following steps: 

1. Quality control on BAM files: The sample cross-individual contamination levels 

were estimated using the ContEst program (4). 

2. Somatic point mutation calling: The MuTect algorithm (5) was used to detect 

somatic single nucleotide variants (SNVs). SNVs were detected using a statistical 

analysis of the bases and qualities in the tumor and normal BAMs. 

3. Small insertion and deletion detection: The Strelka algorithm 

(https://www.ncbi.nlm.nih.gov/pubmed/22581179) was used to detect small 

insertions and deletions (InDels). 

4. SNVs and InDel annotations: SNVs and InDels detected by MuTect and 

Indelocator, respectively, were annotated using Oncotator (6). Oncotator mapped 

somatic mutations to respective genes, transcripts, and other relevant features. 

These annotations correspond to the fields in the Mutation Annotation Format 

(MAF) file provided for this manuscript. 

5. Filtering for OxoG artifacts: G>T/C>A transversions that are a consequence of 

heating, shearing, and oxidative damage to the DNA during genomic library 

preparation (3). Eleven variants were filtered out of the call set for sample ID 

0400100-T1.  

6. Filtering by “panel-of-normals”: The sites of detected SNVs and InDels were 

examined against a panel of normal samples (PoN) as previously described (1). 

For a given SNV or InDel, a likelihood score that the allele counts are consistent 

with expectation of observed normals at the site is calculated. Candidate mutations 

with a likelihood score less than -2.5 were removed from subsequent analysis. We 

also removed variants outside coding regions.  

7. Filtering by ExAC: Germline mutation calls from the ExAC database 

(http://exac.broadinstitute.org/) were used to screen for germline calls where 

coverage in normal was low. Only germline variants with population frequency of 

<1% were chosen to go through following steps in the interpretation pipeline. 
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Mutation Annotation Format (MAF) file 
The MAF file was generated and has been made available as supplemental data 

along with the analyses contained within this manuscript.  

 

Mutation Significance Analysis  
Genes with a significant excess of the number of non-synonymous mutations 

relative to the estimated density of background mutations were identified using the MutSig 

algorithm (7, 8). MutSig has been previous used to identify significantly mutated genes 

(SMGs) in several tumor sequencing projects (9-12) and the algorithm’s current version 

MutSig2CV (7) was used in this study to produce a robust list of significantly mutated 

genes. MutSig takes into account the background mutation rates of different mutation 

categories (i.e. transitions or transversions in different sequence contexts, the non-

synonymous to synonymous mutation ratio for each gene, as well as the fact that different 

samples have different background mutation rates. It then uses convolutions of binomial 

distributions to calculate the p value for each gene, which represents the probability that 

we observe a certain configuration of mutations in a gene by chance, given the 

background model. Finally, it corrects for multiple hypotheses by calculating a q-value 

(False Discovery Rate) for each gene using the Benjamini & Hochberg procedure to 

produce the list of SMGs.  

 

Copy number analysis 
For copy number analysis based on exome sequencing, segmented copy data was 

obtained using copy number ratios. These were calculated as the ratio of tumor read 

depth to the average read depth observed in a panel of normal samples using the tool, 

RECAPSEG5. Allelic copy number analysis was done with Allelic-Capseg using B-allele 

frequencies from heterozygous sites. ABSOLUTE (13) was used to determine purity, 

ploidy, and whole genome doubling status using allelic copy number data along with the 

allelic fraction of all somatic mutations as input. In silico admixture removal (ISAR) was 

used to perform purity and ploidy correction of the RECAPSEG data. We used 

ABSOLUTE derived copy number from WES to identify genes with loss of heterozygosity 
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and homozygous deletions. High level amplifications were defined as those genes with 

three or more copies above baseline ploidy. 

Significance of copy number alterations were assessed from the segmented data 

using GISTIC2.0 (Version 2.0.22) (14). Briefly, GISTIC2.0 deconstructs somatic copy-

number alterations into broad and focal events and applies a probabilistic framework to 

identify location and significance levels of somatic copy-number alterations. For the 

purpose of this analysis, we defined an arm-level event as any event spanning more than 

50% of a chromosome arm.  

 

Clinical Interpretation and Reporting 
Annotated whole exome sequencing data were cross-referenced with a curated 

list of 81 PDAC-relevant genes. These genes were chosen based on somatic or germline 

clinical relevance, therapeutic actionability and/or recurrent mutation across published 

PDAC genome sequencing cohorts. Most of these genes (n=69) were associated with 

clinical trial or off-label FDA-approved targeted therapies (Supplemental Table S3). Both 

somatic and germline variants in these genes were interpreted by an ABMG board 

certified clinical geneticist (AAG) through a previously published clinical interpretation 

pipeline (1, 15). The interpretation pipeline included the following steps: variants 

assessment, variant description and classification, variant return decision, and 

interpretation and report. 

• Variants assessment – All variants in the 81 genes present in Supplemental Table S3 

were assessed to exclude potential technical artifacts. The variants nomenclature was 

reviewed and rewritten if needed to standardize the transcript and amino acid 

designation for any given mutation. Germline variants in any of the genes in Table S3 

were cross-referenced with the ExAC database to inquire the population frequency. 

Only germline variants with population frequency of <1% were chosen to go through 

following steps in the interpretation pipeline.  
• Variant description and classification – Variants were fully delineated for the type, 

location, and putative functional consequence of the mutation, as well as role of the 

gene that harbors the mutation in pancreatic cancer. Based on the evidence to support 
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pathogenicity, variants were subsequently classified as pathogenic, likely pathogenic, 

VUS or benign according to the ACMG guidelines (16). 

• Variant Return Decision – Variant return decision was made based on the functional 

relevance of the variant in a given gene. All variants in the categories of known 

functionally impaired, potentially functionally impaired, variant of unknown significance 

(VUS) were chosen to be included in the CLIA-certified report. Variants with known 

benign function were excluded in this step.  
• Variant interpretations and Report – A report of clinically relevant events was returned 

to the referring clinician detailing somatic mutations, small insertions/deletions, and 

copy number alterations (CNAs) as well as pathogenic/likely pathogenic (P/LP) 

germline alterations. The report includes a first page summary that exhibits reported 

variants along with their specific relevant therapeutic agents or their biological 

classifications. The subsequent pages of the report provide full description of variants 

and genes, detail on classified therapies and biological function in pancreatic cancer.  
 

Mutational signature analysis: 
 Mutational signature analysis was performed using a Bayesian variant of the non-

negative matrix factorization (NMF) approach in a two-stage manner from the set of single 

nucleotide variants (SNV) in our dataset, as previously described (SignatureAnalyzer, 

(17-20)). First, we performed de novo signature discovery and our analytic pipeline 

identified three primary signatures: SigA best resembling COSMIC signature 3 with 

cosine similarity 0.87 (homologous recombination deficiency [HRD] or BRCA signature); 

SigB best resembling COSMIC signature 1 with cosine similarity 0.96 (C>T transitions at 

CpG dinucleotides, Aging); and SigC best resembling COSMIC signature 17 with cosine 

similarity 0.91 (etiology unknown) (Supplementary Figure S4A-B). In addition, we 

observed a relative elevation of C>G transversions and C>T transitions at TC[A/T] 

contexts in SigA corresponding to canonical hotspots of APOBEC mutagenesis (COSMIC 

signature 2 and 3), suggesting that an APOBEC-mediated mutational process is possibly 

operative in this cohort, but not cleanly separable due to an insufficient number of 

mutations (17). We identified four main mutational processes that were most active in the 

WES data (Aging, BRCA/HRD, APOBEC, COSMIC17), and performed a projection 
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analysis of these contributing signatures across the cohort to better evaluate discrete 

contributions of these mutational signature processes to the data. 

 

RNA sequencing and data analysis 
RNA-sequencing was performed at the Broad Institute. All analysis was performed 

on log-transformed RNA-seq gene expression data. Clustering analysis was performed 

in R, using the ConsensusClusterPlus package, and t-SNE was performed using the 

Rtsne package. Samples were classified into groups based on mRNA expression based 

on the results in Moffitt et al. (21). Gene expression signatures were obtained from Moffitt 

et al. (21), including the top 25 genes from basal-like, classical, activated stroma, normal 

stroma, liver, and exocrine gene sets. A composite tumor score was created by combining 

the 25 basal-like and classical genes. Similarly, a composite stromal score was created 

by combining the 25 activated stroma and normal stroma genes. Signature scores were 

defined as the mean expression of log-transformed gene expression for genes within the 

respective set. A subset of biopsy samples exhibited low composite tumor score, and 

were further investigated manually for possible explanations, resulting in specific 

“annotations.” For example, the 7 samples defined as “High Liver” were found to have 

extremely high liver expression scores whereas the 2 samples defined as “High stroma” 

had correspondingly high composite stroma scores. 

 

Analysis of cell-free DNA (cfDNA) 
 Plasma was collected in EDTA-containing tubes from patients for cfDNA analysis 

at baseline and throughout their treatment course. cfDNA was extracted from plasma and 

droplet digital PCR (ddPCR) was performed for target sequences using previously 

described methods (22). The ddPCR data were analyzed with QuantaSoft analysis 

software (Bio-Rad) to obtain Fractional Abundance of the mutant DNA alleles in the wild-

type/normal background. The quantification of the target molecule was presented as the 

number of total copies (mutant plus wild-type) per sample in each reaction. Mutant Allele 

Fraction is calculated as follows: Mutant Allele Fraction (%) = (Nmut/(Nmut+Nwt))*100), 

where Nmut is the number of mutant events and Nwt is the number of wildtype events 



 8 

per reaction. ddPCR analysis of normal control plasma DNA and no DNA template 

controls were always included. Probe and primer sequences are available upon request.  

Evaluation of a more comprehensive panel of genes within cfDNA was pursued 

using the Guardant360 cfDNA assay (Guardant Health). The Guardant360 assay is a 

Clinical Laboratory Improvement Amendments (CLIA)–certified targeted digital 

sequencing panel designed to detect SNVs, as well as selected insertions/deletions, 

amplifications, and fusions (23, 24). 
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