SuFEx click chemistry enabled late-stage drug functionalization

Zilei Liu^{1,2,3}, Jie Li^{1,2,3}, Suhua Li^{2,3}, Gencheng Li², K. Barry Sharpless² and Peng Wu^{1*}

¹Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA. ²Department of Chemistry, The Scripp Research Institute, La Jolla, CA 92037, USA. ³These authors contributed equally to this work. *e-mail: pengwu@scripps.edu

Table of Contents

1. Experiment Section	2
Chemistry	2
Biology	4
2. Supplementary Figures	6
3. NMR spectra	12
	25
+. Le uaces	25

1. EXPERIMENT SECTION

CHEMISTRY

General

¹H NMR spectra were recorded at 400 MHz on Bruker AV-400 NMR spectrometers; ¹³C NMR were recorded at 151 MHz on Bruker AV-600. ¹⁹F NMR were recorded at 376 MHz on Bruker AV-400. All chemical shifts (δ) are quoted in ppm; coupling constants (*J*) in hertz. Tetramethylsilane was used as international reference for ¹H and ¹³C NMR. Trichlorofluoromethane was used as international reference for ¹⁹F NMR. Abbreviations are: s, singlet; d, doublet; t, triplet; q, quartet, p, pentet; br s, broad singlet; m, multiplet. LC-MS was performed on an Agilent 1260 LC/MSD with an Agilent 6120 quadrupole mass spectrometer (electrospray ionization, ES) eluting with 0.05% trifluoroacetic acid in H₂O and 0.05% trifluoroacetic acid in CH₃CN. Precoated Merck F-254 silica gel plates were used for thin layer analytical chromography (TLC) and visualized with short wave (254 nm) UV light or by potassium permanganate stain. Column chromatography was performed using Silicycle Silica Gel 60 (40-63 µm). All phenol compounds were purchased from Selleck chemicals. Sulfuryl Fluoride (SO₂F₂) gas was a gift from Dow AgroSciencesTM. Phenolic compound library (10 mM in DMSO) were purchased from Selleck Chemicals (http://www.selleckchem.com).

Preparation of Sulfuryl Fluoride (SO₂F₂) or Thionyl Tetrafluoride (SOF₄) Solution in Organic Solvent

A glass vial of organic solvent (5 mL) was evacuated *in vacuo* and a balloon containing SO_2F_2 gas or Thionyl Tetrafluoride (SOF₄) gas was connected with the glass vial allowing it is filled with gas. Then the organic solvent was vigorously stirred for 30 min to make the stock solution of sulfuryl fluoride or thionyl tetrafluoride.

Condition Screening For in situ SuFEx

A solution of SO_2F_2 in organic solvent (CH₃CN, DCM or THF, 100 µL) and base (triethylamine (TEA) or *N*,*N*-Diisopropylethylamine (DIPEA), 1 µmol in 10 µL corresponding organic solvent) were added in an Eppendorf tube containing compound **3** (0.1 µmol in 10 µL DMSO). The tube was sealed by parafilm and left at room temperature for 3 hours before the product and yield was evaluated by LC-MS.

General Procedure I for the gas/liquid based SuFEx method on a 96-well plate

CH₃CN (100 μ L) and TEA (1 μ mol in 10 μ L CH₃CN) were added in each well of a 96-well plate containing phenol compounds (0.1 μ mol in 10 μ L DMSO). The plate was left without lid in a vacuum desiccator containing SO₂F₂ (~1 atm) at room temperature overnight as shown in **Figure S1B**, before the products and yields were evaluated by LC-MS.

General Procedure II for the liquid based SuFEx method on a 96-well plate

A solution of SO₂F₂ in CH₃CN (~4 mg/mL, 100 μ L) and TEA (1 μ mol in 10 μ L) were added in each well of a 96-well plate containing phenol compounds (0.1 μ mol in 10 μ L DMSO). The plate was left tightly covered by a solvent resistant sealing mat (Corning[®] 96 well storage system) at room temperature overnight as shown in **Figure S1C**. Then trimethylsilanol (2 μ mol in 10 μ L CH₃CN) was added to each well and left for 0.5 hours before the plate was left *in vacuo* overnight. The resulting crudes were dissolved in DMSO (10 μ L, ~10 mM) before biological assays. The products and yields were determined by LC-MS.

Synthesis of 1F, 11F and 25F in milligram scale for IC_{50} evaluation

4-((3-((4-Methoxyphenyl)sulfonamido)pyridin-2-yl)amino)phenyl sulfurofluoridate 1F

TEA (27.2 mg, 0.27 mmol) was added in a solution of compound **1** (10 mg, 0.027 mmol) in CH₃CN (0.5 mL). After evacuation, SO₂F₂ gas was back-filled in the flask and the reaction mixture was left with stirring at room temperature for 12 hours until TLC (hexane/ethyl acetate, 1:1) showed the full conversion of starting material **1** to **1F** (R_f 0.70). Then volatiles were removed *in vacuo* and the resulting crude product was purified by flash column chromatography (hexane/ethyl acetate, 2:1 to 1:2) to obtain fluorosulfate **1F** (11.3 mg, 0.025 mmol, 93%) as a light red solid.

m.p. 158 °C– 160 °C; ¹H NMR (400 MHz, CDCl₃): 8.15 (dd, 1H, J = 4 Hz, 8 Hz), 7.67 (t, 4H, J = 8 Hz), 7.26 (d, 2H, J = 8 Hz), 6.94 (d, 2H, J = 8 Hz), 6.81 (dd, 1H, J = 4 Hz, 8 Hz), 6.63 (dd, 1H, J = 4 Hz, 8 Hz), 3.85 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): 164.0, 153.0, 147.4, 144.6, 140.8, 136.8, 130.2 (2C), 129.5, 121.6 (2C), 120.5 (2C), 118.1, 115.8, 114.7 (2C), 56.0; ¹⁹F NMR (376 MHz, CDCl₃): 36.1; ESI (m/z): 454 [M + H]⁺.

(7R, 8R, 9S, 13S, 14S, 17S)-17-Hydroxy-13-methyl-7-(9-((4, 4, 5, 5, 5-pentafluoropentyl)sulfinyl)nonyl)-7,8,9,11,12,13,14,15,16,17-deca hydro-6H-cyclopenta[a]phenanthren-3-yl sulfurofluoridate **11F**

TEA (41.5 mg, 0.41 mmol) was added in a solution of compound **11** (25 mg, 0.041 mmol) in CH₃CN (0.5 mL). After evacuation, SO_2F_2 gas was back-filled in the flask and the reaction mixture was left with stirring at room temperature for 1 hours until TLC (hexane/ethyl acetate, 1:1) showed the full conversion of starting material **11** to **11F** (R_f 0.40). Then volatiles were removed *in vacuo* and the resulting crude product was purified by flash column chromatography (hexane/ethyl acetate, 5:1 to 1:2) to obtain fluorosulfate **11F** (25.5 mg, 0.037 mmol, 90%) as a colorless foam.

¹H NMR (400 MHz, CDCl₃): 7.37 (d, 1H, J = 8 Hz), 7.09 (d, 1H, J = 8 Hz), 7.03 (s, 1H), 3.76 (t, 1H, J = 12 Hz), 2.93 (dd, 1H, J = 8 Hz, 16 Hz), 2.82-2.59 (m, 5H), 2.40 - 2.13 (m, 7H), 1.95 (d, J = 12 Hz), 1.80-1.72 (m, 3H), 1.65-1.59 (m, 4H), 1.53-1.19 (m, 20H), 0.98 (br s, 1H); ¹³C NMR (151 MHz, CDCl₃): 148.4, 140.8, 139.0, 128.3, 121.9, 118.0, 82.2, 53.0, 51.3, 46.8, 43.6, 41.8, 38.6, 37.1, 34.9, 33.3, 30.9, 30.2, 30.0, 29.9, 29.8, 29.7, 29.5, 29.1, 27.4, 28.4, 26.0, 23.0, 22.92, 22.91, 15.0, 11.4; ¹⁹F NMR (376 MHz, CDCl₃): 37.2, -85.7, -118.05 to -118.64 (m); ESI (m/z): 689 [M + H]⁺

(Z)-2-Methoxy-5-(3,4,5-trimethoxystyryl)phenyl sulfurofluoridate 25F

TEA (79.9 mg, 0.79 mmol) was added in a solution of compound **25** (25 mg, 0.079 mmol) in CH₃CN (0.5 mL). After evacuation, SO_2F_2 gas was back-filled in the flask and the reaction mixture was left with stirring at room temperature for 2 hours until TLC (hexane/ethyl acetate, 1:1) showed the formation of product **25F** (R_f 0.86). Then solvent was removed *in vacuo* and the resulting crude product was purified by flash column chromatography (hexane/ethyl acetate, 5:1 to 1:1) to obtain fluorosulfate **25F** (28.7 mg, 0.072 mmol, 91%) as a light-yellow syrup.

¹H NMR (400 MHz, CDCl₃): 7.26 (d, 1H, J = 4 Hz), 7.24 (d, 1H, J = 4 Hz), 7.19 (br s, 1H), 6.93 (d, 1H, J = 8 Hz), 6.57 (d, 1H, J = 12 Hz), 6.46 (d, 1H, J = 12 Hz), 6.43 (s, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 3.70 (s, 6H); ¹³C NMR (151 MHz, CDCl₃): 153.6, 150.4, 150.3,

The reaction of amines with SOF₄ solution in CH₃CN

40 to 40F

A solution of SOF_4 in CH_3CN (40 µL) and TEA (1 µmol in 10 µL CH_3CN) was added in one Eppendorf tube containing phenol compound **40** (0.1 µmol in 10 µL DMSO). The tube was left tightly sealed by parafilm at room temperature. LC-MS indicated the formation of **40F** in a yield of 93% after 10 min.

41 to 41F

A solution of SO_2F_2 in CH_3CN (100 µL), a solution of SOF_4 in CH_3CN (200 µL) and TEA (1 µmol in 10 µL CH_3CN) was added in one Eppendorf tube containing phenol compound **41** (0.1 µmol in 10 µL DMSO). The tube was left tightly sealed by parafilm at room temperature. LC-MS indicated the formation of **41F** in a yield of 87% after 15 min.

BIOLOGY

Reagents and Software

All culture media are purchased from GIBCO®. Charcoal-stripped FBS, PolarScreenTM ER α competitor assay kit (Green) and CellTiter-Glo assay kit are purchased from Life Technologies. Mouse monoclonal anti-tublin-FITC antibody (DM1A) is from AbCam Inc. Rabbit monoclonal UGT1 antibody is from Cell Signalling Technology. Rabbit monoclonal ER α antibody is from AbCam Inc. Experimental data were processed by Prism 7 and western blot images were analyzed by ImageJ 1.50i.

Cell Culture

The MCF-7, A549, SKBR3 and HT-29 cells were originally purchased from ATCC. The T47D and ER⁻ MCF-7 cells were kind gifts from Christopher K. Glass group (UCSD). All cancer cell lines were routinely maintained in DMEM (+GlutaTM MAX) supplement with 10% FBS and 1% peneciline/streptomycin in 5% carbon dioxide at a temperature of 37 °C.

Two-Dose Cell Viability Assay to Compare the Cytotoxicities of Fluorosulfurylation Products (1F to 39F) and Phenol Parents (1 to 39)

All cancer cells for the anti-cancer assay were grown in DMEM (+GlutaTM MAX) supplement with 5% FBS. MCF-7 and A549 cancer cells were inoculated into 96-well plates in 100 μ L medium at a plating density of 5,000 cells/well. After cell inoculation, the plates were incubated at 37° C and 5 % CO₂. After 24 hours, all wells were refreshed with medium containing DMSO (0.2%, as vehicle control), phenols (20 μ M or 500 nM) or *in situ* generated fluorosulfurylation products (20 μ M or 500 nM). Then cancer cells were maintained at 37° C and 5 % CO₂ for 72 hours before cell viability (V_{control}, V_{phenol} and V_{fluorosulfurylation product}) were evaluated by

CellTiter-Glo Assay following manual of protocol. Cell viability percentage relative to vehicle control is defined as $V_{phenol}/V_{control} * 100\%$ or $V_{fluorosulfurylation product}/V_{control} * 100\%$. The cytotoxicity difference between a fluorosulfurylation product and its phenol precursor is quantified as ($V_{phenol}/V_{control} * 100\%$) - ($V_{fluorosulfurylation product}/V_{control} * 100\%$).

Cancer Cell Growth Inhibition Assay

Compounds Dilution

Experimental compounds were dissolved in DMSO at 500-fold of the desired final maximum test concentration. Then it was 10-fold serially diluted to other concentrations in DMSO. All aliquots were frozen prior to use. At the time of test, the aliquots of frozen concentrates are thawed and diluted to the desired final test concentrations with DMEM (+GlutaTM MAX) supplement with 5% FBS.

Growth Inhibition of MCF-7, A549, SKBR3 and HT-29 by 1 and 1F

All cancer cells for the anti-cancer assay were grown in DMEM (+GlutaTM MAX) supplement with 5% FBS. Cancer cells were inoculated into a 96-well plate in 100 μ L medium at a plating density of 5,000 cells/well. Another same plate of cells was inoculated for the evaluation of time 0. After cell inoculation, the plates were incubated at 37 °C and 5 % CO₂ for 24 hours. Then the viabilities of cancer cells for time 0 were evaluated by CellTiter-Glo Assay following manual of protocol to obtain V₀. And another plate of cancer cells was refreshed with medium containing either DMSO (0.2%, as control) or test compounds (1 or 1F) in 7 different concentrations from 20 μ M. After incubation for 72 hours, cell viabilities were evaluated by CellTiter-Glo Assay to obtain V_{control} and V_{test}. The growth inhibition percentage is defined as (V_{test} – V₀) / (V_{control} – V₀) * 100%. IC₅₀ value were obtained from dose-response curves. All test included 3 repeats.

Growth Inhibition of MCF-7, T47D, ER⁻ MCF-7 and A549 by 11 and 11F

All cancer cells for the anti-cancer assay were grown in DMEM (+GlutaTM MAX) supplement with 5% charcoal-stripped FBS and 0.01 nM 17 β -estradiol. Cancer cells were inoculated into a 96-well plate in 100 µL medium at a plating density of 3,000 cells/well. Another same plate of cells was inoculated for the evaluation of time 0. After cell inoculation, the plates were incubated at 37 °C and 5 % CO₂ for 24 hours. Then the viabilities of cancer cells for time 0 were evaluated by CellTiter-Glo Assay following manual of protocol to obtain V₀. And another plate of cancer cells was refreshed with medium containing either DMSO (0.2%, as control) or test compounds (**11** or **11F**) in 5 to 8 different concentrations from 20 µM (2 µM for MCF-7 and T47D cells). Then cells were incubated for 6 days with one change of medium containing test compounds on day 3, before cell viabilities were evaluated by CellTiter-Glo Assay to obtain V_{control} and V_{test}. The growth inhibition percentage is defined as (V_{test} – V₀) / (V_{control} – V₀) * 100%. IC₅₀ value were obtained from dose-response curves. All test included 3 repeats.

Growth Inhibition of MCF-7, A549, SKBR3 and HT-29 using 25 and 25F

All cancer cells for the anti-cancer assay were grown in DMEM (+GlutaTM MAX) supplement with 5% FBS. Cancer cells were inoculated into a 96-well plate in 100 μ L medium at a plating density of 5,000 cells/well. Another same plate of cells was inoculated for the evaluation of time 0. After cell inoculation, the plates were incubated at 37 °C and 5 % CO₂ for 24 hours. Then the viabilities of cancer cells for time 0 were evaluated by CellTiter-Glo Assay to obtain V₀. And another plate of cancer cells was refreshed with medium containing either DMSO (0.2%, as control) or test compounds (**25** or **25F**) in 7 to 9 different concentrations from 20 μ M (2 μ M for MCF-7 cells). Then cells were incubation for 72 hours, before cell viabilities were evaluated by CellTiter-Glo Assay to obtain V_{control} and V_{test}. The growth inhibition percentage is defined as (V_{test} – V₀) / (V_{control} – V₀) * 100%. IC₅₀ value were obtained from dose-response curves. All test included 3 repeats.

ER Binding Assay

Estrogen receptor binding assays were preformed using a PolarScreenTM ER α competitor assay kit (Green) from Life Technologies following manual of protocol. This method uses recombinant ER and competition with a fluoromone ligand. The experiment included

7 concentrations of test compounds from 10^4 nM to 10^{-2} nM and three repeats for each concentration. Relative EC₅₀ were obtained from dose-response curves.

Western Blot for ER α Downregulation

MCF-7 cells were inoculated in a 6-well plate at a seeding density of 10,000 cells/well in DMEM (+GlutaTM MAX) supplement with 5% FBS. After incubation for 24 hours, cells were exposed to either **11** or **11F** at the concentrations of 0 nM (0.2% DMSO), 3 nM, 9 nM and 27 nM for 5 days with daily changes of media containing test compounds. Then cells were lysed and stored at -80 °C until western blot for ER α . After cell lysis, denaturing and centrifuge at 20,000 rpm for 20 min, protein samples in equal volume were subjected to western protocol. Membranes were blocked and then incubated with 1:400 dilution of ER α antibody at 4 °C overnight followed by 1:5000 dilution of secondary antibody for 1 h at room temperature. GAPDH was detected as loading control. They were then imaged on a ChemiDocTM imaging system (Bio-Rad).

Western Blot for UGT1 expression on A549, MCF-7 and HT-29 cells

A549, MCF-7 and HT-29 cells were inoculated in a 6-well plate at a seeding density of 100,000 cells/well in DMEM (+GlutaTM MAX) supplement with 5% FBS. After incubation for 24 hours, cells were incubated for 24 hours before cells were lysed and stored at -80 °C until western blot for UGT1. After cell lysis, denaturing and centrifuge at 20,000 rpm for 20 min, protein samples in equal volume were subjected to western protocol. Membranes were blocked and then incubated with 1:500 dilution of UGT1 antibody at 4 °C overnight followed by 1:5000 dilution of secondary antibody for 1 h at room temperature. GAPDH was detected as loading control. They were then imaged on a ChemiDocTM imaging system (Bio-Rad).

Immunofluorescence Microscopy of HT-29 Microtubule Disruption induced by 25 and 25F

HT-29 were inoculated in a 4-well chamber at a seeding density of 10,000 cells/well in DMEM (+GlutaTM MAX) supplement with 5% FBS. After incubation at 37 °C for 24 hours, cells were treated with media containing DMSO (0.2%), **25** (1 μ M, 0.1 μ M) or **25F** (1 μ M, 0.1 μ M) for 24 hours. Then cells were gently washed in PBS, fixed for 20 min with 4% paraformaldehyde in PBS and permeabilised in 0.5% Triton X-100. Following washes in PBS containing 0.1% Tween (PBST), cells were blocked in 5% bovine serum albumin diluted in PBST. Then cells were incubated with mouse monoclonal anti-tublin-FITC antibody (DM1A) (1:100 in PBS) for 3 hours. After washing with PBST, cells were incubated with DAPI (1:2000) for 30 min and mounted in PBS for confocal analysis. Images were captured by Nikon spinning disk confocal microscopy. All images in each experiment were collected on the same day using identical parameters.

2. SUPPLEMENTARY FIGURES

Figure S1. Photographs of gas-based and liquid-based SuFEx systems. (A) Gas-liquid based standard chemical synthesis using a flask. (B) Gas-liquid based synthesis using a 96 well plate and a vacuum dessicator. (C) Liquid based synthesis using a 96 well plate.

*: quantitative yield

Figure S2. Solvent/base screening for in situ SuFEx protocol.

Figure S3. Demonstration of fluoride ions removal through TMSOH work-up. (A) ¹⁹F NMR showed the reaction mixture contains anionic fluoride (-130 ppm, in CH₃CN/CDCl₃); (B) Volatiles in the reaction mixture were removed *in vacuo* overnight, ¹⁹F NMR showed the presence of anionic fluoride (-151 ppm, in CDCl₃); (C) After reaction, the reaction mixture was treated with TMSOH (2 μ mol, 20 eq) for 30 min and ¹⁹F NMR showed the formation of TMSF (-158 ppm, in CH₃CN/CDCl₃); (D) After treated with TMSOH, volatiles in the reaction mixture were removed *in vacuo* overnight and ¹⁹F NMR showed no presence of anionic fluoride or TMSF. Full ¹⁹F spectra are showed in NMR section.

3

3 = 3F quant (mono)

4 ➡ 4F quant (mono)

1. One -SO₂F was installed according to LC-MS.

2. Quantitative yield.

1 **→** 1F 84% (mono¹)

 $2 \Rightarrow 2F \text{ quant}^2 (\text{di}^3)$

Two -SO₂F were installed according to LC-MS.
18 F is a mixute of E/Z isomers since starting material **18** contains both E/Z isomers.
Three -SO₂F were installed according to LC-MS.
34 F is a mixture of E/Z isomers since starting material **34** contains both E/Z isomers.

Figure S4. Thirty-nine phenol compounds for *in situ* SuFEx. The thirty-nine parent phenolic compounds are all selected from anti-cancer compound libraries of Selleckchem as a solution in DMSO (10 mM), which are named compound 1 to 39. They were transformed to

S8

corresponding crude products **1F** to **39F** by *in situ* SuFEx protocol introduced above. The yields and numbers of fluorosulfates moieties installed are showed below each structure (red).

Figure S5. Representative examples of cancer cell viability assay results of the *in situ* SuFEx generated **6F**, **13F**, **14F** and **33F** and their phenol precursors (500 nM). P values were calculated using two-way ANOVA. Error bars represent the mean \pm SEM (n = 3); ns: P \ge 0.05; *: P \le 0.1; **: P \le 0.01; ***: P \le 0.001; ****: P \le 0.0001.

Figure S6. Proliferation inhibition curves of 1 and 1F on different cancer cell lines. Error bars represent the mean \pm SEM (n = 3).

Figure S7. Proliferation inhibition curves of 11 and 11F on different cancer cell lines. Error bars represent the mean \pm SEM (n = 3).

* NI : No inhibition (less than 50% inhibition at 10000 nM)

Figure S8. Proliferation inhibition curves of 25 and 25F on different cancer cell lines. Error bars represent the mean \pm SEM (n = 3).

Figure S9. Combretastatin drug resistance on HT-29. (A) Mechanism of Combretastatin A4 resistance by UDP-glucuronosyltransferases (UGTs) in HT-29 colon cancer cells; (B) UGT1 expression levels in A549, MCF-7 and HT-29 cells.

Figure S10. Expansion of liquid-based SuFEx protocols. (A) Selective functionalization of amine moiety to tetrahedral iminosulfur oxydifluorides in Solithromycin. (B) Simultaneous and selective generations of fluorosulfates and tetrahedral iminosulfur oxydifluorides on a bioactive compound.

3. NMR SPECTRA

1. Full ¹⁹F NMR spectra of crude 3F by different work-up procedures described in Figure S3

A. Reaction crude \rightarrow ¹⁹F NMR in CH₃CN/CDCl₃

00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 1-50 -50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20 11 (ppm) **B**. Reaction crude \rightarrow remove solvent *in vacuo* overnight \rightarrow ¹⁹F NMR in CDCl₃

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20 f1(ppm)

C. Reaction crude \rightarrow TMSOH (20 equiv.), rt, 0.5 h \rightarrow ¹⁹F NMR in CH₃CN/CDCl₃

D0 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

D. Reaction crude \rightarrow TMSOH (20 equiv.), rt, 0.5 h \rightarrow remove solvent *in vacuo* overnight \rightarrow ¹⁹F NMR in CDCl₃

00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -180 -170 -180 -190 -20(f1 (ppm)

2. NMR spectra for pure 1F, 11F and 25F

¹H NMR spectrum for $\mathbf{1F}$ (400 MHz, CDCl₃)

400	350	300	250	200	150	100	50	0	-50	-100	-150	-200	-250	-300	-350	-400	-450	-500	-550
									t'l ((ppm)									

 13 C NMR spectrum for **11F** (151 MHz, CDCl₃)

 $^{19}\mathrm{F}$ NMR spectrum for **11F** (376 MHz, CDCl₃)

1														, ,	, , , , , , , , , , , , , , , , , , , ,
00	150	100	50	0	-50	-100	-150	-200	-250	-300	-350	-400	-450	-500	-550
								r (ppm)							

S22

¹³C NMR spectrum for **25F** (151 MHz, CDCl₃)

¹⁹F NMR spectrum for **25F** (376 MHz, CDCl₃)

400 350 300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300 -350 -400 -450 -500 -550 f1 (ppm)

4. LC TRACES LC Method I

Solvent A: H₂O; Solvent B: CH₃CN

TIME (MIN) A (%) B (%) FLOW [ML/MIN] MAX. PRESSURE LIMIT [BAR]

0	100	0	0.550	400.00
3	10	90	0.550	400.00
4	10	90	0.550	400.00
5	100	0	0.550	400.00
5.5	100	0	0.550	400.00

LC Method II

Solvent A: H₂O; Solvent B: CH₃CN

TIME (MIN) A (%) B (%) FLOW [ML/MIN] MAX. PRESSURE LIMIT [BAR]

0	90	10	0.550	400.00
4	0	100	0.550	400.00
7.5	0	100	0.550	400.00

Retention Time (min)	Area %
4.138	16
5.165	84

Retention Time (min)	Area %
4.096	37
5.550	55
5.670	8

Retention Time (min)	Area %
4.509	76
5.842	24

Retention Time (min)	Area %
5.086	14
5.246	3
5.926	83

Retention Time (min)	Area %
3.068	63
3.188	8
3.068	29

Retention Time (min)	Area %
4.178	3
5.045	5
5.925	90
6.405	1
6.938	1

Retention Time (min)	Area %
4.712	2
6.366	98

Retention Time (min)	Area %
3.753	12
4.513	88

4.536	50
5.270	1
5.430	14
5.843	5

Retention Time (min)	Area %
4.776	100

Retention Time (min)	Area %
4.993	6
5.686	88
5.939	1
6.566	3
6.859	2

Retention Time (min)	Area %
6.723	48
7.435	52

Retention Time (min)	Area %
4.590	23
5.256	72
5.430	5

26F: Mol. Wt. 552;

S60

4.001	34
5.255	66

30F: Mol. Wt. 441

Retention Time (min)	Area %
5.144	0.8
5.371	99.2

Retention Time (min)	Area %
4.450	24
4.997	74
5.323	0.5
5.536	1.5

5.767

6.087

1

2

S67

Retention Time (min)	Area %
5.083	47
6.270	53

Retention Time (min)	Area %
4.664	92
4.830	1
5.097	7

Retention Time (min)	Area %
4.470	4
4.763	3
5.243	93
41F: Mol. Wt. 549

Retention Time (min)	Area %
5.739	10
5.859	3
6.126	87